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Phase transitions in an asymmetrical Ising model
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An asymmetrical Ising model in which the eigenvalues of the operators S' and (S') are
1, 0, —

A. , and 1, 0, A.
2 (X being a parameter: 0 ( A. & 1) respectively is studied using Bragg-

Williams approximation. It is shown that such an asymmetrical model is equivalent to a sym-

rnetrical model with renormalized coupling constants. The corresponding lattice-gas model is

proposed which introduces four coupled ordering parameters: m = (S'), q = ((S')2),
M =a&m+a2q, and 0 =b~m+b2q, where a's and b's are some X-dependent parameters. 'The

condensation of a Van der Waals —Boltzmann gas is studied and the variations of the critical pres-
sure P, and the critical temperature T, with A. are analyzed. A study of the phase diagram
shows that the isothermals shift downward as P decreases from unity. The conditions for the
occurrence of successive second-order liquid-gas and solid-liquid transitions are found and it is

shown that a tricritical point may exist both in symmetrical and asymmetrical models at the
liquid-gas transition depending on the strengths of interactions. Considering the different possi-
ble values of m, q, M, and Q four different possible solid phases can be conceived along with

two different liquid phases so that the model permits five consequent solid-solid transitions and

one liquid-liquid transition.

I. INTRODUCTION

Lee and Yang' -developed the equation of state and
the theory of condensation of a real gas by exploiting
the complete analogy between an Ising model and a
lattice gas. They observed that in Ising model one
considers a lattice of interacting spins each of which
having two mutually opposite orientations, whereas
in a lattice gas one conceives a lattice with each lat-
tice point either being occupied by an atom or lying
vacant and that each configuration of lattice of spins
corresponds formally to that of a lattice gas.

In fact, it has been found that a variety of coopera-
tive physical phenomena can be simulated by a spin-

—, Ising model, For example, the phase separation of
a two-component liquid or solid, ' the order-disorder
transition in a binary alloy, ' the freezing of a liquid,
magnetic and electric phase transition' can be simu-
lated by spin- —, Ising models. The physical properties

of the involved systems were successfully described
by one-parameter models.

1But the spin- —, one-parameter Ising models are

really insufficient for describing more complicated
physical phenomena. The thermodynamic behavior
of ternary fluids was studied by Mukamel and Blume
using a lattice-gas model for spin-1 Ising system, by a
generalization of an earilier work of Blume, Emery,
and Griffiths' who interpreted the tricritical point in
the mixture of two quantum fluids He and He .
Lajzerowicz and Sivardiere and Sivardiere and

Lajzerowicz developed a lattice-gas model for the
condensation and solidification of a simple fluid.
Their models were based on two'kinds of ordering
parameters m and q giving rise to phase transitions in
a spin-1 Ising system. The parameters m = (S*) and

q = ((S')') are responsible, respectively, for crystal-
line phase and. the condensation. The parameter m is
called the orientation parameter and q is an analogue
of density called the condensation parameter. On the
basis of this model, they developed the equation of
state and the thermodynamics of phase transitions.

It may, however, be criticized that a two-parameter
lattice-gas model as introduced and developed by
Sivardiere and Lajzerowicz is not able to interpret the
solid-solid and liquid-liquid transitions along with the
solid-liquid and liquid-gas transitions. To interpret
these various kinds of phase transitions one naturally
attempts to introduce some three-parameter or four-

. parameter models for which the use of some high-
spin Ising system (S ) I) becomes necessary. But it
would be interesting to see that even within the
spin-1 model one can introduce four coupled ordering
parameters provided S*and (S*)' are assumed to pos-
sess asymmetrical eigenvalues. '0 In this context we
mention several attempts where double spin-half Is-
ing models were introduced, " with the motivation to
employ more than two ordering parameters. The
double spin-half Ising models were applied to mag-
netic liquids, ' singlet-triplet magnetic systems, ' de-
generate Hubbard models, ' Jahn-Teller systems, "
and liquid crystal mixtures. '
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The purpose of the present paper is to develop the
lattice-gas model of an asymmetrical Ising system'
and to discuss the solid-solid, solid-liquid, liquid-gas,
and liquid-liquid transitions. Following Huang' we
assume that the eigenvalues of the operators S' and
(S')' are 1, 0, —k, and 1, 0, X2 where X is an asym-
metry parameter: 0 ( A. & 1. The limiting case X =1
corresponds to a symmetrical system. Utilizing this
assumption we have derived the Blume-Emery-
Griffiths-Mukamel Hamiltonian appropriate for an
asymmetrical system. Bragg-Williams approximation
is then employed to derive the expression for the
Helmholtz free energy F(m, q, T). We have then util-

