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The asymptotic tricritical equation of state, including the three-phase coexistence
monohedron, is analyzed in detail for the exactly soluble multicomponent or spherical limit,
n — oo, of the continuous-spin model with terms of order s°, s*, and s8, in d =3 spatial dimen-
sions. Various nonuniversal scaling functions and amplitude ratios, depending on the range
parameter z « 1/R3, are evaluated explicitly and reveal the nature and magnitude of the devia-
tions from the classical, phenomenological theory of tricriticality (which is developed systemati-
cally in an Appendix). The relationship to results for finite n is discussed briefly.

I. INTRODUCTION

Our understanding of the equation of state of a
real, three-dimensional physical system in the vicinity
of a tricritical point is, despite sigrificant theoreti-
cal'™® and experimental*® progress, still seriously in-
complete. Theoretically, d =3 dimensions represents
a particularly interesting case as, on the basis of
renormalization-group arguments,! it is expected to
be the borderline dimension for tricriticality, above
which the tricritical exponents should take on their
classical or phenomenological,? d-independent values.
At a border-line dimension the appearance of a mar-
ginal operator or physical density is anticipated,"? and
such marginal operators generally lead to logarithmic
correction factors to classical power-law behavior.!"3
Furthermore, marginality may be associated with
nonuniversal features.

Current experiments*~’ agree well with the theoret-
ical expectations in that the observed tricritical ex-
ponents are quite consistent with the classical values.
On the other hand, the predicted logarithmic correc-
tion factors,> have not been observed, even in the
most careful experiments [see, e.g., Ref. 5(c)]. How-
ever, as recently stressed,’ the experimental data do
exhibit unambiguous deviations from other predic-
tions of the phenomenological theory of the tricritical
equation of state. .

We have recently demonstrated’ that the mul-
ticomponent, n — oo, or spherical model limit enables
one to study in exact analytical terms®~'? the devia-
tions from classical theory. In that limit no loga-
rithmic corrections to power-law behavior are found;
however, it was shown that, although the tricritical
exponents are classical, the equation of state deviates
significantly, and in a nonuniversal way, from the clas-
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sical predictions. Furthermore, the nonuniversality is
parametrized by a single (marginal) variable, p or z,
related to the finite range of the basic pair interac-
tions. This parameter vanishes for infinite-ranged
(infinitely weak) forces; the theory then reproduces
the classical results, as expected in this, so-called,
van der Waals limit. Because the nonuniversality is
governed by only one parameter, there are definite
relations, which can be displayed explicitly,” between
any pair of dimensionless amplitude ratios character-
izing the asymptotic tricritical behavior. Despite the
fact that real physical systems, such as *He-*He mix-
tures,* metamagnets,’ and multicomponent fluid mix-
tures,® should be described by models with order
parameters having only n =1 or 2 components, the
amplitude-ratio relations found for » — oo correlate
surprisingly well with experimental observations.’
Among the most interesting amplitude ratios are
those describing the coexistence of various phases
below a tricritical point: these can be studied by in-
troducing a "cubic" or "third-order" field, A3, which
can also be accomplished analytically® in the n — o
limit.

The main goal of the present paper is to present
the derivation of the detailed results for the tricritical
equation of state in the multicomponent limit, in par-
ticular the various important amplitude-ratio rela-
tions, which were announced in Ref. 7. The analysis,
which unfortunately is rather heavy algebraically, re-
lies on the general solution for the # — oo.limit given
in Ref. 8 (which will hereafter be referred o as I).
The principal results from Ref. 8 are recalled in Sec.
II below. In Sec. III the asymptotic tricritical
behavior is studied in the symmetry plane in which
the two relevant odd fields, 4 and 43, both vanish.
The general tricritical neighborhood (with 4 and A;
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nonzero) is taken up in Sec. IV, where the nonclassi-
cal effects on the shape of the three-phase
monohedron’ are elucidated.

The classical phenomenological theory of the tri-
critical equation of state is developed in detail in the
Appendix: this material is not completely new or ori-
ginal, but the analysis is somewhat tricky and no ex-

" plicit derivations seem to be in the literature. Furth-
ermore, the results are needed as a leading approxi-
mation in studying the n — oo, spherical model limit
for small nonuniversality parameter. Finally, in Sec.
V, some concluding remarks are presented, and the
expected behavior for finite » is discussed in terms of
a renormalized value of the range parameter z.

II. MULTICOMPONENT LIMIT

In Ref. 8 (hereafter referred to as I) we have
shown how to derive the free energy and equation of
state of a d-dimensional, n-component spin model
with a Hamiltonian of Landau-Ginzburg-Wilsen type,
in the multicomponent, n — oo, or, equivalently,
spherical model limit. In this section we summarize
the results obtained in I and present them in a form
more suitable for the study of the nonuniversal tri-
critical behavior.

The model consists of a set of n-component, classi-
cal spins, §; = (s*) with w=1,2,...,n, located on the
sites i =1,...,N, of a regular d-dimensional lattice and
interacting through the Hamiltonian

N a..3)!s 12
(15, ) =se'(5,) — 3 [H-§,+—————(H3 21| ]
J=1

N “Uls ¢ Lvis s
- J J
+3 |50l P+ + L)
j=1 n
2.1)
where
H=(HH,.. H), Hy;=(H3y,H;,...H3) ,
and
n
Isi2= 3, (s»? , (2.2)
n=1
while the pair interactions are given by
® U5 D=5 315-5 17 . (2.3)
()]

The exchange parameters, Jj, are positive and trans-
lation invariant and may convenient_ly be written?

Jy =Jo(a/Ro)? ?(Ry|/Ry) ,

in which a is the lattice spacing and R, represents the
range of the interactions, while the shape function,
@(r), is bounded for all » =0 and integrable on

2.4
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(0, ). This form for J; includes the nearest-
neighbor interactions when Ry is finite, and the
long-range, infinitely weak, or van der Waals limit
when Ry — oo. 3

To obtain tricritical behavior, we take U < 0 and
V >0, fixed in Eq. (2.1) and regard H, H;, and D as
variable fields.®

In I we have shown that the model defined by Eqs.
(2.1), (2.2), and (2.3) is exactly soluble in the limit
n — oo and that it exhibits a tricritical point for d =3
(although not for d < 3).%% We may rescale the vari-
ables [see I Eq. (4.17)], to achieve the normalization

-U=V=1 (2.5)

If T, is the tricritical temperature and one introduces
the scaling fields [see I Egs. (3.22), (4.6), (4.12),
etc.]

