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Reduced nuclear magnetic relaxation by paramagnetic impurities in one dimension
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The paramagnetic-impurity contribution to NMR relaxation of a diffusing nucleus is shown to
be proportional to c2 in one dimension as opposed to c in three dimensions, where c is the im-

purity concentration, The mechanism is thus not expected to be important for one-dimensional
superionic conductors except at high doping levels, whereas it is significant even in nominally
"pure" three-dimensional superionics. This brings into question the interpretation of recent
NMR results in supposedly one-dimensional P-eucryptite as being due to paramagnetic impurities.

I. INTRODUCTION

In a previous publication, referred to as I, we dis-
cussed nuclear-magnetic-resonance (NMR) relaxation
of rapidly diffusing ions by paramagnetic impurities.
This has been shown' to be a major source of relaxa-
tion in superionic conductors even for nominally
"pure" samples. ' The analysis in I assumed the diffu-
sion could be described by a self-avoiding random
walk. That is, in a walk of W steps, W different lattice
sites are visited and, on the average, Wzc paramag-
netic ions are encounted, where Zc & & 1 is the pro-
bability that the ion has an impurity for a nearest
neighbor (Z is the number of nearest-neighbor sites,
c is the impurity concentration). This is a reasonable
approximation for a three-dimensional (3-D) lattice,
but it clearly breaks down in one dimension. In this
paper we treat the 1-D problem which, aside from its
academic interest, is important because several su-
perionic conductors have channel structures which
suggest predominantly 1-D hopping. ln particular P-
eucryptite (LiAlSi04) is a well-documented 1-D sys-
tem whose NMR relaxation' has been attributed to
paramagnetic impurities.

The major result is that the relaxation rate T~ 2 due
to impurities is greatly reduced in one dimension:
whereas T~ 2 ~ Zc in three dimensions, we find
T& t2 cc Z2c2 in one dimension. [T& and T2 are the
longitudinal (spin lattice) and transverse relaxation
times, respectively. ] Thus paramagnetic impurities
are likely to be important in a true 1-D material only
at very high concentrations of the order of 1% while
in three dimensions appreciable effects can be expect-
ed2 for c of the order of a few ppm. Further, any
characteristic "magnetic tagging" peak' in the
linewidth T2

' versus temperature 0 can occur only at
8's very much larger than for corresponding 3-D sys-
tems.

Physically the result is easy to understand. For a .

1-0 walk of W steps only a number of the order of
JN different sites are encountered on the average.
Thus one must take (Zc) 2 steps, rather than (Zc) '

for the self-avoiding walk, before encountering an
impurity. Hence the relaxation time is at least as
long as 7/Z c, where r is the jump time, since relax-
ation cannot proceed until the nucleus diffuses to the
vicinity of a paramagnetic ion. Once the diffusing ion
reaches the impurity, however, the overwhelming
probability is that its successive encounters will be
with the same impurity; so if several encounters are
required for relaxation, the concentration dependence
is of the form Tt 2

—r/Z2c' 4 T', where T' is the
time required to make the necessary number of en-
counters beyond one and is independent of c. Thus
the relaxation rate is proportional to c2 only if
T' &( r/Z'c2, but which, we argue below, is likely to
be the case in most instances. (An implicit assump-
tion is that the paramagnetic impurity is substitution-
al at a non-mobile-ion site, e.g. , Fe + for Al'+ in
LiA1SiO4, and thus does not block the 1-D conduc-
tion channel. ) A further difference from the 3-D
self-avoiding walk is that the relaxation is highly
nonexponential. This and the above points are treat-
ed quantitatively in Sec. II.

