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1
An approximate model for the s = —one-dimensional Heisenberg antiferromagnet with ran-

2

dom exchange is presented. A probability for exchange (J) of the form P(J) =const J, with

the constant n in the range 0 & o. & 1, is considered. The approximation is to decouple alternate

spins, which leads to isolated exchange-coupled spin pairs having the same P(J). Explicit

results for the magnetization (M), susceptibility (X), entropy (S), and specific heat (C&) are

given. Several limiting cases are worked out. The low-field (Zeeman energy « k~ T) behavior

is X =const T, whereas at intermediate fields (Zeeman energy »k~T), M =const H'

and CHH =const TH . These results are in agreement with the observed behavior of several

tetracyanoquinodimethane (TCNQ) charge-transfer salts with asymmetric donors, such as

quinolinium-(TCNQ)2. Comparison with other approximations shows this model to give results

almost indistinguishable from the spinless fermion model of Bulaevskii et al. and the cluster

model of Theodorou and Cohen. lt is argued that the work of Alexander, Bernasconi, and Or-

bach shows that there is a relationship between the density of states and P(J) for the Heisen-

berg chain, and that they are not the same, This leads to a value of o. for the thermodynamic

properties which differs from that of P(J) for the fully coupled Heisenberg chain.

I. INTRODUCTION

Recent experimental investigations of the low-

temperature magnetic properties of quinolinium-,
(TCNQ)2 (TCNQ is tetracyanoquinodimethane) have
indicated that its magnetic behavior is that of a
random-exchange Heisenberg antiferromagnetic chain
(REHAC). This was first made apparent by Bu-
laevskii et al. who presented high-field magnetiza-
tion (M) and low-temperature static magnetic suscep-
tibility (to 0.1 K) measurements. In addition, they
introduced a model to explain the results which we
shall call the Bulaevskii model. The experimental
evidence supporting this interpretation has now been
extended to the specific heat" (to 70 mK) and ESR
measurements of the magnetic susceptibility (X)
down to about 10 mK.4' The emphasis of the most
revealing experimental work has been the very low-

temperature regime, as it is there that the REHAC
properties become most prominent.

Recently, important theoretical work on the subject
has been published by G. Theodorou and M, H.
Cohen. 6 Their approach has been to use the Hub-
bard Hamiltonian with random on-site energy to cal-
culate the spatial dependence of the exchange interac-
tion between sites on which a single electron is local-
ized. They find that the exchange is isotropic
(Heisenberg), antiferromagnetic, and that it decreases
exponentially at large distances, This result is then
combined with a simple statistical model to obtain the

probability that a certain value of exchange will oc-
cur. Finally they calculate the thermodynamics of the
system within the framework of several well-known
approximations. Except for numerical approxima-
tions and truncation of a perturbation series, their
model maintains the connection between the micro-
scopic Hamiltonian and the equivalent REHAC. The
main difficulty in comparing their work with experi-
mental results is that they do not obtain a solution of
all the relevant thermodynamic quantities for the
quantum-mechanical Heisenberg antiferromagnet.
Also, certain details of their work are in conflict with
properties of disordered one-dimensional systems as
calculated by Alexander, Bernasconi, and Orbach. 9 "

The Bulaevskii model, ' on the other hand, in-
volves phenomenological assumptions which occlude
the connection between the microscopic starting point
and the thermodynamics, but permit a complete solu-
tion to the thermodynamics which fits the experi-
mental results' ' very well.

In this paper, we develop the main results of a
third model —the exchange-coupled pair (ECP) model
in which all exchange interactions are taken to be an-
tiferromagnetic. It forms a useful framework for
describing and understanding many features of the
low-temperature magnetic behavior of those
segregated-stack TCNQ salts with asymmetric donors
which have properties similar to quinolinium-
(TCNQ) 2. In particular, a complete description of
the thermodynamics is easily obtained and, in the
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sense evident in what follows, the connection
between the microscopic Hamiltonian and the ther-
modynamics is also maintained. To the best of our
knowledge, it is the simplest description of these ma-
terials which retains these features. The model is
similar in spirit to one involving larger clusters,
which has been applied to some types of three-
dimensional amorphous magnetic materials. ' In
fact, the systems under consideration here are justly
characterized as one-dimensional amorphous antifer-
romagnets. It should, ho~ever, be emphasized that
there are two important differences with respect to
the three-dimensional case: First, the condition of
"frustration" does not occur, and second, as.discussed
below, the distribution of exchange diverges as J 0.
There is also some similarity to the work of Scott
et at. ,

' where a distribution of exchange interactions
was applied to the classical Heisenberg antiferromag-
netic chain. That model is, however, quite different
from what is done here as their probability distribu-
tion is nonsingular, and rather different physical
properties are obtained.