=(r-7)/T, g=D-70-1) ,
2.6)
h=H+%(1+I)H3, hy=H; ,

the tricritical point corresponds to t =g =h = h;=0.
One then finds [from I Egs. (2.6), (3.8), (4.3), etc.]
that the free energy in the tricritical region is given
by

F(t,8,h,h3) = Fo(t,g)

. - )2
+min |- p _Y_'_€1+(1/~‘/)_M”_'l_
it 1+y 2¢

.2 .3
tm +—m

)=

1 ~ 1 ~ 1
—7§m +7gm+7

Q.7

where {={(m;p;h,h3) is the unique, nonnegative
solution of the "constraint equation"

2

h+hsm

g

while F, represents an analytic background term
[linear in g and cubic in ¢; see I Eq. (4.16)]. In these
equations the exponent v is the ordinary critical ex-
ponent of the susceptibility in the spherical model

(n — o), namely,

y=2/(d-2) ,

= —p o, .8)

2.9)

for short-range interactions and d < 4, while p is de-
fined via the Fourier transform of the pair interac-
tions (2.4) by

b=z =10 by (a/RYNUI V@Ot | 2.10)
Here b4 is a number which depends only on the
shape function ¢(r) and the dimensionality . When

’
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the range, Ry, of the interactions becomes infinite
(the van der Waals limit), p vanishes as R¢? and one
sees immediately from Egs. (2.7) and (2.8) that the
free energy takes the form of a classical phenomeno-
logical free energy [see Appendix].

Of course, the minimization in Eq. (2.7) can be
performed by differentiation. This leads to

L+2h3(h +hsm)[L=g +tm+m° . (2.11)

If one sets H = H,, D,=—-2H, and defines the three
densities

m=(s"y=—@F/3H) (=1,2,3) , (2.12)

one finds [I Egs. (3.17), (4.7), and (4.21)] the rela-
tions

m=m={(s)=(h+hsm)/{ , (2.13)
and

my=mlm +5(1+0)1=mm, . (2.14)

The scaling properties of the free energy, Eq. (2.7),
and the equations of state, (2.8) and (2.11), have
been studied in some detail in Ref. 8. The main
results are: (i) For 3 < d < 4, tricritical scaling in its
most direct form is impossible. To describe the com-
plete tricritical region it is essential to recognize
p o« (a/Ry)? as a scaling variable. (ii) When p is con-
sidered as a scaling variable, it scales with its own
critical exponent, ¢, =3 —d. Evidently, ¢, is neg-
ative for dimensionality d >3 and so pisa
"dangerous irrelevant variable". As expected,! the
tricritical region is then characterized by classical tri-
critical exponents. (iii) In three dimensions (d =3)
the exponent ¢, vanishes identically, and it becomes
possible to obtain a full scaling description using only
the standard variables and the classical tricritical ex-
ponents. However, the variable p, which is then
marginal, enters the equation of state in a nonuniver-
sal way. ‘

In the following we restrict ourselves to the case
d =3 (for which y =2) and study in detail the
nonuniversal effects induced by p =z in the phase di-
agram. From Egs. (2.7) to (2.12) we can then
rewrite the free energy and equations of state near
tricriticality as

F(t.g.hhy) =Fo(t8) =320 — 3 (h +hsm )Y/¢

1 2 .3

—SlR g TR e
2.15)
and
m=m=z?? (2.16)
(=g —2hsm+tm+m (2.17)

while the three densities, m; (I =1, 2, 3), are still

given by Egs. (2.13) and (2.14). Finally, note that
when d =3 we have

z=co(a/Ry)’ , (2.18)

where ¢y and, hence, z is a pure number.

III. PLANE OF SYMMETRY

Although a cubic or third-order (staggered) field,
H,, directly related to # in Eq. (2.6) may be induced
experimentally in certain antiferromagnets like
dysprosium aluminum gamet,s“’)'(“) Hj is probably
never independently accessible in magnetic systems.
Furthermore, the best data currently available near
tricritical points are taken in the symmetry plane
where h = h3=0. Indeed, for real systems like *He-
“He mixtures,* where neither 4 nor h3 can be gen-
erated, the symmetry plane fully represents the phy-
sically accessible space. It is thus such symmetric
systems that we will have mainly in mind in this sec-
tion, where we discuss the nonuniversal corrections
induced by z for H = H;=0.

A. Triple line

The phase diagram for A = h; =0 is plotted on Fig.
1 of I. The lambda line above T;, on which spherical
model critical exponents occur, is given exactly by

g=D-D,+5=0 (1=0) . (3.1

The lambda line continues smoothly into the triple
line for T < T,. Along the triple line disordered and
ordered phases coexist: (i) the ordered phase is
characterized by m #0 and {=98h/dm =x"'=0,
where X is the basic ordering susceptibility; (i) the
disordered phase has m =0 but { > 0. In the ordered
phase, therefore, Eqs. (2.16) and (2.17) reduce to

mo=m? M +tm+g=0 . (3.2)

The second equation has a unique, thermodynamical-
ly stable solution

o (1,g) =m% (tg) =211 —(P—4g)1] | (3.3)

where, here and below, the subscript < denotes the
ordered phase. Introducing Eq. (3.3) in Eq. (2.15)
with {=0, one finds the free energy of the ordered
phase in the symmetry plane. For 1 =0 one obtains

Fo(1,8) = Folt,g) — 57 [tPI1 —6x + (1 —4x)¥7]

3.4)
where we have introduced the tricritical scaling vari-

able
x=g/|t|* . (3.5)

Note that F. is independent of the nonuniversality
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parameter z.
In the disordered phase, however, Eqgs. (2.16) and

(2.17) reduce to
==z, (=g +uh+m (3.6)

from which follows a quadratic equation for {72,
namely,

A=2)+z2P-g=0 . 3.7
This has the thermodynamically stable solution

'>/2=——%(1—22)'l {zt — [222 +4g (1 — 212} . (3.8)

Note, however, that this is valid only for 0 <z < 1;
for z =1 the model (for d =3) no longer exhibits a
tricritical point.*!® On introducing Eq. (3.8) into Eq.
(2.15) with m =0, one obtains the free energy of the
disordered phase for T<T, (¢t <0) as

F,(tg:2) = Fo(1,8) — 55 |2

X [(1+6¢,x) +(1 +4¢,x)%?] | (3.9)
where

g=0-2%/z? (3.10)

while > denotes the disordered phase (for which
g >0 when t =0). Now, the triple line is the locus
in the (1,g) plane where F.(t,g) =F.(t,g;z), which
yields
1—6x + (1 —4x)32=¢,2[(1 +6¢,x) + (1 +4¢,x)7)

' 3.11)
The desired solution, x =x,=g,(t,z)/f?, is one of the
solutions of

X33 - %(1 -, Nx? +7§?(1 —-%c,“)(l -3¢, MHx

U=l — p=1)] —
+ﬁs—c, (l C; )]-—0 N (312)
obtained by squaring twice and rearranging. As

¢, # 1 for 0 <z =<1, one can exclude the solutions
x =0. Of the remaining three solutions only

x.(2) = (1 =) [eos?p(z) — 2], (3.13)
where ‘
¢(z) = ¢lm+cos™' (1 -229)] , (3.14)

is also a solution of Eq. (3.11). Hence, the triple line
is given by

g.(t;2) =502 —2)cos’p(z) =22 . (3.15)
This expression is valid for small ¢ =0 but for all z in
the range 0 <z < 1. When z=0 one has ¢=%1r, SO

that
.&’f(t;z——-0)=%t2 , (3.16)

which is the result obtained in the classical theory
[see Appendix, Eq. (A33)]. Note also that x,(z),

and hence g,(¢;z), decreases monotonically as z in-
creases, vanishes for z =1/~+/2, and diverges as

x,(z) =-3/32(1-z2) asz—1— . 3.17)

Althdugh ‘€. changes sign, the original quadratic
field, (D — D)), is always negative on the triple line
[see Egs. (2.6) and (3.1)].