II. THEORY

It will be shown that in practically all cases of phy-
sical interest the relaxation rate is limited by the time
it takes a diffusing nucleus to make its first en-
counter. Thus consider first for simplicity the situa-
tion in which relaxation is effectively instantaneous
once the ion reaches the neighborhood of an impuri-
ty. The relaxation function is then given by

where O(t —t') is the unit step function which is zero
for t ) t', P, (t') is the normalized probability that it
takes the nucleus a time t' to make its first encounter
with a paramagnetic ion, and $(t) is the nuclear mag-
netization at time t normalized to its va1ue at t =0.
The sense of Eq. (1) is that the average magnetiza-
tion immediately decays to zero when t = t', the time
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of the first encounter, and remains zero for all future
time t ) t'. The probability Pt(t') is decomposed
into

mation

P(k, N) =(2nN) ' exp( —k'/2N)

P, (t') = X P, (N)p(N~t'),
N 0

valid for N » 1. The result for t/r &) 1 and
Zc « 1 is (in one dimension)

where P~(N) is the probability that an impurity is
first encountered at the Nth step of a random walk
and p(N

~

t') is the probability that N steps are taken
in the time t'. This latter probability is given' by a
Poisson distribution which approaches a 5 function
[p(N~t') =0 unless t'=Nr] for t'/r &) 1 so that Eq.
(1) may be rewritten

Q(t) = X P&(N)O(t Nr) .—
N 0

We further express P~(N) as

(3)

P, (N) = X (Zc)(1 —Zc)" 'R(k, N) (4)

Here Zc(1 —Zc)k ' is the probability that one must
visit k —1 different lattice sites before reaching an
impurity at the kth site and R (k, N) is the probability
that it takes N steps of the walk to visit k different
sites.

For the self-avoiding walk R (k,N) = 8k' where-
upon use of Eq. (4) in Eq. (3) gives (in three dimen-
sions)

y (t ) e zcilr-
for Zc « 1 and (1 —Zc)' ' = e z" '. Equation (5)
gives the well-known result 1/T~ 2

= Zc/7 in the re-

gion where relaxation is -limited by the time it takes
the nucleus to diffuse to an impurity and also shows
that the decay is exponential. (Note that we are con-
sidering a discrete hopping model and only nearest-
neighbor electron-nuclear spin interactions so that
certain considerations' based on a continuum diffu-
sion equation and r~ interaction are not relevant
here. )

The situation is considerably different for the 1-D
problem at hand where R (k,N) is equivalent to the
probability that the point x = ka (a is the jump dis-
tance) is first visited at the ¹hstep of a random walk

which starts at x =0. 'This is given in the textbook~

by

$(t) =erefrc(JT) (8)

1.0

where erfc is the complementary error function and T
is a dimensionless time given by T = , Z'c't/r-.

Since $ is a function of T we see that the characteris-
tic decay time is proportional to r/Z c which con-
firms the physical argument in the Introduction. For
T )& 1, $(t) = (n T) ' 2, while $(t) =1 —2(T/rr)'
for T (&1.

The function given by Eq. (8) is plotted in Fig. 1

which shows that it is highly nonexponential. It is
more nearly exponential when plotted versus JT, but
the resulting semilog plot still shows sizeable curva-
ture during the first decade of decay. The long-time
(m T) 't' approximation is good to within 10% for
T «4.

If relaxation is not complete after the first en-
counter, we must consider successive interactions
with paramagnetic ions. Since the average distance to
the next impurity is of the order of a/Zc, the preced-
ing analysis shows that of the order of 1/Z'c' steps
are required to make an encounter with an ion other
than the one first visited. On the other hand, the
starting point is revisited' on the order of JW times
in a walk of N steps. Thus the nucleus will interact
with the original impurity about 1/Zc times before it
encounters a different relaxer, so it is a good approxi-
mation to consider encounters with only one ion as
long as Zc && 1.

To account for noninstantaneous relaxation at the
impurity site, we-replace the unit step function in Eq.

R (k,N) = (k/N) P(k, N) (6)

where P(k, N) is the familiar probability that a parti-
cle is at the point x = ka after the Nth step,

P(k, N) =2 N!/(N —k/2)! (N + k/2)!