Most of the results in this paper are based on un-
published notes from a course given by one of us
(W.G.C.) at the Universite Scientifique et Medicale
de Grenoble. Brief results of the model are pub-
lished elsewhere. "

II. ECP MODEL

It has been argued persuasively by Bulaevskii
et al. ' and Theodorou and Cohen that the correct
physical description for the materials of interest is the
one-dimensional Heisenberg chain with a random,
antiferromagnetic exchange interaction between
neighboring spins. Thus the physical model we
would like to solve is

N'

BC= 2 X J/S/ S/+t gp, aH XSf-
J~] J

where 3C is the Hamiltonian, j is the site index, JJ is
the antiferromagnetic interaction (J/ ~ 0) between
sites j and j +1, SJ is the spin operator for the jth
site, g is the electron g value, p,B is the Bohr magne-
ton, H is the externally applied field, and N' is the
total number of spins. The discussion will be restrict-
ed to SJ = 2. It is assumed that N' is so large that

boundary conditions are not important. Alternative-
ly, the ends of the chain can be connected to form a
ring. It is assumed that JJ is a random variable
whose probability distribution [P//(J)] for small
values of J is given by

1 —c =1—I2/It (5)

Although the above conditions are met in the appli-
cation of the Hubbard model carried out by Theo-
dorou and Cohen, it is expected that they are much
more generally applicable. It has also been pointed
out that the above results are one-dimensional. In
particular, the divergence in P//(J) as J 0, which
dominates the low-temperature thermodynamic prop-
erties, is lost in two and three dimensions. In these
cases the conditions of random site occupation and
exponential decay of Jwith distance lead to
PH(J) 0 as J 0 and a completely different ther-

J(n)

tat ~ ~ ~ o o tIt o o o $ o ~ ~ ~

/

I
I
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AF HEISENBERG CHAINS PH(J) A'J-( -c)

(many body problem)

$= magnetic

0 = non-magnetic

decouple at X (above): alternate J=Q

(a) ~ ~ ~ $

EXCHANGE COUPLED PAIRS, P(J) = AJ

y
~ ~ ~

cussed below) limit c to the range 0 ( c ( 1.
It is worth commenting here on the origin of the

power-law form for P//(J). Theodorou and Cohen
have shown that it follows from two simple condi-
tions. The first is that single spins occupy at ran-
dom equally spaced sites (spacing d) on a line with
probability /t, as shown schematically on Fig. 1(a).
This introduces a distance scale I~ which is the mean
spacing between spins; 1~ = dp '. The second as-
sumption is that the exchange interaction between
neighboring spins decreases exponentially with their
separation; i.e., J =8exp[ —(nd//2)], where (n +1)d
is the pair separation and t2 is the decay length for J.
It is then easily shown that

Pl2 —t2tln(t —p) i/d —[1—I2ttn(1 —p) t/dt

d

Comparison with Eq. (2) shows

1 —c =1 —/, (in(1-/) I/d,
which, in the limit p &(1, becomes

PH(J) =A'J (2)

where A' and c are constants. The requirements that
PH(J) be integrable and that X 0 as T 0 (dis-

FIG. 1. Pictorial representation of the ECP model. If
there is no renormalization of P (J), PH(J) = A 'J
=P(J) =AJ ~.
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modynamic behavior as T 0.
Unfortunately, there is no exact solution to the

thermodynamics of Eqs. (1) and (2). For this reason
the ECP model described belo~ is introduced. It
~ould be useful to show that the thermodynamics of
the ECP model is a reasonable approximation to that
of Eqs. (1) and (2). At this writing, we are aware of
arguments which make the correspondence plausible,
but which constitute neither a proof of it nor a
scheme for evaluating the validity of the approxima-

- tion. We therefore consider the ECP model as stand-
ing alone. Its utility is that it represents rather well
and low-temperature thermodynamic properties of
quinolinium-(TCNQ)2 and similar materials.

