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Theory of order-disorder transitions in the
graphite intercalation compounds Cttcs, Cskb, and C6Li
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The order-disorder transitions in the stage-1 graphite intercalation compounds C8Cs, CSRb,
and C6Li are analyzed within a Landau-Ginzburg theory. The transitions are all found to be

first order, but for different reasons: In CSCs the Landau expansion includes third-order um-

klapp terms, whereas in CSRb the ordered phase is stablized by sixth-order anisotropy terms.

The transition in C6Li is described by the three-dimensional three-state Potts model, which also

contains cubic invariants. Experiments are suggested to test the predictions.

I. INTRODUCTION
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FIG. 1. Intralayer ordering of alkaline atoms in CSRb and

CSCs. The dots represent carbon atoms, and the circles
represent the alkaline atoms.

Recently, neutron' and x-ray scattering' investiga-
tions of the graphite intercalation compounds C8Cs
and CSRb have revealed phase transitions with a
number of interesting proper ties. In this paper, these
phase transitions will be analyzed by means of a
Landau-Ginzburg theory. We find that the transi-
tions are described by an n =6 model and by an an-
isotropic Heisenberg model, respectively, and that
both transitions are of first order. Also, it will be
shown that the melting of the Li sublattice in C6Li is

a realization of the three-dimensional three-state
Potts model. According to Landau theory the transi-
tion is first order, but there are conflicting theories
on the critical behavior of this model.

Structurally, the stage-1 intercalated compounds
consist of hexagonal graphite layers, with stacking se-
quence AAAA. .., between which there are layers of
Cs, Rb, or Li atoms. In the high-temperature phase

there is no long-range order in the alkaline layer sys-
tem, but at some temperature To there is a transition
into a phase where the alkali atoms form a regular
three-dimensional lattice. In the scattering experi-
ments, the formation of this lattice shows up as a
new set of Bragg peaks, or satellites. In C8Cs the
transition takes place at To = 550 K, in CSRb at
To =750 K.' For both systems, analysis of the dif-
fraction peaks within the layers showed' that the al-
kaline atoms form a hexagonal superlattice occupying
one quarter of the graphite prismatic sites (Fig. 1).
In the absence of interlayer coupling a transition to
this 2 & 2 structure was predicted' to belong to the
universality class of the two-dimensional four-state
Potts model, and the transition therefore can be con-
tinuous. However, the ordering in both compounds
is three dimensional, and the three-dimensional in-
teractions cannot be ignored. Indeed, the transition
temperature depends strongly upon the staging, i.e, ,
the distance between the alkaline layers.

Within each layer the alkali atoms may occupy four
symmetric sets of lattice sites, nP, y, a,nd g, corres-
ponding to the four equivalent states in the Potts
mode. In the ordered phase of C8Cs the stacking se-
quence is nPynPy where. a. .s, in CSRb the sequence
is aPnP. .. . Our analysis, to be presented in Sec.
II, takes into account the full three-dimensional
symmetry of the ordered phase.

II. ORDER-DISORDER TRANSITIONS

A. CsCs

In the disordered phase the density of Cs atoms is
the same at each site. In the ordered phase the den-
sity function p(r) has less symmetry since the Cs
atoms condense into specific positions. According to
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the theory of Landau and Lifshitz' the phase transi-
tion is described by an n-component order parameter
transforming as the basis of an n-dimensional irredu-
cible representation of the graphite space group. In
general, the representations are labeled with the wave
vector giving the periodicity of the ordered phase.
The wave vector characterizing the Cs ordering is

simply the basis vector of the Cs reciprocal lattice. In
terms of graphite reciprocal-lattice vectors a 'and c"

'this is a zone-boundary vector, k~ = (
2
a, 0, 3

c ).
The corresponding order parameter, P~, describes a

mass density wave

p, (r) =y)exp((k) r).