0. 1
0

I
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We insert Eqs. (6) and (4) into Eq. (3), convert
the sums to integrals and use the continuum approxi-

FIG. 1. Relaxation function $ vs reduced time
2 2T = —Z c t/~ for case of instantaneous relaxation once im-

2

purity is encountered. Dashed curve is @= (n T) ' 2.
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(I) by a relaxation function (Ir(t —t') defined as

II,
0(t t') -—p(t —t') =''

@p(t —t), t)t

pt
Po(t[) = (exp I „I ka (t2)P (0 t2) di2 ).

where h~(tv) is a fluctuating perturbation which has
the properties (htp(tz)), „-0and

(10)

(hrp(t, )htp(t3) ),„= (d(rpz) e

in which ~, is the spin-lattice relaxation time of the
paramagnetic impurity. The brackets ( ),„ in Eq.
(11) are averages over the electron-spin coordinates
and over the angles of the vector r between the nu-
cleus and the nearest-neighbor impurity site in the
case of an anisotropic (dipolar) interaction. The
quantity p(0, t2) in Eq. (10) is unity if the nucleus is
at the origin of a random walk at time t2 and zero
otherwise. The brackets ( ) in Eq. (10) imply an
average both over the impurity spin ( ),„and over
p(0, t2) [the average (p(0, tv)) = P(0, t&) as given by
Eq. (7)]. For simplicity, nonsecular terms [contain-
ing oscillations at rap and (p, ((p, p& rap), the respec-
tive NMR and ESR frequencies] have been omitted
from Eq. (10). Thus the treatment is limited either
to calculation of transverse relaxation T2 in the low-

temperature region where cdp7, Mo'T 0) 1 so that sec-
ular terms dominate or to T2 and spin-lattice relaxa-
tion T1 at high temperatures ~here ~,7, ((1 and
the spectral densities are independent of frequency.
This is a convenient but not serious restriction since
the basic physics is contained within the model and
nonsecular terms can be added in a relatively
straightforward manner.

An expression similar to Eq. (10) was treated in I.

TABLE I. Characteristic 1-D decay rates 1/T' of $0(t1),
given by @0(t1/T') =1/e, for three cases, in none of which is

$0(t1) a simple exponential, T' is the time required for re-
laxation after the first impurity is encountered. 7. and v., are
the hopping and impurity spin-lattice relaxation times,
respectively.

where $p(t —t') is the relaxation function for a nu-
cleus which is in the neighborhood of an impurity at
t' =0 and which encounters no other impurities dur-
ing its subsequent random walk. Standard Kubo-
Tomita theory may be used to express this relaxation
function as
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FIG. 2. Reduced time T{1/e) for overall decay of mag-
netization to 1/e of its initial value vs normalized time T
which characterizes time for decay of magnetization after
impurity has been encountered. T is equal to
g-1 Z2~2/g~272 I -1 Z2~2/go)4T 27.21

I' ' = Z c /h~ 7 ~, for cases (i), (ii), (iii), respectively.
To convert T(1/e) to units of real time, multiply by
2r/Z c where v is the hopping time.

But there it was assumed that each encounter in-
volves a different paramagnetic ion so that
(~ra(tz)ktp(t3))„=0 if the times t2 and t3 refer to
different encounters, i.e., the encounters are statisti-
cally independent. Here we must be more careful
since each encounter involves the same ion, and thus
the encounters are independent only in the limit of
rapid electronic relaxation, ~, && 7.

We treat three limiting cases (i). tt &( r„(ii)
v, (( v, (iii) r (( v, « tt. Expressions for the
characteristic decay rates 1/T' of r(t(p(tt), which is
nonexponential, are summarized in Table I. The
reader may confine his attention to Table I and Fig. 2
and skip the remainder of this section if he is in-
terested in results only.