Let us begin our detailed presentation of the ECP
model with antiferromagnetic exchange by showing
how it is related to the Heisenberg chain. This is
shown schematically in Fig. 1. The one-dimensional
lattice of' sites occupied at random by spins appears in
Fig. 1(a). The magnetic sites taken alone constitute a

Heisenberg chain with different values of exchange
between neighbors [Eq. (1)], as indicated in Fig.
1(b), where the height of each line between adjacent
spins iepresents the magnitude of the exchange in-
teraction between them. The probability P~(J) is

given by Eq. (2). This is the full many-body problem
which has not yet been solved. The decoupling pro-
cedure used to arrive at the ECP model is simply to
set every other value of J to zero, as indicated by the
crosses in Fig. 1(b). The remaining problem is a set
of independent exchange-coupled pairs with the
values of J distributed according to Eq. (2), as indi-
cated in Fig. 1(c). Since the properties of each pair
are well known, it is easy to obtain the properties of
the ensemble as a superposition of pairs weighted by
& (J).

The model just described has a Hamiltonian and
probability of couplings given by

x=- gx,

F.;(S;M;) = —hM;+ J;[S((S;+1)—2]

where a constant has been added to set the energy of
the state iS, =1,M, =0) to zero. The energy levels
and quantum numbers for one ECP are shown in the
upper right-hand side of Fig. 2. Each pair has the
partition function (z)

z(h, T,J,) =1+ca"+ e a"+ e
+2PJ,

and free energy (F)

F, (h, T,J,) = ks Tln[z (h,—T,J;)]

where P = (ka T) '

Since the P(J) of Eq. (6b) is not normalizable, a
cutoff is introduced at Jo to give

Jo
%=A J dJ

0
(1Oa)

A =Ar(1 —u) Jp (lob)

The physical interpretation of Jo requires some
care. The simplest situation is that in which Eq. (6b)
represents P (J) for all values of J up to the cutoff

ponent behavior of P~(J) for the Heisenberg chain
(physical system) is related to, but not the same as
that for its density of states. It is the behavior of the
density of states which determines the thermodynam-
ic properties. Since the P(J) of the ECP model is in
fact also its density of states, its exponent should be
matched to that of the Heisenberg density of states,
rather than P„(J) This. point is examined more
completely in the latter part of Sec. III. Here, we
proceed as if PH(J) and P(J) are the same.

The states of Eq. (6a) are the well-known singlet-
triplet system for each pair. These states are classi-
fied by total spin S; =S1;+S21, S,'=S~;+S2;, quan-
tum numbers S; =0, 1, (S,') = M~ =0, +1, and have
energy levels given by

/V

=--$[2JS, S, -h(S; +S;)] (6a) to'-

and

P(J) =AJ (61 )

where i indexes each pairs, S1; and S2; are the spin
operators for the first and second spin of the ith
pair, g p~H = h, and N = —N' is the number of pairs.
Within the simple picture given here, P~(J) = P(J),
A

' = A, and 1 —c = o., However, recent work on dif-
fusion in disordered materials " indicates that the
exponent 1 —c, which characterizes the distribution
of couplings, must be renormalized to the new value
of n when the decoupling just described is carried
out. This requirement reflects the fact that the ex-

10
I

&C

toi
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0 10
-2J 0 0

h )+I
h g pe"0

(J)x„,(J)dJ

nst. T '
=AJa
a =0.8

100
too tOl co' «0'

Temperature T (arb. units)

~04

FIG. 2. Energy-level structure and schematic representa-
tion of the origin of X for the ECP model.
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Jp, with Jp being simply the maximum Jwhich occurs
between spin pairs. For a J which decreases mono-
tonically with distance between spins, Jp is then the
exchange associated with the minimum distance
between unpaired spins. However, the work of
Theodorou and Cohen shows that there may be a
substantial peak and cutoff of P(J) near the max-
imum physical value of J. In this case the Jp intro-
duced above is a parameter used to permit normaliza-
tion of P(J) It h. as no direct physical meaning, and
greatly exceeds the largest physical J. This is not a
serious problem in the treatment given here. As long
as k~ T and h are restricted to be less than values of J
for which there are substantial deviations from Eq.
(6b), those deviations will not be reflected in the
thermodynamic properties. With the exception of the
high-field magnetization, our presentation will be
limited to such cases.