B. Nonuniversal scaling functions

It is easy to derive explicit expressions for the scal-
ing functions in the symmetry plane. Indeed, Eqs.
(3.4) and (3.9) give the free energy scaling functions
for t =0 in terms of the scaling variable x =g/#2. In
general one finds

F(tg;z) =Fy(t,g) +|t|2“"ffg-r (g/t%z) , (3.18)

where a=—1 is the expected classical tricritical
specific-heat exponent, while in the ordered region
(<) one has

F2 02 =25 1-6xF(1—4x)%7 ,  (3.19)

which is independent of z, and, in the disordered re-
gion (>)

f};i (x;z) = tm

x{2} +6(1 — )z Fl22+4 -2)x]3?)
(3.20)

The superscript, (+) or (—), in these expressions
refers to + > 0 or ¢ <0, respectively. Note that the
free energy expressions are analytic in ¢ through ¢ =0
for g >0 and g <0, as they should be.

Of particular interest in the symmetry plane are the
nonordering density m, (or /) and the correspond-
ing nonordering susceptibility

X‘=‘X2=%(6>m2/8H2)r=—(8r71/Bg), . (321)

These quantities have direct physical interpretations:
for an antiferromagnet, —m; is essentially the ordi-
nary magnetization, M, while X is proportional to the
ordinary magnetic susceptibility X7 = (dM/9H)r; in
3He-*He mixtures —m, represents the molar concen-
tration, x;, of *He, whereas X is the concentration sus-
ceptibility (dx3/8A)r, where A = u3 — 4 is the chemi-
cal potential difference.

The scaling function for m; is obtained by intro-
ducing Eq. (3.3) or (3.8) in Egs. (2.14) and (2.16).
One finds

m(t,g:2) =m,— %(1 +1¢)

=tlf Qg (g/t) (3.22)
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where 8=8,=1, and
0 (xiz) =F7+3(1 -4, (3.23)

while, in the disordered region,

Y4

z +[22 3740 -2)x]12) |

(3.24)
Alternatively, one may rewrite Eq. (3.22) using g as a
scaling variable, as :

vyl
Q;(xsz)_iil_zz

m(1,g:2) Emz—-;-(l +1)
~1gl% Gy (t/lgl ) (3.25)

with B,=B/¢ =7 and

6. (w:2) =% g low = (w2 24 =D
] (3.26)
0cwiz) ==gw+3 (w2342 (.27

where the signs (—) and (+) apply for g = 0, respec-
tively.

By differentiation the susceptibility is found to
scale as

X(1.8:2) = 1|77 X5 (g/1%2) (3.28)
where ¥ =1 and

Xe(x;2) =1 —ax)712 (3.29)

Xo(x;2) =z[224+4( = z)x]12 | (3.30)

Again one can rewrite the scaling in terms of g with a
prefactor |g| ' where 3, =% /¢ = %

From the explicit expressions presented above, one
sees that the scaling functions in the ordered phase on
the symmetry plane are independent of z and, hence,
universal. In the disordered phase, however, the scal-
ing functions depend explicitly on z and so are
nonuniversal. On the other hand, scaling is clearly
verified for z > 0, and all the exponents take the ex-
pected classical values. This is not actually true in
the (z =0) classical theory. Indeed, the disordered
phase scaling functions (3.20), (3.24), (3.26), and
(3.30) vanish identically when z =0. The leading
asymptotic behavior is then given by correction-to-
scaling terms and described by different exponents in
the ordered and disordered phases. This peculiarity
has, of course, been commented on before.!!

C. Physical fields

As one can see in Fig. 1 of I, or by inspecting Egs.
(3.1) and (3.15), the lambda line, g,(¢), and the tri-
ple line g,(¢;z) have zero slope at the tricritical point.
This behavior merely reflects the fact that rand g, as

defined in Eq. (2.6), respect the appropriate scaling
axes'2™' near the tricritical point. In real systems,*™
however, the slope of the phase boundary is normally
nonzero at tricriticality. Thus, in applications of the
Hamiltonian (2.1) or the free energy (2.7), one
should not expect the physical fields to be propor-
tional to the scaling variables, but rather to be linear
combinations (at least asymptotically) of the scaling
variables. To explore the consequences of .this, we
will regard H, or h;, with

hy—hy=g—qt=go—qt++7* , (3.31)

as the physical field rather than g. One easily sees
that the slope of the lambda line T,(h;) at tricriticali-
ty is then given by

ang 1 (3.32)

dh, T=T, q
We can now use Eqgs. (3.22) to Eq. (3.30) to examine
the asymptotic behavior of m, and X, = X along dif-
ferent loci in the plane of the physical fields (T, H>).
We will define various dimensionless amplitude ratios
which are accessible to experiment but which depend
on z and are hence nonuniversal.

D. Nonuniversal amplitude ratio
for the phase boundary

Consider first the behavior of m, when the tricriti- -
cal point is approached along the phase boundaries as
illustrated in Fig. 1. On the lambda line one has, by

T I T
0.8
ordered L
my \Q <
i lambda
! line
0.5+— L Mo
coexistence : ,
L region e i
i/ 7
Py /r
/
0.3} s /
/ / disordered
4 [0)
s >
p /
s _ 1
t / =3
7
O 7 1 l 1
0 Te T

FIG. 1. Tricritical phase diagram in the (m,,T) plane in
. . . . 1

the limit n — os with nonuniversality parameter z =7 (ob-
tained by solving the exact equations of state). The dashed
lines Ot, Pt, and Qr indicate the asymptotic slopes of the
phase boundaries above and below the tricritical point. Note
that the disordered phase boundary exhibits a discontinuity
in slope at the tricritical point (except in the van der Waals
or classical limit z =0).
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Eq. (3.1), t >0 and g =0 so that Eq. (3.22) yields
my(T) —my, = Ayt, withAy=7 , (3.33)

1

where m,, = 5. Note that, since the phase transition

is continuous on the lambda line, there is no need to
distinguish between my” and m,°. On the triple line,
however, two phases with different values of m,
coexist. Inserting Eq. (3.15) with ¢ <0 into Eq.
(3.22) yields

>
my, (Ts2) ‘mz,rz"‘fzt , (3.34)

with

A =31+ 5 b+ +40 =D

(3.35)
Arc=—7(1—4x)'?

where x,(z) is given explicitly by Eq. (3.13).
Evidently the slopes for m, , and mz,, following

from Eqs. (3.33) and (3.34), are unequal unless z =0.

Hence, as illustrated in Fig. 1, the slope of the disor-
dered side of the phase boundary in the (m;, T)
plane, i.e., the locus OrL, is discontinuous at the tri-
critical point; this is in marked contrast to the classi-
cal or mean-field prediction of continuity. As em-
phasized in Ref. 7, a discontinuity in slope is ob-
served in real systems.*> It has also been seen in
series extrapolations'® and Monte Carlo calcula-
tions'® for the Blume-Capel model.!’