Case
conditions

(i)
&c && t1

0.16 (((t(o2) r 0.32 {t(ta(2)2v 2v (1.32 {ttru)2v2v

1. t1 && V'

In (i) ill(tz) is constant so that

4p«» =(e'"' ), (12)

where t' is the amount of time spent at the origin in
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a walk of duration t~ and is given by

n

i 0
(13)

and

f (u) = — [e"erfc(tu )]
de

with 7; the duration of the ith return visit (i =0
refers to the fact that the nucleus is originally at the
origin) and n is the number of times the nucleus re-
turns to the origin in a walk of t, /7 steps. Since the
normalized probability that a particle stays at the ori-

gjn for a time between ~i and ~;+dr; before hopping
-r/r.

is e dr, /r and since the durations of each visit are
statistically independent, the averages over 7; may be
performed at once with the result

(0t]) = X S (n, t)/r) {(1 i kt»r) )
n 1

(14)

where S(n, N) is the probability that a particle returns
to the origin n —1 times (and thus is at the origin at
total of n times) in a walk of N steps.

As noted in Sec. I, P(t) is expected to differ signi-

ficantly from the instant relaxation approximation of
Eq. (1) only if a very large number of encounters are
required to produce relaxation, and the results to be
presented justify this. Thus only the case Acov « 1

is of interest whereby the bracket { ),„ in Eq. (14)
becomes

{(I ig~ ) r) I-{etna»v) &
n(h» }r /2- (15)

where the first approximate equality stems from
h, eov « 1 and the second is the standard Gaussian
approximation for a function which satisfies Eq. (11)
with v, ~. The required probability is'

S(n,N) = P(n —1,N n+1)— (16)

where P(n', N —n'), given by Eq. (6), is the proba-
bility of being at the point n'a after N —n' steps
[n —1 is on the right-hand side of Eq. (16) because
S(n, N) is defined as the probability for n —1 re-
turnsl.

By using Eq. (15) in Eq. (14) and, similar to the
derivation of Eq. (8), converting the sum in Eq. (14)
to an integral with the continuum approximation to
S(n, N), we obtain.

Pa(tt) =(1+{ht»')rtt) 'i' (17)

In deriving Eq. (17) an additional approximation,
valid for N = t~/r && 1, has been made in Eq. (16)
that P (n —1,N —n + 1) =P (n —1,N) for values of n

which contribute to Eq. (14). The final result for
case (i) is achieved by inserting Eq. (17) in Eqs. (9)
and (1) whereby

Equation (18) is identical to Eq. (8) for h. )& 1 which
confirms the above statement that only the case
{d t» ) r « 1 (that is {Ace ) 7 & Z c ) is of interest.
Figure 2 shows computed values of T for which
@(t)= I/e as a function of X.

2. v'~ && 7'

For case (ii) the encounters are statistically in-

dependent of one another since the spin-correlation
time ~, is much less than the hopping time v. The
situation is then the same as if the walk were self-
avoiding and thus

(a» —)v ~, . taco }re t—n+t)

i 0
(19)

for {ht»~) r7, && 1, where we have used the conven-
tional line narrowing approximation9

i

i
t 2l -(4' )~ s,.

exp i J At»(r') dr' „=e
for r; )& r, and (Ar»~) r~ && 1 and where, as in Eq.
(13), n is the number of returns to the origin in a
walk of N = tt/r steps. The average implied in Eq.
(19) is with respect to the probability S(n, N), and we
find by applying the same methods and approxima-
tions used for case (i)

$0(tt) =e ' ' erfc({haP)r, rri'ttti'/2'i'), (20)

from which it follows, as in going from Eq. (17) to
Eq. (18),

pT
g(t) = I —

J dtt f(tt) [I —crt "~erfc(1'(T —tt))~i~]

(21)
with I'= ({ht»') r, r/Zc)'

Apart from the functional forms, a major differ-
ence between Eqs. (20) and (17) is that the charac-
teristic rate in units of r for decay of qho(t&) is pro-
portional to a in Eq. (17) [case (i)l and to a~ in Eq.
(20) [case (ii)]. Here we define a « 1 as the
amount of relaxation per encounter [a =-,' {ht»') r' in

case (i) and a = {At» ) rr, in case (ii)]. Thus Pa(tt)
decays much more rapidly in (i) than in (ii), the phy-
sical explanation being that the encounters add
coherently to the relaxation in (i) and incoherently in
(ii). The I/e decay time for g(t) is given in Fig. 2 as
a function of I .