The free energy of the entire system is obtained by
summing over each pair

F(h, T) = —W (I —n) ks TJp

Jo
J ln[z(h, T J))dJ (11b)

In most of what follows, several approximations will

be used (a) low temperature

F(h, T) = —ks T Jii P (J)in [z (h, T J)] dJ . (I la)

Within the constraints just discussed, substitution of
P(J) from Eq. (6a) gives

proximation [Eqs. (12a) and (12b)], which allows the
replacements sinhPh = Ph and coshPh = 1. Because
of the term e" in the denominator of the integrand,
the upper limit of the integral can be extended to ~.
This yields the limiting susceptibility

gpaN 2Jp
( )

Jo ka T
(14)

where the function

, (n) =„ (I +3e ")' (15)

for n =1,2 is shown on Fig. 3. To an accuracy of
+3%, f~ is approximated by ft =0.445e~6'3 . It is
seen from Eq. (14) that X diverges as T

There is a simple physical picture for this T
divergence of X, which is illustrated in Fig. 2. The
solid lines show X(T) for several different values. of
J. Each of them has X ~1/T for ks T && J, and
drops to zero exponentially in the opposite limit.
These are superposed with the weighting factor P(J)
to obtain X for the sytem as a whole. The result rises
more slowly than 1/T because pairs progressively
drop out into their singlet state as k& T is reduced
below J.

The next limits are the intermediate- and high-field
cases [Eqs. (12c)] and (12d)], for which

sinhph =coshph = —ea". By using the more general
1

form for F [Eq. (Ila)], we obtain

AT « Jo

(b) low field

h « AT

(c) intermediate field

(12b)

P(J)dJ
) + ~P(2J-A) (16)

Since the denominator of the integrand changes rap-
idly from 1 to very large values about 2J = h, to a

k~T && h && Jo

and (d) high field

2Jp «h

(12c)

(12d)

I l l 0,5

Now consider the explicit formulas for the thermo-
dynamic variables. The magnetization (M) is given
by

QF
9H

0.25—

AT=2g p, pW(1 —n)—
2Jp

X
x sinhPh

dx
I +2coshP h + e", (13)

where we have introduced the dimensionless variable
x =2PJ, and used Eq. (I lb). There are two limiting
cases of interest. First consider the low-T, low-H ap-

0
0

x" 'e "dx
fn{a) =

{1+Be")

I (

0.5
Exponent a

0
1.0

FIG. 3. Functions f&(n) and f2(a) as a function of a for
the ECP model.
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good approximation
1/2A

M =gpa P(J) dJ =gpa01(J ~ T~h), (17)

Eqs. (6b) and (10b) apply,

N(J ~ T~h) = N(g p, sH/2Jp)' (I g)

where X(J~ —,h) signifies the number of pairs with

J ~ —h. This result is easily interpreted in terms of
2

the energy-level diagram of Fig. 2. As T 0, each
pair will be in its lowest state. For those pairs with

1J ~ —,h, the lowest state has magnetic moment g p,~,

otherwise, it is zero. Thus, it is seen that the low-
temperature magnetization as a function of H pro-
vides a very direct probe of P(J), including details of
any structure (of width )ke T) or the cutoff at Jp.
For the intermediate-field regime [Eq. (12c)], where

and

g p BN (g p aHl2 Jp) ' (19)

In this region of H, even though g p,~H && ka T, the
magnetization does not saturate, but increases asH', Saturation of M is finally reached at the high-
field limit (12d), where M = Ng pa.

All of our subsequent development will be done in
terms of Eq. (6b) for P(J).