ized the concept of Sivardiere and Lajzerowicz to
construct the appropriate lattice-gas model for an
asymmetrical system. It is seen that the model au-
tomatically permits four coupled ordering parameters:
m q and M =a~m +a2q, Q = btm + b2q, where a's and
b's are A.-dependent parameters. Helmhotz free ener-

gy F(M, Q, T) is then developed and is found to be
identical with that of a symmetrical system with
transformed spin operators. The equation of state of
the asymtnetrical system is derived from which the
expressions for critical volume V, , critical pressure
P,", and the critical temperature T," are found out.
The possibility of second-order solid-liquid and
liquid-gas transitions is studied and the conditions for
successive occurrence of these two phase transitions
are derived for both symmetrical and asymmetrical
models. The thermodynamics of other kinds of tran-
sitions is also discussed.

II. BLUME-EMERY-GRIFFITHS-MUKAMEL
HAMILTONIAN

We shall follow the method of Blume, Emery, and
Griffiths and Mukarnel and Blume to set up the

Hamiltonian for an asymmetrical system. We intro-
duce the number operators"

N

N~ = X (q;+ Zm;),
1+A. i

1
N

lt(1 + Z) , ,
X (q; —m,),

N

No=x 1 ——q;+ m,
1 1 —x

where q; = (S;)' and m =S;with the eigenvalues 1, 0,
A.

2 and 1, 0, —), respectively.
The above expr'essions result froN the natural ex-

tension of those of Mukamel and Blume. Let us
suppose that the nearest-neighbor interaction
between A- and 8-type molecules is given by K~~.
Hence the Hamiltonian may be written

H = K„„N4A + KBBNBB + KAB (Ngs + Ns~) + Koo Noo

+Kwo(Nqo+ Noa) + Kao(Nao+ Noa)

where N~~, N~g, etc. , are given by

, $ (q;+ Xm;) (q~+ Zmj),
1

1+it)'
ttl&

Ngs= (,X(q;+)m, )(q, —m,),1

h. 1+8.

according to Eq. (1).
After straightforward simplifications, the Hamil-

tonian may be written in the following form (apart
from a constant factor):

H = —J X m; m& jg q,—q~
—C X (m;qj + q;mj) —It X m; —D Xq;,

(4) (~J& (ij) i i

where the interaction constants J,j,C, h, and D are given by
1 1

J=(1+5.) X Kgw+ KBB 2KgB—+(1 —k) A. Koo+ Kgo — Kao
2 —2 2A, 2

1 —)' 1 —g'

(2)

r
'I 'I

j =(1+X) Kgg+ KBS+ KAB +—~ Koo KAo KBo
1 2 2g 2

1+X 1+x
1

C = (1 + X) egg — ,Kaa-—
t

1 —Z 1 2 —h.
Kgs —(1 —&) & Koo +

1
KAO +, Kao,

z 1+X x'1+)

1 —z 1 1 1
h =z Koo+ Kwo ——

1+A. A.(1+X) ' 1+4. A, (1+X)Kao, D =z — Kwo+ Kao —Koo
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z being the number of nearest neighbors.
We note here that Eq. (2) is identical with that of

Mukamel and Blume but now the interaction con-
stants occurring in the Hamiltonian depend on the
asymmetry parameter A. . The interaction constants
J,j,C, h, and D for A. =1 coincide with those of Mu-
kamel and Blume. The parameter h in the above
Hamiltonian plays the role of an external field and D
resembles a single-ion crystal-field anisotropy. In the
corresponding lattice-gas model Lajzerowicz and
Sivardiere (LS) identify D as the chemical potential,
but they did not consider the crossed interaction C.
We see from Eq. (3) that even for X =1 there is no

justifiable assumption which can make C =0 along
with D &0. On the contrary it becomes evident that
if one assumes that K~0 = K~0 =K~~ =0 then one
gets D =O, h =O, C W 0. On the basis of this assump-
tion we can show that the condensation does occur in

this formalism also. In fact, we shall see later that
the condensation for the asymmetrical case can be
shown to be identical with that as appeared in LS for-
malism, The role played by the crossed interaction C
is equivalent to that by D in LS formalism. The as-
sumption that the interaction K~0, K~o, K00 are zero
does not evidently imply that No =0. We have
developed in Sec.- IV an appropriate lattice-gas model
which allows vacancies in the treatment so that the
condensation and the solidification can be discussed.