AT

Q(t) =I —' du f(u) {1—[1+A.(T —u)] 't~}, (18)

with T= Z'c~t/r as in Eq.—(8), 5. =2{dr»~)r~/Z~c',

w«v', « tg

Case (iii) is intermediate between the complete
coherence of (i) and total incoherence of (ii). With
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v « v, there is negligible time dependence of
d, co(r') during a given encounter so that

n

exp i X4 (t;) ),i 0
i

(22)

-Itf -r l/~
=exp —,(Ao)')r Xe ' i 'P(0,ij)

ij

where P(O, ij ), the probability that the origin is re-
visited at both the ith and jth steps of the walk, is
given by

(23)

(, p(O, i)p(O,j -i), j &i,P 0 I JJ=-'
P (0,j)P (O, i —j), j ( i .

The result of using Eqs. (24) and (23) in Eq. (22)
and making the usual summation-to-integration and
continuum approximations is

(b, cu )rr,i/2

$0(t~) =exp-
2Jm

t

duxJ, erf —u, (25)
(1 —u)' ' r,

which reduces to

2) 1/2t 1/2/~
40«t) =e (26)

for t~ && v, . Thus the decay rate of t~ has the same
dependence on (hcu2) as for the incoherent process
of case (ii), but it is enhanced over (ii) by the factor
r, /r » I which expresses coherence of different en-
counters which take place within ~, . As in the previ-
ous two examples the overall relaxation function is

T

prp(r) =I —J duf(u)
p ~ ]/2'

1 —exp— 21'(T —u) (27)
fr

where I"=(r/r, )t' with I' as in Eq. (21). The I/e
decay time for Eq. (27) is also shown in Fig. 2.

where t; is the time of the ith encounter, of which
there are n +1 altogether and the second equality
comes from taking the average over ~; for 4cov && 1.
If a Gaussian process is assumed, the above reduces
to

N

x pi xa (i,) )i 0
i

III. DISCUSSION

It has been pointed out' that relaxation by
paramagnetic impurities can be identified by a max-
imum in the linewidth (Ti ) versus temperature.
This occurs because T2= T0+ T', where T0 is the
time for the nucleus to diffuse to the site of its first
encounter and T' is the time to make the additional
number of encounters required for relaxation. T0 is
proportional to the jump time 7. but T' is proportional
to ~ at least for the self-avoiding walk in the limit
~ « v, . The reason for T' ~ ~ ' is that the percen-
tage amount of relaxation per encounter is of the or-
der of Ace v' so that a time proportional to
(I/hp~'r') x r is needed. Thus at low temperatures
where hcavy » 1, T2 = Tp ~ 7 while T2 = T' ac ~ ' at
high temperature where Aco7 « 1, and a maximum
rate occurs at a temperature such that Ace~ —1.
(Note that Ace here refers to the electronic-nuclear
spin coupling, not to the smaller nuclear-nuclear di-
pole interaction so that the magnetic tagging peak is
at a temperature higher than that associated with the
onset of motional narrowing of the rigid-lattice
dipole-dipole width. )

For the 3-D self-avoiding walk both T0 and T' are
inversely proportional to the impurity concentration c
so' that the temperature H,„of the T2

' maximum is
independent of c. This is not the case in one dimen-
sion where we have seen that T0 is proportional to
I/c' and T' is independent of c. Table II gives T2

'

for ~ && 7,„, ~=~,„, and 7 && ~,„wherer,„=r(8,„) for cases (i) —(iii) both in one and
three dimensions, the latter from results of I. Note
that in cases (i) and (ii) the maximum T, is propor-
tional to Zc independent of dimension and that T2
is independent of c for v. « 7,„ in one dimension.
The 1-D tagging peak occurs at a hopping time v