The entropy (S) is given by

S(H, T) = ——= keP
9F 2 9F
BT BP

r

N(l —~) ~~ p dJ
I 1 +2 h h+ qaj) 2p(h sinhph + Je &J)

J' "' J 1+2coshPh+e'a (20)

In the very high-T limit k~T && Jp and h, S Npkqln4, as it should. It is easily shown that in the low-T, low-
and intermediate-H limits [Eqs. (12a)—(12c)] the integrand of Eq. (20) has dropped to zero rapidly for J = Jp, so
that the upper limit can be extended to infinity. Substitution of the dimensionless variable x =2PJ gives

S(H, T) =keN(1 —n)
AT

0

dx ln(1+2coshph +e„) 2Ph sinhPh +xe"
1+2coshPh +e" (21)

If we take the low-field limit, to order P~h~ the entropy is (after some integration by parts)

]

S (H, T) = 3Nks [fp(~) —
3 p h f t (~)]

0
(22)

The function fq(n) [Eq. (15)] is graphed on Fig. 2. To an accuracy of 2.5/p, fq(n) is approximated by
fq(a) =1.26e 'p' . Equation (22) shows that as h 0, S varies as T'

In the intermediate-field case (12c) integration by parts and the substitution y =x —Ph gives

' 1-a

S(H, T) =Nk, '
Jl (y+Ph)'- ay .(I+e~)(I+e ') (23)

The part of the integrand in brackets behaves as the derivative of a 5 function. Therefore the integral can be
evaluated by setting the lower limit to —~, expanding (y +Ph) as a power series about y =0,. and keeping the
first nonzero term

r 1

S (H, T) = —,mzNks ( I —n)—ka T 2J0
2Jp g @AH

where we have used

(24)

j y e~(1+e~) ~
dy = —m

0 6

This result shows that S varies as TH in the low-T, intermediate-H case. A graph of S(T) for various values
of H has been published elsewhere. '

From the energy (E)

—2N(1 —u)
~t

o dJ h sinhPh + Je'aj
J' "P J 1+2coshPh+e a (25)
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The specific heat at constant H (CH) is obtained using CH = —(ks T ) 'BE/BP

C„(H, T) =-2Nka(1 ~) " o dJ h2coshph +2J2e a +2h +(4J + I ) coshphe a 4J—h sinhphe""

(ks T)'Jo' "' J (1 +2 coshPh + e'" )' (26)

The limiting cases for CH are most easily obtained
using C~ = T(BS/BT)H and Eqs. (22) and (24), This
gives

C (0, T) = 3Nks (1 —a)
kg T
2Jp

(27)

for the low- T, H =0 case and

kg T 2Jp
CH(H T) =

3
rr Nks(1 —n)

2Jp gpBH

III. DISCUSSION

In the first part of this section we discuss the rela-
tion of the ECP model to those of the cluster and
Bulaevskii models, with special emphasis on those
features which can be tested experimentally. After-
wards, several questions regarding the interpretation
and validity of the model will be presented.

Of all the cases that have been worked out so far,
the limiting temperature and field dependences are
identical: for

(28)

for the low- T, intermediate-H case. These results
show that at zero field CH varies as T', whereas in
the intermediate-field regime, it varies as TH

s

to the latter alternative.
The only comparisons presently available for the

cluster model are X, CH(O, T), and M(O, H). We ex-
amine the first two here. Following Theodorou and
Cohen, long chains are broken into finite segments
(clusters) at points where" 2J ~ ks T. Clusters with
an odd number of spins have the Curie X of a free
spin whereas even-spin clusters are in a singlet
ground state. It then follows that for the clusters
(subscript "cl"):

Wg2p, ~p 2Jp

8Jp ka T

and the susceptibility ratio is given by [see Eq. (14))

"' =gf, ( )
&ci

(30)

C,i(0, T) = Nks(1 —a) ln2
kg T

p

(31)

with the ratio

C,-„(O,T), 3f, ( )

Cd(0, T) ln2
(32)

I

For the typical value o. =0.8, this ratio is 2.16. The
specific heat for the cluster model at H =0 is6 simply
that of a free spin (ks ln2) for each cluster with an
odd number of spins. This gives

gp, gH &( kg T &( Jp

X(T) =const T

CH(O„T) =const T'

S(O, T) =const T'

For

Jp ))gpBH ))AT

M(H) =const H'