III. FREE ENERGY IN BRAGG-WILLIAMS
FORMALISM

where N is the total number of spins, and m and q
are the dipolar and quadrupolar ordering parameters,
respectively, which are given by m = (S') and

q = ((&')').
The entropy may be calculated from the expression

5 = —Nks Xp lnp

m=Xm, p
IN

q = Xm,'p
IN

S

(7)

The probabilities p~, po, p & for each quantum state
having the eigenvalues 1, 0, —

A. , respectively, can be
calculated from Eqs. (6) and (7) with the additional
condition

Xp =1. (g)

One gets after simplifications

q+ A, m

1+x
1 1 —zpp=1 ——q + m

where k~ is the Boltzmann constant, and p is the
probability of a spin to be in a quantum state whose
eigenvalue is m„ the latter taking the values 1, 0, —

A. .
The parameters m and q may now be written in the
forms

U = —Nz [Jmz+ jqz+2cmq], (4)

The internal energy of the syste'm described by the
Hamiltonian (2) with It = D =0 takes the following
simple form in Bragg-Williams approximation:

q —m

) (1+x)
The expression for the Helmholtz free energy per
spin can now be written in the following form:

r

F (m, q, T) = —Jm jq —2cmq +—T2 ~ 2 q+Am q+Am
ln +

1+& 1+x

1 r

1 1 —z 1 1 —x
1 ——q+ m ln1 ——q+ m

t

+ — lnq —m q —m

Z(1+ Z) ) (1+Z)
(10)

where we have written J for Jz, j for jz, C for Cz, and
Tfor AT.

When the free energy of the system is given it be-
comes quite straightforward to develop the thermo-
dynamics of phase transitions occurring in the sys-
tem. One can make the development'8' of free en-
ergy and this may provide us some qualitative
knowledge about phase transitions. But it is
nevertheless evident that there exists a complicated
coupling between the ordering parameters m and q;

hence no reliable information can be obtained from
this method. The alternative procedure is to solve
the equations obtained for m and q from the equili-
brium conditions: 8F/f)m =0, BF/Bq =0. We do
not proceed to study the magnetic properties of the
system and the related orderings in m and q. In-
stead, we shall develop the appropriate lattice-gas
model with the help of which we shall discuss the
thermodynamics of solid, liquid, and gaseous
phases.
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IV. LATTICE-GAS MODEL FOR ASYMMETRICAL
SYSTEM

In constructing a lattice-gas model corresponding to
a symmetrical Ising system, Sivardiere and
Lajzerowicz considered m as the orientation parame-
ter which describes the crystalline phase. The situa-
tion m =0 therefore corresponds to the liquid phase
and the temperature T, at which m goes to zero
describes the solid-liquid transition. The other order-
ing parameter q in their formalism is regarded as a

density parameter and may be called the condensa-
tion parameter. In the corresponding magnetic prob-
lem transitions occur in both m and q leading to di-

polar and quadrupolar transitions. "" In the
paramagnetic phase the ordering parameter
Bo= (q —

s ) is zero. In the lattice-gas model Ba is,
1

therefore, assumed to vanish at the liquid-gas transi-

tiorl.
The simple-lattice-gas model as stated above may

be criticized in two respects: (i) one may easily note
that the orientational ordering in gas as represented
by nonzero m disappears in the liquid phase and (ii)
the assumption that Bo vanishes at the liquid-gas
transition as envisaged in a symmetrical model is an
oversimplification. In addition to this, the above
model cannot be applied to more complicated phase
transitions like the liquid-crystal transitions. The
model is also incapable of interpreting the existence
of so-called solid-solid transitions.

Before discussing the formal correspondence on
which the present model is based we shall deal with
an important aspect of the problem. W'e shall show
below that our asymmetrical model corresponds to a
symmetrical model with renormalized coupling con-
stants and spin operators,

(a) Transformation to a symmetrical madel

introduce two ordering parameters M and Q defined

I + x2 I —A.

) (I+)) ) (I+i)
1 I —X

h. (1+ h.)