The star of k~ consists of the six equivalent vectors

+k( (-,'a, 0, + —,
'c")

l + )+k, =(——,a, —,J3a, + —,c )

and
p-

+k, =(—,a, —
—,+3a, +—,c )

[See Fig. 2(a).] The order parameter thus has n =6
components, f+;, describing density waves with these

six wave vectors.
To verify that the observed aPy stacking can

indeed be formed by superposition of such waves,
and higher harmonics, consider the density function

2np(r) =cosk~ r cos z ——
3 4

2' 1
+cosk2 r cos (z+1) ——

3
J

~rr
1

+coskq r cos (z+2) ——+const. , (1)
3 4

~rl
where k& are the projections of kl on the basal plane.
Noting that for z =0, 1, 2 the factor [cos(2s/3)z —

~ ]

assumes the values + 4, —4, and —4, respectively,
3 3 3

we find that within each layer the density is given by

3 ~rr
p(r) -

4 (+cosk~ r +cosk2 ~ r+cosk3 ~ r), (2)

where two signs are negative and one is positive.
The maxima of the three equivalent functions give
the positions of the atoms of the u, P, and y arrange-
ments. '

FIG. 2. Brillouin zone for graphite lattice. The vectors shown are .the wave vectors characterizing the Cs ordering in CSCs (a),
and the Rb ordering in CSRb (b).
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Equation (I) can trivially be rewritten

p(r) =
4 exp(iki r) +exp( —iki r) +exp exp(ik3 r)1 2%' I

i i

2' I 4+i —4'+exp exp( —ik3 r)+exp exp(ik3 r)+exp exp( —ik3 r)
3 3 3

1
~tt ~lt ~tt—

8 [exp(iki r) +exp(ik3 r) +exp(ik3 r)]+const (3)

The first term is clearly a superposition of the six
components of the order parameter. The second
term is a superposition of three functions transform-
ing as the basis of an n =3 irreducible representation
lableled by k1, k2, and k3. We are therefore led to
introduce order parameters Qt, Q3, and Q3 corres-
ponding to these wave vectors. We shall see that the
n =3 order parameter is driven by the n =6 order
parameter.

The Landau expansion of the free energy now
takes the form

3

F=3r $Q Qi;+u4 $QiQ i +ti $(Q;i]i ()

+ u4 X ( Pi 0—J) +w (ei P2e3 Ir i i[i 211—3)-—
i wj

The secondary order parameter Q; is thus induced
by the primary order parameter ill;. In the absence of
the third-order term, i]i; —

iti near To In th. e experi-
ment' this is borne out by the observation that the
"(100)"peak [in our notation the (3 a, 0, 0)peak] is

ten times weaker than the "(101)"peak.

B SRb

The stage-1 intercalation compound CSRb under-
goes several consecutive transitions as the tempera-
ture is varied. ' Since most of the transitions were
found to be poorly reproducible, we shall concentrate
our efforts on the high-temperature transition where
the system goes from the disordered phase to the
o.PuP phase.

The periodicity of the Rb lattice is given by three
equivalent wave vectors

+u6 x (ili,'+ ill', ) + (4)
1

ki =(—a, 0, —c )

where the dots represent other sixth-order terms +
higher-order terms. We note immediately that the ex-
pansion includes a third-order term w This is due to
the fact that the ordering is commensurate in the z
direction so that k1+ k2+ k3 add up to the reciprocal-

lattice vector c . Thus, the transition is first order
according to one of Landau's rules. '

To see that the expansion (4), for proper choice of
coefficients, may indeed produce the aPy structure
(1), consider the situation w &0, u4 & 0, u6 &0.
Inserting P+J =A exp(+i'), it is easy to work out
that Eq. (4) has extrema for (8i, 83, 83)
=(0, 2n/3, 4n/3) By inspection . this gives precisely
the phase factors in the first parentheses in Eq. (1).
The expansion (3) has 24 equivalent extrema given
by (I/2 )(83. 83 83) (0 ) ( ) (0 ),
(3, 6, 3 ) and all possible permutations. This

1 5 2

corresponds to the 24 equivalent way of stacking the
Cs layers (aPy, Pya, aP5, etc.).

Turning now to the n =3 parameter i]i;, note that
it couples to the n =6 order parameter i[i+; through
terms of the form

5F = (iii i Q-3 + Q —i Q3) iii3 + c p

and

1k3=(—
4 a, 4 J3a,—c )

where the product of the signs, 518283, equals 1. The
n =3 representation given by k1, k2, and. k3 is in-
duced by the invariant

5F = Qi $3 i|13 +c.p.