such that r cx: Zc for (i) and (ii) and r a: (Zc) i for
(iii). A typical figure is Zc —10~ for an undoped
reagent grade sample so that the temperature of the
linewidth peak corresponds to a hopping time more
than 2 orders of magnitude shorter than expected for
a 3-D system. This is illustrated in Fig. 3 where we
show T2 versus temperature 8 in cases (i) and (iii)
for one and three dimensions using Aced =10 sec ',
Zc = 10, an activated r = 2 x 10 ' exp(h/8) sec with
5 =0.5 eV, and r, ~ for (i) and
r, = (300/8) x 10 sec for (iii). The latter r, is rea-
sonable for an isolated S-state paramagnetic ion re-
laxing via Raman processes with phonons. The 3-D
rate is independent of r, for r, » r (which
corresponds to 8 & 450 K in the present example)
since successive encounters are uncorrelated because
they involve different impurities. But correlation
persists for the full r, in one dimension, even for
v, » v, since the same paramagnetic spin is met at
each encounter, and there is considerable difference
between the 1-D curves for (i) and (iii). Both I-D
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TABLE II. Relaxation rate T2 for cases (i)—(iii) in one and three dimensions. 7m, x is hopping
time at maximum T2 '.

+max T2 (v. « ~,„) T (.= ~m, x) T2 '(T')& 7,„)

(i) ~, && T2
1D
3D

2.7Zc/(Ac«) i
0.83/(hc«2) '/2

0.15 (ac«2) r
Zc (hc«2) r

0.050Zc (hc«) i
0.35Zc (hc«)'i

3.17/Z2c2
v/Zc

(ii)
1D
3D

Zc/(5c«) r, 0 3 1 (tt c«2) 2 r 2 r
Zc (/2c«2) r,

0.066Zc (ac« ) r, 3.1T/Z C

7/Zc

(iii) r « ~ « T2
1D '1.9( Zc) 2/2/( cl )2/sr /2 031(tc«c) r r 0.11(Zc) /2(ttc«2) /2r t/2 3.1r/Z c

3D 0.83/(hc«) i Zc(/2c«)r 0.35Zc(hc«) i r/Zc

If the condition v » ~, is maintained, there is no maximum in three dimensions for T2 vs w.

Rather T2 approaches the limiting value Zc(hc«)r, for (hc«)rr, (( l.

et'C)

2000 1000 500
I l

200
I

100
I

-1 -1
T2 (sec )

10

10

10

10 tg (l0 K )

FIG. 3. Predicted transverse relaxation rate T2 ' vs tem--

perature 8 for parameters described in text. Curves 3D,
1D(i), and 1D(iii) correspond to the 3-D self-avoiding walk
and to cases (i) and (iii) for the 1-D system. The 3-D curve
is independent of ~, sesame for (i) and (iii)] as long as
~ « ~, except well below T2

' maximum.

and 3-D rates are independent of v, in the low tem-
perature (long r) region where only one encounter is
required and relaxation is thus determined by the
time to diffuse to an impurity.

The main conclusion is that except for samples
very heavily doped with paramagnetic impurities one
would not expect to see a 1-D linewidth maximum in
the normal temperature range, and the impurity con-
tribution to relaxation is negligible. Relaxation of 'Li
in P-eucryptite has been interpreted as due to
paramagnetic impurities mainly because of the
anomalous T~,'T2 ratio at high temperature. ' ' The
present results seem to suggest, however, that either
the relaxation is not dominated by impurities in spite
of the T~. T2 ratio or that the diffusion is not 1-D in
spite of the large anisotropy of the ionic conductivi-
ty. 4 The model here assumes simple 1-D diffusion of
a single ion on a chain of equivalent sites, whereas
particle interactions and correlations as well as in-
equivalent sites may be important in p-eucryptite. s

However, these effects are believed to slow the rate
of diffusion and thus make paramagnetic impurities
even less important. Indeed if the mean-square dis-
placement (x2) of a labeled particle satisfies (x2) ~ t'/2

as predicted in another publication, "we would expect
T2

' to be proportional to c rather than c .
The results given here have direct consequences

which can be checked by experiments on intentional-
ly doped samples, providing a suitable system (if it is
not P-eucryptite) can be found. The relaxation rates
should vary as c and decays should be nonexponen-
tial.

/Vote added in proof. . Equation (8) agrees with a
result obtained recently for relaxation of excitations
by traps
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