(12)

The inverse relations are

m =-,'(I+~)M+ —,'(I-i)Q,

q = —'(I —Z') M + —'(1+ X') Q

(13)

We now define the solid phase by M A O, Q & —, , the

liquid phase by M =O, Q & 3, and the gas phase by

M =O, Q = —,. The internal structure of the crystal-
2

line phase or the liquid phase depends on the implicit
parameters m and q. We see that in the gaseous
phase

m = —, (1 —) ), q = —, (I +) ') .
1 I

For A. =1, we find m =O, q = —,.
2

It is also necessary to mention that Eq. (11) along
,with Eq. (I) yields Q = I/Vwhereas in the symmetrical
nlodel q is identified with the reciprocal of volume.

We shall now re-express the free energy in terms
of the explicit parameters. Equation (10) with the
help of. Eq. (13) leads to.

M = (Ng) —(Ns),

Q = (Ng) + (Ntt) .

We shall call M "explicit orientation parameter" and Q
"explicit condensation parameter" to distinguish them
from the "implicit parameters" m and q. The rela-
tions between m, M, q, and Q can easily be written
down. Using Eq. (1) one can show that

F(M Q T) ——XQ' —YM' 2RQM+ T -Q — ln Q +(1 —Q) ln(1 —Q) + Q —ln™
2

"
2

"
2

"
2

where the interaction constants X, Y, and R stand for

X = —,
' J[(1—Z)'+a(I + X')'

+2y(1 —a) (1+Z')],

V= —,
' J[(i+))'+ (I-i')'

+2y(1+) )(1 —Z')1,

R = —,
' J[(1—i') +a(1 —)')'

+2y(1+ Z')1.

with n=-j/J, y=C/J.
It is interesting to see that Eq. (15) can be derived

from a Hamiltonian

JJ=—y gQQ, —ygMM,
&y~

—R $ (Q;Mt+ M, Qt),
(~l&

(17)

One easily finds that the eigenvalues of M; and Q;

where M; and Q; are the effective spin operators de-

fined by

] +~' 1 —A.

)(I+)) ' )(I+)) ''
1 1 —Z
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are 1, 0, —1 and I, 0, I, respectively. Equation (17),
therefore, describes a symmetrical Ising system. An
asymmetrical model can, therefore, be transformed
to a symmetrical model with the interaction constants
and the spin operators suitably renormalized.

The inverse relations of Eq. (18) are

m, = —,
' (I + 1 ) M, + —,

' (l - l ) Q, ,

q, = —,'(I —) 2)M, + —,'(I+)')Q, .

I
1

IL-I R —L+ R+
I

I

I I

(b)

(e)

I

I

I

!
I

(c)

I

I

I

I

I

If we substitute these relations in Eq. (2) one would
also get Eq. (17).

We shall now demonstrate that the new renormal-
ized interaction constants possess some interesting
properties. From Eq. (16) one can show the follow-
ing relations:

X+ Y+2R =. Kgg, X+ Y —2R =Kgb,

X —Y=Kga,

from which we get

4X = Kgg + Kgg + 2Kgg,

FIG. 1. Asymmetrical lattice-gas model: (a) a cell is di-

vided into right (+) and left (-) compartments, (b) each
compartment is divided into right (R) and left (L) subcells,

(c) a particle occupies the position R+ which corresponds to

M; =1, 0; =1, m; =1, and q; =1, (d) a particle occupies

the position L+ which corresponds to M, = 1, 0; = 1,

m; = —A. , and q; = A. , (e) a particle occupies the position

R which corresponds to M; = —1, 0; =1, m; =1, and

q; = 1, (f) the position L is occupied which refers to the

situation M;= —1, Q;=1, m;= —
A. , and q;=A. , (g) the cell

is vacant: M;=0, Q, =O, m;=0, and q,. =0.

4 Y = Kgg+ Kgg —2Kga,

4R = Kgg —Kgg .

X may, therefore, be interpreted as the mean intera-
tomic interaction in an equiatomic mixture, and Y as
the parameter which gives us a measure of the ten-
dency of phase separation. The parameter R meas-
ures the difference of AA and 88 coupling.

(b) Formal correspondence We propos. e below
the following lattice-gas model appropriate for the
present problem.