The discontinuity in slope can be characterized in
dimensionless form’ by the ratio

[OP] - A7>_AA
[PQ] AA—A1<

where the lengths [OP] and [PQ] measure the differ-
ence in asymptotic slopes at the tricritical point as in-
dicated in Fig. 1. From Egs. (3.33) — (3.35) and
(3.13) one finds,’ after some trigonometric manipula-
tions,

2(2) = , . (3.36)

9(2) = tand(z)

4
a _22)1'/2
=tan6(z) tanl5 (0 + 3] , (.37

where we have introduced the more simply defined
angle

0(z) =3¢(z) — -;-17 =sin7lz . (3.38)
For small z one has
1 4 35
2,(2) =T32 +?22+§-\—/.3~23+0(Z4) . (3.39)

Evidently the discontinuity in slope is nonuniversal

but is governed by the single range parameter z. The
ratio 2, is monotonic increasing in z and, as expect-
ed, vanishes in the van der Waals limit, z —0. Con-
versely, 2 diverges as v3/2(1 —z)"2 when z —1;
this is symptomatic of the fact that the model
displays no tricritical point for z > 1.

E. Nonordering susceptibility:
nonuniversal amplitude ratios

Other clear tests of nonuniversality are provided by
examining the nonordering susceptibility X, =X on
various loci. On the tricritical isotherm, T = T,, the
scaling field g is identical to h, — h,,, and one may
write

Xa(Ty hi2) = By (2) /| by — o, |,

forg 20 , (3.40)

as follows from Eq. (3.28). Then, from Egs. (3.29)
and (3.30), one finds that the corresponding dimen-
sionless amplitude ratio is

B
2,(Z)==2=—2Z2___=tand(z) ~(3.41)

Evidently this ratio also vanishes only in the van der
Waals limit z —0.

On the critical "isochamp", h; = h,,, one has
g = —qt so that from Eq. (3.28) one can write

X2(T hy,32) = C3 () /1|2, (3.42)

where, as before > and < refer to the disordered
and ordered phases, respectively. The corresponding
amplitude ratio is

C> 2
QJ(Z)=C_<=HWEtan0(Z) , (3.43)

and is independent of ¢ although C, and C<

separately vary as |¢g|™"2. Note that 2; is identically
equal to 9,(z); however, this equality is purely a
consequence of the fact that scaling holds with a
crossover exponent ¢ (=2) > 1.

Finally, if the tricritical point is approached along
the two sides of the triple line, one finds from Eq.
(3.28) that

X2(Tohy,.2) = Gz @)/ |1] (3.44)
where the amplitudes follow from the scaling func-

tions (3.29) and (3.30) by inserting the triple line
value x,(z). For the appropriate dimensionless ratio



20 TRICRITICAL COEXISTENCE IN THREE DIMENSIONS 2803

one thus discovers

z
mtamﬁ(z) . (3.45)
This happens to be identical to 2,(z) [see Eq. (3.37)
above]; however, the result is nontrivial and not
merely a consequence of scaling.

In summary, we have defined and computed in the
symmetry plane (for the n — oo limit) four
nonuniversal dimensionless amplitude ratios, 2.
Within classical theory, which is realized in the van
der Waals limit z —0, all these ratios vanish (and are
thus trivially universal). Since there is only a single
nonuniversality parameter, namely z « (a/Rg)? a
measurement of one of the ratios 2;(z) for a given
system serves to determine z. The remaining ratios
may then be predicted. In other words, even though
the various ratios are nonuniversal, a definite relation
holds between any pair of them. The ratios ; are
accessible to experiments on antiferromagnets and
3He-*He mixtures and are observed to take nonclassi-
cal and nonuniversal values. As demonstrated in
Ref. 7, the predicted ratio relations are also found to
be obeyed surprisingly well: indeed, within the preci-
sion of current experimental data there are no
discrepancies! However, it must be stressed that this
agreement is theoretically puzzling since, in the first
instance, real systems should be described by finite
and small values of n and not by n — co. In the
second place, for n < oo various logarithmic factors
are expected in the asymptotic behavior on the dif-
ferent loci!*? but such factors have not been allowed
for in our definitions of the amplitudes. - Hence the
meaning, and even the existence of the ratios €, for
general n is not obvious: see further in Sec. V below.

eu=G> -

F. Locus-dependent amplitudes

To conclude this section, we mention that Riedel
et al.*® have exhibited certain nonuniversal ratios
for tricritical behavior within a phenomenological
scaling theory. However, their amplitude ratios are
nonuniversal in the sense that they depend on the
direction of approach to the tricritical point relative to
the direction singled out by the lambda line. As the
model (2.1) satisfies the assumptions of tricritical
scaling formulated by Riedel e al.,*® we should be
able to calculate the same amplitude ratios.

To check the point, we examine the amplitudes of
m [which corresponds to X*"¢ in Ref. 4(b)] and of X,
[which corresponds to (3.X*"¢/3B8+A) 7 in Ref. 4(b)]
when the tricritical point is approached along the path

hy—hy,=q't (3.46)

in the symmetry plane. On such a locus one has
g =(q +¢')t, and from Egs. (3.25) and (3.28) one

finds

iy (1,8:2) = |q +q'|‘/2|’|mQ.2i(0)
o NCUIEC (3.47)
Xe5(68:2) =g +4'|"2|t|" %5 (0)
=Bz(q')|t|"l/2 ) (3.48)

=t . . .
where X3 (w) denotes the scaling functions in terms

of w=1t/|g|'2. Note that along a path such as
(3.46) one has g < 0'in the ordered phase close
enough to the tricritical point, and g > 0 in the disor-
dered phase. The amplitudes 4 2 and B% correspond

to Ay and Ay of Riedel et al., respectively. Using
Egs. (3.26), (3.27), (3.29), and (3.30), one can com-
pute the ratios B>/ A and B /A . with the result

|Bx(q"|
——— =g +q'|™
|A2((I )I 2
=%T;—|'1+1;~ - (3.49)

In particular, if ¢'=0 and ¢’ =1, one obtains, using
Eq. (3.32),

1BO| _ 1)(dTy

|4 ] 2 dhzlr ' | (3.50)
ol |- ) "G
4] 2| )|

which are the analogs of the relations (25) and (29)
of Ref. 4(b). Note that these amplitude ratios are
not "naturally" dimensionless in the sense that they
involve amplitudes for distinct physical quantities.
Furthermore, these ratios, although path dependent,
do not depend on the nonuniversality parameter, z.

IV. FULL THREE-PHASE REGION

We consider now the tricritical region in the full
space of four fields (,g,h,h3). In particular, we focus
on the three-phase region in density space for fixed
T < T, (t <0). In the field space, (t,g h, h3), this is
represented by the triple surface. [See Fig. 2 which
exhibits (g,h) sections of the classical phase diagram
(z=0).] In classical theory,”'® the three-phase re-
gion in the density space, (my,m,,m3), fills a volume
bounded by a single ruled surface of interesting shape,
namely, the three-phase monohedron (see, e.g., Fig.
2 of Ref. 7 and the Appendix). The three-phase
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FIG. 2. A (g h) section of the classical tricritical phase di-
agram in (,gh) space for fixed 1 =—1 and for h3=0, 0.05,
and —117 showing the first-order wing surfaces; C, and C_
denote the critical end-points, while the line C,.C_
represents the triple surface.

monohedron has also been studied in real fluid sys-
tems. When H; is allowed to be nonzero, the model
defined by Eq. (2.1) is appropriate for describing ter-
nary and quaternary liquid mixtures: then m,, mj,
and mj; represent suitable linear (but temperature
varying) combinations of the various compositions,
while H,=H, H, =-——;—D, and H; denote correspond-

ing linear combinations of the chemical potentials w,
w2, u3 (and w4 in the case of quaternary mixtures).
The classical theory provides a reasonably good
description of current experimental observations,®
although some discrepancies are indicated. However,
it is, in any case, instructive to examine the three-
phase region in the infinite-component limit with

z = p different from zero, in order to discover the
nonuniversal nonclassical modifications of the
monohedron.