CH(H, T) =const TH

S (H, T) = const TH

Thus, in order to test which model best fits experi-
mental results, it is necessary to examine either the
intermediate cases or the constants appearing in the
limiting cases. In this paper we restrict the discussion P( )=Dl

I
(33)

For e =0.8, the ratio is 2.47. From this it can be
seen that for the same number of spins and P(J),
the ECP model has values of X and CH about a factor
of two larger than the cluster model. In view of the
arbitrariness in the relation defining a cluster,
2J = k& T, this difference should not be considered
significant. Furthermore, an independent measure of
the number of spins and P(J) is usually unavailable.
In such cases, a comparison of the ratio
XpcpCcl/Xq~Cpcp is a more meaningful test of an ex-
perimental result. For n =0.8, this ratio is 0.88,
which makes it difficult to discriminate experimental-
ly between the two models. Of course, the ECP
model can be used for H ~ 0, whereas this is difficult
for the cluster model.

Now consider the Bulaevskii model' (subscript B).
The density of states and limiting cases are
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with the low-field low-Tease [Eqs. (12a) and (12b)l
giving

X,(T) = 2(1 —2'+.) r(1 —a) g(—a) N'Dg'p2(k, T)

(34)
and

C (0, T) = 2(1 —2 ') 1'(3 —a) g(2 —a) N'Dk (k T) '

(35)

and the low-Tintermediate-Hcase [Eqs. (12a) and
(12c)]

0
O

O

10-
I I I I ( I I I I

Cf( p(O,T) Ce(H, T)

Cf(;p (H, T) Ce(O,T) —I;l5

I.IO
I—„

O
CKI

V O
1,05~- ~

G. O.o o
O V

1.00
J

and

Ms(H, O) = (1 —a) 'g psN'D(g psH)' (36) Cf(;p(H, T)
I

0 0.5
Exponent a

1.0

CsH(T H) =
3

rr N'Dks(ks T) (g psH), (37)

1 'a
XH 2f ( )

gPsH
M kaT

CH(0 T) 9 gI sH
CH(H, T) vr2 ks T

(39)

where D is a numerical constant to fit the magnitude,
s is the quasiparticle energy, 1'(x) is the gamma
function, and ( is the Riemann zeta function.

Because of the adjustable, nonphysical constants in
the ECP and Bulaevskii models, it is not possible to
compare their magnitudes directly. Instead we exam-
ine the ratios of limiting cases within each model.
Three such ratios easily related to experimental tests
are for the ECP model

FIG. 5. Ratio C(O, T)/C(H, T) at g p,BH =20k&T for the
ECP model as a function of a (solid curve) -and its compari-
son with the Bulaevskii model (dashed curve).

and

X g Ps 2fi(a)
C (0, T) k,'T 3(1- )f2( )

(40)

The first two of these relate low-field to high-field
measurements, and are given as a function of o. by
the solid curves on Figs. 4 and 5 using g psH/
k~T =20. These curves permit one to evaluate the
corresponding experimental results for all physical
values of o.. On Fig. 6, the solid line demonstrates
the behavior of ks TXscp/g psCscp(0, T) as a func-
tion of o.. This curve establishes a basis for compar-
ing Eq. (40) with experimental results.

For the Bulaevskii model, the same ratios appropri-

I I .
I

I I I I

I I I I ( I I I I

& o
X

5o
Wx &

g
o

CL

q +e"
t( T

—1.05

C)

—1.00 ~

0o
CQ

—0.95

CI
CL

0
Q

Yu

CV Cl

e4 ~ CV 2

Xfcp(T) Ce (O,T)

—
1.0

-0.9 ~- ~0
V

Os8
O

—0.90 -0.7

0
0

M Egp(H, 0
I I I I I I

0.5
Exponent a

/

I I I

1.0
l

0 0,5
Exponent 0

FIG. 4. Ratio XH/M for the ECP model as a function of
o. (solid curve) and its comparison with the Bulaevskii
model (dashed curve).