Let us imagine that a cell corresponding to the lat-
tice site i with the effective spin operators M, and Q;
is divided into two "compartments": right (+) and
left (-) as shown in Fig. 1(a). The eigenvalues of M,
are 1, 0, —1. The situations M; =+1 correspond to
a particle occupying the right and left compartments,
respectively, and M; =0 corresponds to vacancy. On
the other hand, Q; possess the eigenvalues 1, 0, 1.
The situation Q; =1 implies that the cell is occupied
and Q; =0 implies that the cell is empty. This kind
of formal correspondence was conceived in LS for-
malism where the implicit ordering parameters m; and

q; were utilized.
To fit into the present formal picture the role

played by the spin operators m; and q; we imagine
that each "compartment" is divided into two subcells:
left (L) and right (R) subcells as shown in Fig. 1(b).
The subcells which belong to the right compartment

are denoted by R+ and L+, and those to the left by
R and L . Now let us consider the situation
M, = I,Q,. =1 which implies that the right compart-
ment is occupied by the particle. Which subcell of
this compartment will be occupied by the particle is
determined by the eigenvalues of m; and q;. Evident-
ly there exist two possibilities: the particle may oc-
cupy the right subcell and it may also occupy the left
subcell. We call the first possibility the "normal con-
figuration" as shown in Fig. 1(c) which implies that if
the particle goes to occupy the right subcell the situa-
tion may be represented by m; =1. But if the particle
occupies the left subcell it corresponds to m; = —

A.

and we call it "asymmetry configuration" as shown in
Fig. 1(d). We interpret m; as the probability of occu-
pation of a subcell by a particle and also the probabil-
ity of a subcell to remain empty, In the normal con-
figuration the probability p(1) that the right subcell is
occupied by a particle is unity and also the probability
p(2) that the left subcell will remain empty is also
unity. In asymmetry configuration p(1) =p (2) = —h. .
The joint probability of simultaneous occurrence of
these two states (one subcell occupied and other
empty) is therefore I in the'normal configuration and
A.
' in the asymmetry configuration. We denote these

situations by q; = 1 and q; = A. ', respectively.
A similar picture holds for the case M, = —1, Q; =1

and is demonstrated in Figs. 1(e) and 1(f). Figure
1(g) represents the situation M; =0 Q, =0, m; =0,
q; =0, which implies that the cell is empty.
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V. VAN DER %AALS —BOLTZMANN GAS

M +Q =0
BM BQ

gives the identity

(19)

Q+Ml Q+M Q —Ml Q —M
2

'"
2

=2XQ'+2 YM'+4RQM+ TQ ln(1 —Q) . (2p)

Using this identity one gets from Eq. (15) the equili
brium value of the free energy

In this section we shall study the simple situation
—the condensation of a Van der Waals —Boltzmann
g'as. We shall utilize Eq. (15) to find the equilibrium
value of the free energy. We find that the condition

The critical volume V,", the critical temperature T,",
and the critical pressure P," can, therefore, be shown

to be

V"=2, PI=—,X P i = —X(ln4 —1) . (23)

We see that the critical volume remains the same in

both the symmetrical and asymmetrical models, but

the critical pressure and temperature both vary with

For J =O, C =0, we get

PP/P, = TP /T, = —,(1+)')' .

The phase diagram is shown in Fig. 2 which shows

that the isothermals shift downward as A. decreases

from unity. We should also mention that P, V, /T, is

free from the interaction constants and is the same in

both the symmetrical and asymmetrical models.

@,= XQ + YM~+ T ln(l —Q) . (21) VI. SOLID-LIQUID AND LIQUID-GAS TRANSITIONS

(22)

f 5-

Since we are considering only the case of condensa-
tion of a gas we put M =0. The equation of state
may, therefore, be written

X 1P= — —Tln 1 ——
y2

In the symmetrical lattice-gas model the solid-

liquid transitions and liquid-gas transitions may either

be first order or second order depending on the

strengths of interactions. Similar results are also ob-

tained in the present asymmetrical model. Here we

shall examine the possibilities of second-order solid-

liquid and liquid-gas transitions to find the possibility

of existence of a tricritical point, if any. For this pur-

pose, we shall minimize the free energy F(M, Q, T)
with respect to M and Q so that we get

1M+RQ = 'l. Q+M, —
4 Q —M

'

—MXQ+RM = —ln Q
4 (1 —Q)' '

(24)

05-

which can be combined to give
r

YM+RQ 21 1 —Q
XQ+RM Q —M

(25)

Taking the limit M 0 one gets the following ex-
pression for the volume V, =1/Q, at the solid-liquid
transition. '

0 '

0
I l

fJ ] + el/2g (26)

FIG. 2. Schematic phase diagram of an asymmetrical lat-

tice gas. As X increases, the isothermals are found to shift

upward. Ordinates are scaled according to the relative shift

of the critical point. As A. increases from 0.5 to 1, the rela-

tive shift is found to be 0.6,which refers to the combination

J =O, C =Oj &0.