When H and H; are both nonzero, we have, unfor-
tunately, been unable to obtain an exact, explicit
representation of the three-phase region for all values
of zin the range 0 <z <1 (as was achieved in Sec.
III). Accordingly, we present here an analysis valid
for general /# and A3 but limited to first order in small
z. The basis of the calculations will be the classical or
z =0 theory, expounded in the Appendix.

A. First-order expansion in z

To start, we rewrite Eqs. (2.15)—(2.17) in a form
which is more convenient for expansion around
z=0Q. Using Eq. (2.16) to substitute for m in Eqs.
(2.15) and (2.17) and neglecting terms of order z?

and higher yields, for ¢t <0,
F(1,g,hh3) = Fo(t,g) —hm + %ng —hym’ — %|t|m“

1 1
+=mb =520 (m* —|t|m> = 2hym +g)

++207 @.1)
where m satisfies

m>—|t|m* =3hym2+gm —h

=2z0(4m* =2|t|m —2hy) . (4.2)

Moreover, Eq. (2.13) reduces to a quadratic equation
for {12, namely,

mi+hyz = (h +hym?) =0 , 4.3)
which has the unique, physically: stable solution
t(m)=Ch+hsm)/m+0() . (4.4)

On dividing both sides of Eq. (4.2) by m and rear-
ranging, one obtains

m*—|t|m*=2hym +g={(m) +0O(z) . (4.5)

Introducing Eq. (4.5) in Eq. (4.1) yields, correct to
0(z),

F(t,g,hh3;2) =Fo(t,g) — hm + ;—gm2 —hym?
—ltlmt +emb =320 (m) . (4.6)

This equation with Eq. (4.2) will serve as a basis for
an expansion around z =0; it should be compared
with Egs. (A1) and (A2) of the Appendix.

In the following, to analyze the triple surface (for
t <0), we choose tand m =a =m, as independent
variables: see Eqgs. (A28) to (A34). To find the
leading corrections to classical theory we then postu-
late the expansions

m,+(t,mo;z) =M +(t,mg) +zmy (t,mg) +0(22)

4.7
and
g.(t,mg:z) =—1§5~12+zg'(t,m0) +0(Y , (4.8)
h.(tmg;z) = =5 |t|mo(mé — +t])
+zh'(t,mg) + 0 (2% 4.9)
hs3, . (t,mg;z) = %mo(m& - %M)
+zh3 (,mo) + 0 () , (4.10)

where the zero-order term, M +(1,my), is given expli-

citly by Eq. (A30), while Eqs. (A32) to (A34) have

been quoted for the zero-order values of g, A, and h;

on the triple surface (denoted by the subscript 7).
Now on the triple surface the magnetizations
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m =mgy, my, and m_ must yield equal minima of the
free energy so that we have the equations

F(mo;t,8,, 0, h3,52) = F(m 4308, 0,0 152)

4.11)
where $(m ¢, h,h3;z) denotes the expression on the

right-hand side of Eq. (4.6). On introducing Egs.
(4.7) to (4.10) into this relation and Eq. (4.2), and
recalling that m,+ = M+ solves the equations to zero
order in z, we obtain a system of five linear equations
for the five unknowns, my, m_, g', h', and ks,
namely:

IMzg' +h' +3|thy =2 (My) | (4.12)

mog' —h'—=3m¢h; =X (mgy) , (4.13)

M1g'—h' =3M%h; +3(MY —iDms =% (M3) |
(4.14)
where the auxiliary functions are
(M2 =31 e| P = |md ~ e
(M) = , 4.15
(M) 9vV3(my— M) @15
.'IC(M)——\—/-—M(MZ——|t|)|M2 |x|| . (4.16)

In deriving the expressions for £(M) and %(M), we
have used the expression (4.4) for {(m) and noted
that, on the triple surface,

2805

where the zero-order values of 4 and A3 on the triple
surface as given by Egs. (4.9) and (4.10) have been
employed.

This system of equations is easily reduced to the
triangular form

g ==2leM)—-eWMIl/(M,-M_) , (4.18)
hy =+(m¢ =51t [ (mg+5+M_)g’
—eM)=%(m)] , (419
h'=mog' —3mihs —% (mg) , (4.20)
and
my =3 (Mi —|(D2R(M4) — Mg’
+h'+3M%h] . 4.21)

For most of the subsequent computations these equa-
tions are fairly convenient as they stand. However,
an explicit solution is straightforward, although rather
tedious. The final results are most compactly ex-
pressed in terms of the scaled variable

w=mg/|t|'? , (4.22)

where the range 0 < w? < % (or m¢ < %ltl) covers
the whole three-phase region for + < 0. For brevity
we also write

Alw) =(1 —w)'72

LR = (h + MY MR 40 el =my 4.2
=|M2—%|t||/\/§+0(z) , 4.17 Then we obtain
' e a2 _4 23_8iw|3 1_8 4 (4.24)
g'mo) === =4 A= 3w -2+ 2w - 3w
, _ e 16]w|’ 4.25
ntmo =1 (1—4w2)2 [P‘( TN T )] 25
' ___ltP/Z 2IW‘
h3 (t,mg) = Wi ———————(1 4wl [P3(w)+ A Py(w )] (4.26)
and, finally,
, _ L2 [Ps(w) A 233 wPe(w) +23|w|Pr(w) £2w|w|Py(w)/A]
m's (tmo) = +100 Y T —a) : 4.27)
where the P;(w) are polynomials in w? of the form
4
Pi(w) =1+ 3 ppw?* , (4.28)
k=1

whose coefficients are given explicitly in Table 1. The reader may check explicitly that the square-bracketed terms
in Eqgs. (4.24)—(4.27) vanish as fast as the terms (1 —4w?)!in the denominators, so that g’, &', h3, and m+ all
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TABLE L. Coefficients py for the polynomials P;(w) de-
fining the first-order nonclassical terms.

J k=1 k=2 k=3 k=4

1 —64/7 160/7 —3328/189 256/189
2 7 —40/3 16/3 0

3 —28/3 208/9 —448/27 0

4 —8/27 —16/27 0 0

5 —14 328/3 —7264/27 5248/27
6 —47/3 500/9 —1936/27 832/27
7 —139/9 508/9 —80 ) 320/9

8 -101/3 1276/9 —1808/9 832/9

remain finite as w passes through the values i%
(where mg= i%ltl”z). However, it should be noted
that the expressions are nonanalytic in w at w =0, i.e.,
at the plane of symmetry (my=0). This nonanalyti-
city will be discussed in more detail below.