FIG. 6. Ratio k& TX/g p,&C(D, T) for the ECP model as a
function of a (solid curve) and its comparison with the Bu-
laevskii model (dashed line),
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ate for experimental test are

XH =2 (1 —2 + ) I'(1 —a) g(—a) (I —a) g jxgH

M AT

(41)

6(1 —2 ') I'(3 —a) g(2 —a) g pa JJ
Ctt(H, T) 7r' AT

and

X I —2'+ r(1 —a) g( —a) g't a

C (O, T) I —2 ' I'(3 —u)$(2 —u) k T

(42)

(43)

Because of the rather complicated nature of these
formulas, a simpler comparison of the results of the
Bulaevskii and ECP models is obtained using the ra-
tios of Eq. (38)—(41), etc. These ratios are shown by

the dashed lines on Figs. 4—6. Their significance is
that a value equal to one means there is no distinc-
tion between the ratios of intermediate- and low-field
limits in the ECP and Bulaevskii models. Examina-
tion of these figures shows that all of the ratios are
close to one. For 0, =0.8, which is typical of values
observed experimentally, the difference is 8% or less.
Hence, an experimental differentiation between the
ECP and Bulaevskii models would be rather difficult.

Now we turn to several questions and comments
regarding the ECP model. First, it is natural to ask
why this simple model can give a good account of the
low-temperature static magnetic properties of materi-
als such as quinolinium-(TCNQ)q, which are believed
to be described by the many-body Hamiltonian of Eq.
(I). The formal answer is that the ECP model has
been constructed to have the same structure of ener-

gy levels as the real physical system, i.e., the same
partition function, free energy, and thermodynamic
behavior. It is easy to see why this can be done by
an appropriate superposition of exchange-coupled
pairs. Reference to the energy-level diagram of Fig.
2 shows that the first excited state in zero field has
an energy e above the ground state given by ~ =2J.
Thus the density of states N(e) for a superposition of
exchange-coupled pairs has the same form as the dis-
tribution of couplings P(J) Any experim. ental result
in zero field can then be fitted by an appropriate
choice of P(J). Consideration of the properties of
antiferromagnets in an applied field rules out the pos-
sibility of using triples instead of pairs. In the case of
triples, the doublet ground-state splitting in a mag-
netic field would give a large Curie X, contrary to the
magnetic behavior-of the systems under considera-
tion. In fact, examination of the work of Bonner and
Fisher' on uniform antiferromagnets suggests that
one could use even (but not odd) numbered groups
of any moderate size as a basis for a superposition

model. The choice of pairs is seen as the simplest
one. It- should also be noted that success of the
model in fitting experimental results over a wide
range of H" means that it gives the correct density
of states in the presence of a magnetic field as well.
This is not surprising as the eigenstates of both the
Heisenberg [Eq. (1)] and ECP models can be classi-
fied according to the total spin and its z component,
and have the same form for the Zeeman splitting in a
magnetic field.

From the above it is clear that the P(J) =AJ of
the ECP model [Eq. (6b)] has the same behavior as
its density of states in zero field. But is it the same
as the actual distribution of exchange couplings
P/t(J) =A'J (' ') [Eq. (2)] in the original Heisenberg
model? Some insight on this question can be gained
on the basis of recent work on one-dimensional dif-
fusion in disordered systems by Alexander, Ber-
nasconi, and Orbach. " Their work can be easily
mapped' onto the low-density disordered one-
dimensional ferromagnet. Since it is not yet clear
whether it also applies to the antiferromagnetic case,
the following, in which we use the hypothesis that it
does apply, is speculative.

There are several points of contact between their
work and the ECP model. They find the low-energy
density of states for an arbitrary probability of cou-
pling strengths p(W). As an example, they consider
the form

p(W) cc W (44)

where W is the coupling between nearest neighbors
on a chain and o.

'
is an exponent which characterizes

the distribution. They demonstrate that disordered
behavior is associated with 0 & o,

' & 1. For n' & 0, a
band motion with an averaged value for W

( W ff „I[p(W') / W] d W] obtains. An exact solu-
tion leads to

and

N( )
—)/(2 —a')

(P T) a T((—~')/0 —a')

(45)

(46)

where e is the energy and N(e) is the density of
states. The important point is that starting from a
distribution of couplings p(W) they find a density of
states N(e) with a different power-law behavior. If
we apply these results to the ECP and Heisenberg
models, the following correspondences are obtained:

C~ ~' T I —a')/(~ —a')
tx T'