The Landau expansion takes the form
(

1

F =
3

r g ( l)'ii+ u4 $ ili + u4 X iii~4

3 i 3

+u6 Xilj +u6 giiri6+
I t

i

1 1k3=(——,a, —,J3a, —,c )

[see Fig. 2(b)], and therefore the order parameter
has three components, pi, ili3, and iti3. (Note that in

the present case k; and —k; differ by a reciprocal-
lattice vector. ) As before, the lowest harmonics of
the mass density wave may be written

~tt ~tt ~tt
p(r ) = 5i coski r + 53 cosk3 r +53 cosk3 r, (6)
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This is the expansion defining the universality class
of the Heisenberg model with cubic anisotropy. A

system described by this model might, in principle,
exhibit a second-order transition. In the present
case, however, the observed structure (6)
corresponds to $2= $3 &0, Q~ =0. In a (f~, Q2, Q3)
coordinate system, the order parameter points to one
of the equivalent centers of the cube edges, (0,1,1).
At a second-order transition the direction of the or-
der parameter is given by the fourth-order term. The
fourth-order term favors an order parameter in either

the [100] or the [1111direction. Hence, in our case
the transition must be driven by negative higher-
order terms ( for example, a sixth-order term), and

the transition is of first order! Note that this predic-
tion is based on the Landau theory. It is possible
that a more refined renormalization-group theory
might change our conclusion.

C. C6Li

At room temperature the Li atoms in C6Li form a
hexagonal lattice, but the ordering within each layer
is different from that in CSCs and C8Rb (Fig. 3).
The Li atoms may occupy one of three symmetric
sets of lattice sites, u, P, or y. This arrangement is
known as the "J3 structure". The stacking sequence
is simply uuu (or PPP, or yyy ). In
analogy with C8Cs and CSRb we expect a transition to
a disordered phase at some higher temperature, To.
Electron diffraction measurements' indicate that this
transition does indeed take place above room tem-
perature.

The wave vectors of the Li structure are

q~ = (2 a, a /243, 0) and q2 = —
q~ (Fig. 4). The or-

der parameter thus has two components, P+. It is

convenient to introduce real order parameters

f~ = —,(Q++Q ) and Q2= (I/2i)(p+ —p ) describing

cosine and sine waves, respectively, with the wave

~ ~ 0 0 ~

~ 0 0 ~ 0 0 ~ ~

0 0 0 4 ~ 0

0 0 ~ 0 ~

~ 0 0 0 ~

~ ~ ~ ~ ~ ~

vector q~. The three ordered states are given by

p~(r) =cosq, r

pq(r) = —,(cosq~ r+ J3sinq~ r)

p3(r) = —
2

(cosq~ r —J3sinqi r)

These densities have the symmetries of the u, P, and

y arrangements, respectively. The free-energy ex-
pansion takes the form

F = ,
'

r $—y,'+ w (y', —3 y, y', ) + u4(gf + y2) ', (9)

which defines the three-dimensional three-state Potts
model. This equivalence was first shown by Alex-
ander" for the two-dimensional case. Note that the
expansion has a third-order term. Landau theory
therefore predicts a first-order transition. There is,
however, conflicting theoretical evidence of the criti-
cal behavior of this model. ' Diffraction experiments
on LiC6 may thus serve to test these various theories.
It has been shown by Mukarnel et at. ' that a certain
phase transition in a cubic ferromagnet in a field is
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FIG. 3, Intralayer ordering of Li atoms in C6Li.
FIG. 4, %ave vectors characterizing the Li ordering in

C6Lj.
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also described by the three-state Potts model. Experi-
ments'" on DyAlq and SrTi03 show the transition to
be first order, but independent experiments are im-
portant,

III. SUMMARY AND CONCLUSIONS

exhibit first-order transitions, since the wave vector
is necessarily commensurate in the stacking direction,
and the corresponding umklapp term drives the tran-
sition order. The possible second-order transitions
must be found among systems where the periodicity
in the stacking direction is either unaffected or dou-
bled at the transition.

We have mapped the melting transitions in C8Cs,
C8Rb, and C6Li onto Landau-Ginzburg models, and
we found the transitions to be of first order. Similar
phase transitions occur in a variety of different inter-
calation compounds. . In principle, each case has to
be analyzed separately, and possibly some of the
transitions might be second order. Generally, one
can predict that the high-stage compounds should all
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