B. Canonical form for the monohedron

The knowledge of the coefficients (4.24) to (4.27)
is sufficient to specify the whole three-phase
monohedron to first order in z. In fact, on introduc-
ing Eq. (4.27) into Eq. (4.7) and using Egs. (4.17),
(2.13), (2.14), and (2.16) one can compute the
values of m, and m; to first order in z for each value
of mg and t. However, a glance at Eqgs. (2.12)—(2.14)
shows that the simple relations (A42), namely,
m,=m{, and m;=m}, are not obeyed as soon as
z #0. Indeed, in a space in which the m; are chosen
as orthonormal axes the edge of the monohedron will
have a more complicated, "twisted" form. In order to
compare most readily with classical theory, we thus
introduce the new scaled combinations

= 12 =
wy=m/|t| w o, 4.29)
wo=m/|t] =lmy— 531 +01/|e]

wy=ml(1—y) m +yl/|t]? (4.30)

where the identity m = m, should be recalled. We
choose y(z), the mixing coefficient for ws, so that
the edge of the monohedron, projected onto the
(wy,w3) plane, is tangent to the w, axis at the origin.
If one uses Egs. (2.14) and (4.17), one finds this
condition is satisfied when

¥(2)=z"(m=0) +0(z»)
=132 +0() . @31

Finally, using Egs. (2.16), (4.17), and (4.31), one

can express w; and wj explicitly in terms of w as

wy=wl—+3z{wr = 3| (4.32)
wy=(1—+V3)wlw, ++v32) +0(2) ,
=(1—-3V3)w
—3VBaw(W =3 - +0ED) . (433)

The definition (4.29) of wy, the expression (4.27)
for m% together with Eq. (4.7), and these last rela-
tions determine the edge of the three-phase
monohedron to first order in z as a function of my
and ¢ (in the range m¢ < %|t|), or, equivalently, of
the scaled variable w =mo/|t|'/? (w?<3). The rela-
tions (4.32) and (4.33) may be compared with the
classical relations (A50) which are reproduced when
z —0.

In the following we will use the foregoing results to
study the characteristics of the three-phase
monohedron in more detail and will specifically ex-
amine the departures from classical theory near the
symmetry plane and in the vicinity of the critical end-
points.

C. Vicinity of the symmetry plane

In terms of the scaled variable w =m/|¢|'/? (with
m =m,) the symmetry plane (h = h3=0) is charac-
terized by w =0. From Eqgs. (4.24)—(4.27), there-
fore, the nonordering field and the densities on the
symmetry plane are

8@ = e1-2=r v 0@) (4.34)

which agrees with Eq. (3.15), and

m+(t;my=0) =my+(1)

1 4
=i-2-\/§|t|‘/2[1 * 55 +0(z2)] :

(4.35)

From this, with Eqs. (4.29) and (4.30), one finds the
vertices in density space of the "central" coexistence
triangle, 0,00 _, associated with the symmetry plane
to first order in z: see Figs. 4 — 6 in the Appendix
and Figs. 2 and 3 of Ref. 7. To first order in z the
coordinates are found to be

0: (WI,WZ,W3)0=(0,-"1;"\/§Z, 0) , (436)
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Small values of w correspond to small departures
from the symmetry plane. Accordingly, in order to
study the neighborhood of the symmetry plane, we
expand the general expressions in powers of w.
From Egs. (4.24)—(4.27) or, in stages, from Egs.
(4.18) to (4.21) we obtain the triple surface as

8:(wiz) ~8o2) =%z|w|3 - %—\/?Tzw4 +0@w)

2
(4.38)
hwi) 5 ML T
[1]52 16 373
—~%l+%zw+ |w|3]
+ 0 (zw?,22w) , (4.39)
h3(w;2) 1 4 2
-—W/T—=—'TW T 1+fl W2
+%z|w|3 +0(zw’,z?w) . (4.40)

From this we see that, when z # 0, the triple surface
at fixed ¢ in the (g, h,h3) space is no longer a straight

line in the plane h = —%Itlh;; instead, it is a twisted
curve which is nonanalytic at w =0.
From Eq. (A30) we find for z =0 but for all w

wi(wi0) =—3w + V31 —w)'2 | (4.41)

Using this and Eq. (4.27), the scaled density w; at
points near O, and O_ conjugate to a point near O
with wi=wis

wi(w;z) —wo+(2) = i_z\z/ﬁ [wl —% 1 +':/% w
+Lzwlw| F V3|1 + == |w?
6 4 2V3
+0(w,22w) (4.42)

where wp+(z) follows from Eq. (4.37). The
corresponding expressions for the w; and w; coordi-
nates of the edge of the monohedron near O and
near O, and O_ follow from Egs. (4.32) and (4.33).
Recalling the values (4.36) and (4.37), the results
may be written

1+-%

7 wr+ 0w ztw?) , (4.43)

walw,z) —wy o=

1 41;
6\/— w+2J_zw|w|——w2——z|w|3_7J§1+3\/._ w? +0 (wh,2%w)
(4.44)
wi(w,z) —w 4\/_ wd 4+ 0w, 22w?) | (4.45)
) 11
wi(w,z) —w3,0i=¢%\/§z|w|—% 1+ 12\/% w—-;—zwlwl“ 31\2— -—% w?+ 0w, 2%w) . (4.46)

The main feature of these results is the nonanalyti-
city of the w,(w) at O, and O_: in fact the edge of
the three-phase monohedron has a kink at the points
O; and O_, illustrated in Fig. 3 of Ref. 7, which may
be contrasted with Fig. 4 below, which shows the
classical view in the (w,,w,) plane. The kink may be
exhibited explicitly by eliminating w between Eqs.
(4.42) and (4.44) which yields

Awy +=wy— W0+

=~ +3Aw 02|l ¥ ——sgn(Aw1 o) +—"=

Ql

6f
(4.47)

Evidently, the discontinuity in slope is proportional to
z. It is clear from the explicit formulas that kinks

r

also occur in the other two canonical projections, i.e.,
onto the (wy,w3) and (w,,w3) planes (see Figs. 5 and
6 below); however, even for large values of z, the
kinks are not easily visible to the eye in these plots,
so we do not reproduce them here.

The origin of the kinks at O, and O_ is mathemat-
ically a consequence of the nonanalyticity of ¢!/2(M)
as given by Eq. (4.17). This, in turn, is directly relat-
ed to the vanishing of the inverse susceptibility
1/x=¢ (see 1) in the ordered phase on (but not off)
the symmetry plane. This feature is characteristic for
systems with continuous O (n) symmetry. Thus we
expect kinks in the edge of the monohedron to be
present for all three-dimensional systems with n = 2.
In normal fluid mixtures,® however, one has n =1,
and, although the edge might bend more or less shar- -
ply relative to classical theory, no kinks should ap-
pear at O +.
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It may be seen generally from Eq. (4.27) that the
only nonanalytic points on the edge of the
monohedron (at least to order z) are O, and O_.
However, the critical points, C4 and C_, and the
conjugate critical end-points, £ and E_ (see Figs. 4
— 6, below, and Figs. 2 and 3 of Ref. 7), are also of
particular interest and will be discussed next.