T, 2' [1 —(R /XY)1

X in[{?,/(& —Q.) l
(27)

where 7'= R/X.
The temperature T, at which this transition occurs

is obtained from Eq. (24).
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Utilizing Eq. (26) in Eq. (27) we get

Ts t
' 1

2 0.'
X

( r 1

I

cosh ~ exp —~
, 4, l

R'/XY =1 —(—,) ln2, (30)

which results from the condition T, = 7g.
It is to be noted that for A, = 1, y =0 the above

condition is not satisifcd. Thus for a symmetrical
model a tricritical point cannot be found if the
crossed dipole-quadrupole coupling vanishes. This
result agrees with that of Ref. 17. For y =0 one gets
R =0 and thus a'=y'=0 provided X ~0, Y &0.
Therefore, one gets

with n' = R / Y.

Taking the limit M 0, 0 —, one gets the tem-

perature Tg at which the liquid-gas transition occurs

4(1 —a'~)
X 3 ln2

Equations (18) and (19) show that the solid-liquid
and liquid-gas transitions may appear in the system as
second-order transitions depending on the interaction
parameters X, Y, and R. An elementary discussion on
the possibility of occurrence of second-order liquid-

gas transitions in asymmetrical Ising model has been
recently presented by the author. "Some of the
results obtained in Ref. 17 are found to be modified
in the present formalism. A detailed discussion of
the results and the comparison of these results with

those of Ref. 17 are given below,
It can be readily seen that a trieritical point may oc-

cur at Tg when the following condition is satisfied:

even when the crossed interaction does not vanish
and that there exists a tricritical point at the liquid-

gas transition if y = y„where y, = (0.74o.)'~~ which
in turn, implies that both j and J must be positive.

We nov consider the asymmetrical case. We first
note that f'or X =-1 the critical temperature T, is ~,
but in such case the second-order solid-liquid and
liquid-gas transitions depend essentially on the values
of R and Y. One finds that when Y = R' both T,
and Tg vanish. But for Y && R' nonzero T, and Tg

are possible, and the condition which is necessary for
the occurrence of successive solid-liquid and liquid-

gas transitions is found to be

R [1+exp(R/2)j (3 ln2 .

It is evident that for R = 0 this condition is not satis-
fied and therefore no successive T, and Tg are possi-
ble. It implies that for successive T, and Tg one
should have E» ~ I(:8~. For the critical case, that is,
when Y = R one finds &gg = &ga = &gg =1. One
will find, conversely, X =1,R =0, and Y =0 when
@~~=EBB=E,~~=1 so that in this case only a first-
order transition occurs at T, and no second-order '

transitions can come to occur at T, and T, . Howev-
er, if R ~0 and Y &0 but Y = R, one may get a tri-
critical point at T, provided X =1.35. It is also to be
noted, in general, that an asymmetrical model always
permits both first-order and second-order liquid-gas
transitions and that a tricritical point can exist
depending on the interaction parameters and also on
the values of X. Considering all these results we con-
clude that the present lattice-gas model provides more
general and more realisti~ information regard'ing thc
liquid-gas and solid-liquid transitions.

T J
3 ln2

and thus a second-order liquid-gas transition is possi-
ble. It establishes the result of LS formalism. How-
ever, it should be noted that in this ease T, becomes
infinite. Again, for y WO, P =1 one gets

3 ln2 n,

Ts 2J
y,

1T = J

1
t

osh ~ — exp -~-
4o,

I
~ 4n

Wc see that Tg = Ts =0 when y = o, and in this case
only a first-order liquid-gas transition can occur at T,
provided j )0, On the other hand, if y & u & 0 all
the above transitions become possible. It, therefore,
modifies the previous conclusion of the author as ob-
tained in Rcf. 17. We find that both thc first-order
and second-order liquid-gas transitions may occur