[Eqs. (46) and (27)],

N(e) a e-)/(2 —a') P(J e) cc e

[Eqs. (45) and (6b)], and

p(W) ~ W ~P/t(J W) ~J
[Eqs. (44) and (2)]. Comparison of exponents then
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gives

1 1

2 —n 1+0 (47)

One important consequence of this result is that the
range of o. is modified to —, & o. & 1 by the condition

on u' and c: 0 ( o.', c ( 1 (and the assumption that
the chain is disordered). But 0, is the exponent ob-
tained directly in experiments on X, C~, etc. Mea-
sured values of a reported so far' '"' fall in the
range 0.58 & o. & 0.87, so that there is no evidence to
contradict the modified range of n, A second conse-
quence of the distinction between Pg(J) and P(J) is

that one must then be careful to relate the micro-
scopic interpretation of PH(J) presented in Eqs.
(3)—(5) to experimental results using Eq. (47). A fi-

nal consequence is that A
' of Eq. (2) may not be the

same as A of Eq. (6b). The resolution of this point
will not be considered here. As mentioned at the
outset, we have just applied results valid for the fer-
romagnetic case to the antiferromagnetic one. %e
believe that even if this procedure turns out to be
wrong in detail, a renormalization of exponents is
still necessary, but perhaps with a correspondence
different from that of Eq. (47). More theoretical
work is needed on this point.

Before turning to other matters a comment on the
discrepancy between the cluster model approach of
Theodorou and Cohen and ihe work of Alexander
and co-workers " is appropriate. The disagreement
is serious, because both consider the disordered
Heisenberg ferromagnet. The difference can be seen,
for example, upon comparison of the expressions for
the coherence length [Eq. (15) of Ref. 7 versus Eqs.
(19) and (21) of Ref. 11] and the distribution of cou-
plings [Eq. (14) of Ref. 7 versus Eq. (11) of Ref. 11].
The reason for the difference is that the clusters of
Theodorou and Cohen are constructed as if the distri-
bution of couplings and density of states have the
same exponent behavior, whereas the results of
Alexander et a/. indicate they are different.

Another point to consider is the dynamic behavior
of the REHAC. To date, there is a considerable body
of experimental results on quinolinium-(TCNQ)q in

the low-temperature regime. Some examples are'.

(a) relaxation of protons by electron-spin fluctua-
tions, '8 (b) the electron-spin-resonance linewidth,
which is strongly narrowed by exchange, "'~ and (c)
relaxation of the electron Zeeman reservoir to the ex-
change reservoir and the lattice. ' ' Can the ECP
model be used to explain these results~ Certainly
not for item (b) as exchange narrowing is a funda-
mentally many-body phenomenon. Not enough is

known at present to properly evaluate the usefulness
of the ECP model to the interpretation of the other
experiments which reflect the dynamic behavior of
the system.

A final question is the relation of static measure-
ments of X to ESR measurements within the frame-
work of the ECP model. From the energy-level di-
agram of Fig. 2 it is seen that the ESR transition is
simply the ~AMs~ =1 transition of the triplet state of
each ECP. Isotropy of the exchange interaction leads
to a single, narro~ line which is independent of the
external field orientation (as observed in experi-
ments4). The connection between the ESR and static
X is then made using the same arguments previously
employed for the ESR of conduction electrons in a
metal. '0 The situation for the many-body case [Eq.
(1)] is somewhat more complicated, and will be
covered in more detail elsewhere.

IV. CONCLUSIONS

We have presented the results of a simple
exchange-coupled pair model which is believed to
represent the static physical properties of a one-
dimensional Heisenberg antiferromagnet with random
nearest-neighbor exchange. These results are in
agreement with the measured properties of several
TCNQ charge-transfer salts with asymmetric donors,
such as quinolinium-(TCNQ)2. Explicit formulas are
worked out for the magnetization, susceptibility, en-
tropy, and specific heat as a function of temperature
and magnetic field. Comparison of these results with
two other approximate models of the same physical
systems sho~s that the thermodynamic properties of
all three are almost indistinguishable. It is argued
that the decoupling procedure used with the ECP
model should lead to a renormalization of the ex-
ponent which characterizes the distribution of cou-
pling s.
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