C. Critical end-point region

The first task is to determine the precise location
of the critical end-points on the edge of the three-
phase monohedron in density space. ‘At a critical end
point, E, a noncritical phase of scaled density, wg,
coexists with a critical phase, or, equivalently, with
two phases which have become identical at a critical
point, C, with distinct density we. In terms of the
scaled densities, the critical end-points are therefore
parametrized by the values of w, say w,(z), which
satisfy

wilwez) =w. or w_(w.z)=w, . (4.48)

In the classical theory one finds simply
we=w.(z=0) = t%. To solve Eq. (4.48) more gen-
erally, therefore, we expand the left-hand terms

around w =% or w =—%. Owing to the symmetry, it

suffices to consider only the (+) case. Then it is
convenient to introduce a deviation variable, x, which
measures the distance from the critical point C, by
setting

Wie(2) =wie(0) (1 +x) =3 (1 +x) . (4.49)

The expansion in powers of x is straightforward in
principle but very tedious. Consider first Eq. (4.27)
for m4 (w): for small x one finds

mi W) /|t]P=c;(1++x + 553D +0(3) |, (4.50)

where the numerical prefactor is

245

=—=22 __ =0.097017--- . 4.51
2 x 363 .51)

Cy
Using Eq. (4.41) to compute the small x behavior of
w4+(w) for z =0 and combining the results yields
wi(w;z) =%[ (1+2c2) -1 - -§—c|z)x

- %(1 DX +0 (3 zx2) .

105
(4.52)
One can now rewrite the criticality relation (4.48) as
LU +x) =310 +2¢12) -0 = 2¢12)x]

+0(x2,2x,,2%) , (4.53)

which has the solution

x.(z)=ciz+0(?) . (4.54)
Thus the critical end-points are parametrized by
we(2) =51 +c2) +0(2) . (4.55)

On using Eqs. (4.24)—(4.26) the critical end-point
values of the fields are found to be

3 158
g5(2)='ﬁt2[1 - 35\/3-2 +0(Zz) , (456)
_1 407
hes(z) = 4|t l+———————2x34\/§z +0() , 457
h =+L |32 349 2 :
se(2) =271 1+2x34J§Z'+0(Z) . (4.58)

Note that by symmetry g takes the same value for
E.C_and E_Cy; however, hand h; are of opposite
signs for the conjugate pair £+C_ and E_C,, respec-
tively. The critical points C; and C_ in density space
are similarly found to be

wer(2) =231 +¢2) +0(D) (459
121
wz,ci(z)=-l—[1—-—72L9\—3_§—z +0D ,  (4.60)
733
wics(2) =+3 |1+ S5l ToE . @D

while the densities of the conjugate end-points are

211 )
=+|l+-——"—=z|+0 , 4.62
wg +(z) 1 18632 €D (4.62)
601
=1+ +0(Y , 4.63
Wz,gi(z) 972\52 (Z) ( )
wip+(z) = |1 + ML, +0(?) . (4.64)
s 32437

It is also interesting to examine the behavior of the
fields and densities in the neighborhood of the critical
end-points, that is, for small values of

Aw=w—w(z) , - (4.65)

at fixed (but small) z. To this end, one may expand
Eqgs. (4.7)—(4.9) in powers of x =2w —1 and then
combine terms in order to yield an expansion in
powers of Aw. After tedious algebra, one obtains the
expansions of the O(z) coefficients for the fields and
densities which are presented in Table II. Finally,
near the eritical end-points the fields are found to
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vary as
8 —& 25 26
a2 36\52Aw2— 37\/§ZAW3 +0((zAaw"2Y) (4.66)
h—h
—(—M—S/ffl - [1 Pl Awl = L AW +0 (A2 W20 (4.67)
(hsltﬂ,’;“’ =L e A L aw +O(Awt 2 AW 22 “.68)

For the densities near the critical point C, one likewise finds

We—Wes=—Aw —%sz——%AW —%Aw“+0(Aw5,zAw2) , (4.69)
Wy +—Wrce=—|1 +-—&z Aw +Law?+3Aw2 +0(Awt 2 AW, 22AW) (4.70)
' ' 2x3%3 ’ ’

Wy — Wyce= 1+-—17Lz Aw + 1+—l—z Aw? +0(Aw* 22Aw) 4.71)
S PV 7 A -
W3, 4+ — W3'C+=—% [1 +4>1<—7306_9\/—§—Z Aw +AW2+O(AW3,ZAW2) N (472)

3 1709 3 1219 2
W3—W3ce=7 1 mz Aw +7 1+Z_X3—6\/§_z Aw +O(AWS’ZZAW) . 4.73)

The behavior near C_ follows by symmetry. Near the end-point E_ conjugate to C, (see Figs. 4—6), one has

_ 2 7645 2,4, 3,16 4 4 5 3 2042
Wo—we-=F L+ 5o 2| AWT L SAW + 57 At +0 (AW’ zAWY 22AWY) (4.74)
_ 4 2585 2 8 3 4 3 2A.,2) - 4.75
Wye—Wip_=—= 1+37\/.3-z Awr—<Aw? +0(Aw',zAw’ 22 AW?) (4.75)
11951 2, 4 3 4 3 L2A 42
_— =211 + ——=z|Aw? + -Aw’ + O (Aw* zAw’ 2?Aw?) . (4.76)
W3- T Wik 4x3V3 3
TABLE II. Expansions of y'=g’, ', h3, and m’ for Near the critical end-points we thus confirm that .
small Aw =w —w,(z) = %x +0(z)=m/|t|\2 - % +0(2), the behavior is purely analytic. In other words, the
as y' =y (1 +a,Aw +a,Aw? +---). Note also that for g’ edgehof the three-phase monohedron near C+ and
E + has qualitatively the same properties as in classi-
h =512/3%79. - . . .
one has ds / cal theory. In particular, there is no flattening of the
, / a a edge near the critical points C4 and C_, as would be
Y Yo ! 2 anticipated for systems with # < o on the basis of
the nonclassical value of the inverse coexistence
, 79.2 256 component (1/8 > 2) arising on the critical surface.
g T34 0 ey Indeed, such flattening has been observed in experi-
23343 3279 . .16
s 17792 ments on real multicomponent fluids® where
B i‘%ﬂ‘{l___ 430 - 1/8=2.9. Our present calculations, however, are re-
2343 3 %407 9 %407 stricted to n = oo for which 1/8=2 (see I), so that
y 349]¢|372 490 __4780 nonanalytic flattening should not be expected.
3 23353 3 %349 3x349
' 245)1]1/2 2 388
ms 2 %353 3 315 E. Characterization of nonclassical deviations
m 211¢|'? 490 _13820 The quantitative deviations of the shape of the
2x353 3211 3%211 three-phase monohedron from the classical predic-

tions are best expressed in terms of the dimension-
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less ratios’

®o,;=[0,01,/[E,0];, (j=1,2,3) , 4.77)
and

@&, =[C,0l,/IE,0);, (j=1,2,3) , (4.78)

evaluated asymptotically as 7 — 7,. Here [XY];
denotes the projection of the line XY in density space
(at fixed T) onto the w; axis. Thus the ratios specify
the location of the critical points C4 and C- and the
points O, and O_, conjugate to the central point O,
relative to the end points £4 and £_. As demon-
strated in the Appendix, the ratios take simple
universal values in classical theory [see Eq. (A53)].
However, in the limit # — oo the ratios are
nonuniversal and, to first order in z, may be written

R (2) = (3)P(1—eg2) (4.79)
Rey(2) = ()1 —eeyz) .  (4.80)

The coefficients ey, and e,; may be computed from
Eqs. (4.36) and (4.37), which specify the coordinates
of O, Oy, and O_, and from Eqgs. (4.59)—(4.64),
which specify the points C+ and £+. One finds

o 65 o _ 11 a9

TV R T E LV IR LD IR TV, S
(4.81)

and

e =4 L, __ 4, 145

“TT33T TN ax383 T T X353
(4.82)

The corresponding numerical values are presented in
Table 1II. Note that e ; differs from e; by only a
few percent (for j=1,2, 3).