VII. SOLID-SOLID AND LIQUID-LIQUID
TRANSITIONS.

In Sec. VI we have discussed the thermodynamics
of liquid-gas and solid-liquid transitions on the basis
of the asymmetrical model. These kinds of transi-
tions may also be discussed on the basis of a spin-1
symmetrical Ising model which permits only two or-
dering parameters. The thermodynamics of various
solid-solid and liquid-liquid transitions is a difficult
theoretical problem and cannot be discussed on the
basis of a two-parameter model. Due to the involve-
ment of two "explicit" and two "implicit" ordering
parameters the asymmetrical model can be shown to
give rise to solid-solid and liquid-liquid transitions
along with thc liquid-gas and solid-liquid transitions.
We do not, however, attempt here to give detail
statistical-mechanical calculations of all possible
phases which may appear in the system, rather we
shall mention some of the general consequences of
the present lattice-gas model.
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TABLE I. Different possible solid and liquid phases as permissible in the present lattice-gas model.

Phase Specification
of the phase

Solid

Liquid

AO
2

3

WO

AO

AO

WO

2

3
2

3
2

3
2

3

2

3

2

3

S)

S2

S3

S4

Li

L2

IoN CuRvE (b)

50l jD
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VAPPat ZAT&O

PA POVR

7 EMPER4TURE

T EMPERAT V RE

C

7EMPER47VRE

FIG. 3, {a) Schematic phase diagrams for various possible solid and liquid phases as permissible in the asymmetrical lattice-

gas model. {b) Schematic phase diagrams for solid, liquid, and vapor phase for X = 1. {c) Schematic phase diagrams for all

possible solid, liquid, and vapor phases as permissible in the present model. The point C' is a critical point and C is one of

many triple points.
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(F(O, Q, T))

= —2XQ + T 1 —ln2 + ln
1 —Q

=0 (33)

in equilibrium. Taking the limits M O, q —, one

gets from Eq. (12)

2(1 —) )
3(1+)') '

= 2 3+X'
' (1+x)(1+)i')

(34)

Equation (33) therefore gives us the following ex-

If we consider different possible situations then the
present model permits four different forms of solids
S),S2,S3,S4 and two liquids L~, L2. These are shown
in Table I. An inspection of the table shows that five
different solid-solid transitions are possible:
S] S2 S3 S4 S2 S4 and S3 S4.. The transition
S2 S3 is not permissible. In similar manner, only
one liquid-liquid transition (Lt L2) is allowed in

the present model. The transition temperatures
corresponding to the phase transitions Sf S2 S3,
and S4 are obtained by taking the limits (q —,),
(I 0), and (m O, q —,), respectively, and simi-

larly for others. The whole situation is demonstrated
in Fig. 3.

The transition temperatures at which various
solid-solid and liquid-liquid transitions can occur may
not be calculated easily. The procedure involves the
derivation of molecular-field equations for M, Q, m,
and q and the solution of these coupled equations.
Detail calculations will be performed in future inves-
tigations. We shall present below a simple derivation
of the transition temperature TL at which the system
undergoes the transition: L j L2.

We differentiate F(O, Q, T) with respect to Q and
equate it to zero so that we get

pression for TL'.

TL 4 3+
(1+~) (1+2)

t

3+ A.
& I+ln

3X +X +3k —3
(35)

VIII. CONCLUDING REMARKS

The asymmetrical Ising model as developed in Secs.
I—VII is certainly more useful than a symmetrical
spin-1 Ising model and also it works in a more simple
way than a double spin-half Ising model. It can treat
thermodynamics of phase transitions satisfactorily.
However, it is insufficient in one respect. We have
seen in Sec. VII that an asymmetrical Ising model
permits four solid phases. In nature there exist more
than four solid phases of a substance. Similarly more
than two liquid phases may be possible. It follows,
therefore, that an accurate model should allow more
than four ordering parameters. The inclusion of a

biaxiality parameter P = ((S")2—(S~)2) may give rise
to additional phases in the system.

It is also necessary to mention that the so-called
mean-field or molecular-field calculations do not
yield quantitatively accurate values of the thermo-
dynamic functions. A, Green's-function equation-of-
motion method or a Green's-function diagrammatic
technique is believed to reproduce much better
results. Formulation of the problem in this manner
has been currently taken up for investigation.
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We note that the liquid-liquid transition which occurs
at TL is possible when A. &0.628. It may also be not-
ed that TL is independent of the crossed interaction C.
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