Evidently, the nonclassical deviations are, at least
to first order in z, comparatively small. In fact,
currently available data for multicomponent fluids®
are not sufficiently precise to observe deviations of
this general magnitude. Nevertheless, if for fluids
one finds z =0.1 to 0.3, as suggested for magnets
and *He-*He mixtures,’ the predicted deviations

TABLE IIIl. Numerical values of monohedron nonclassi-
cal shape coefficients.

J 1 2 3
2y 0.154435 0.020 195 0.174 630
e 0.153 643 0.018611 0.172254

should be detectable. The ratios ®,; and &, ; are the
most accessible to observation. Indeed, as Itl -0

(or T —T,), the projections [0.0];, [C,0];, and
[E.+0]; vanish as |t} so that, for small enough |¢],
one simply has

Ro1(2) = (0,0 /(ELE)
®q1(2) = (C,CI/(ELE) | (4.83)

where (XY) denotes the distances directly observed
in density space. Thus, to measure the first pair of
ratios, there is no need to determine the directions of
the scaling axes w;, w,, and wjs in the real, unscaled
density (or concentration) space. This is a reflection
of the fact® that the monohedron in density space
collapses asymptotically to a line (along the w, axis)
when 7T —1T,.

In classical theory, as demonstrated in the Appen-
dix, the coexistence triangles are, asymptotically, all
parallel to one another and to a plane containing the
w, axis. Moreover, the coexistence tie lines £,.C_
and £_C, are asymptotically tangent to the edge of
the monohedron at C_ and C4, respectively, when
projected onto the (w,w3) plane (see Fig. 5 below),
and at £4 and E_, respectively, when projected onto
the (w3, w,) plane (see Fig. 6 below). We may also
check these predictions for nonzero z.

Consider the tie line £,C_: from Eqgs. (4.59)
—(4.64) its slope in the (w;,w;) plane to order z is

W3E+— W3c- _ 3 655
=3 1+~————~4x35\/§z , (4.84)

WEL — We

where the coefficient of z has the value 0.389 - - -.
On the other hand, by Eq. (4.73) the slope of the
tangent at C_ in the (w;,w3) plane to order z is

dW3

=73 =3
T4

aw )._

1709

9 4.85
4x3%3° (4.85)

where the numerical value of the coefficients is
0.338---. Thus the tie line is no longer tangent at
C_, although the difference in slope is surprisingly
small, indeed only about 0.038z.

Likewise, in the (w,,w3) plane the slope of the tie
line is

1049 ;
4x35J3° 7

W3 g+ — W3 c— _

(4.86)

=3
T2

Wa,E+— Wa,c-

while, for the tangent at £, the results (4.75) and
(4.76) yield

dW3

sz

_3 179
=3 1+——~———4x35\/§z . (4.87)

E+

The numerical values of the first-order coefficients
are 0.207--- and 0.106 - - -, respectively, so that
tangency is again destroyed for nonzero z, but still to
only a small degree.
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In order to check the coexistence triangles for
parallelism, we compute the unit vector
V= (v, v3, v3) normal to a triangle in (w;,w,,w3)
space. If w; and w;+ (j =1,2,3) denote the coordi-
nates of the three vertices of a coexistence triangle,
the direction cosines are given by

U,'=D,'/

where, with (i,j,k) an even permutation of (1,2,3),

3 1/2
3 Df] (i=1,2,3) , (4.88)
J=1

Wit = Wj Wiy — Wy

Wi — Wy Wi — W

For the central, symmetric triangle O.+0O0_ one finds
from Eqgs. (4.36) and (4.37) the values

V,0= —'—; 1 +’——752\8/§Z , V3,0 —_() ,

4 21
vyo=1|1- , 4.90
w0 5[ 1003 2] “4.90)

to first order in z. Thus, as in classical theory the
central triangle always lies in a plane containing the
w, axis (see Fig. 5 below); however, the slope of
0.,0_ in the (w;w;) plane varies slightly with z.
Near the critical end-points one can use Egs.
(4.69)—(4.76) to compute V for small Aw =w — w,
and then calculate the limit Aw —0. The limiting
slope of the coexistence triangles as they degenerate
into the end-point tie line is thence found to be

v =_i 1 + 22556 V4 v =_27-Z
LEZ S 33| RE T 3653
_af, 5639
V3 E 3 1 ‘-—‘—4 X3552\/§Z ’ (491)

correct to order z. By comparison with Eq. (4.90) we
see that the coexistence triangles are not parallel for

z > 0. However, the angles between the triangles are
extremely small. Indeed, if agg is the angle between
the normals to the central and limiting coexistence
triangles one has

o — 8/10889
OF " 3653

where the right-hand expression is in degrees of

arc. Thus, within the validity of the first-order ex-
pansion in z, the angles predicted are less than 1°. It
seems unlikely that such small angular deviations
could be reliably detected, especially when it is
remembered that aor has been defined within the
scaled density space (w;,w,,w3) rather than within the
space of real densities (m,mj,m3). i

z =(1.5152)%z , (4.92)

V. CONCLUDING COMMENTS

In the foregoing we have analyzed in detail the tri-
critical equation of state for the basic spin model with
n-component spins S [see the Hamiltonian displayed
in (2.1)], in the exactly soluble, infinite-component
limit, n — oo, in d =3 spatial dimensions. In particu-
lar, we have discussed the phase diagrams in field
space and in density space, where the three-phase
monohedron resides, for temperatures below tricriti-
cality. The results, even in the asymptotic scaling re-
gion, are nonuniversal but are parametrized by a sin-
gle marginal variable, z =co(a/Ro)? where Ry is the
range of the basic spin-spin coupling [see Eq. (2.10)]
and, here, d =3. In the plane of symmetry (where
the odd fields 4 and h3, coupling to s and s*, vanish)
explicit results were obtained for general z in the
range (0,1) [see Eqgs. (3.36), (3.41), (3.43), and
(3.45)]: Note that at z =1 a new sort of multicritical
point appears: for z > 1 the tricritical point is re-
placed by a critical end-point (see I). However, off
the plane of symmetry, as needed to study the three-
phase monohedron, algebraic complications preclude
an explicit evaluation of the deviations from classical
theory: instead, various amplitude ratios, etc. [see
Egs. (4.77)—(4.82), (4.84)—(4.87), and (4.92)] have
been evaluated to first order in z. [Recall that the
zeroth-order (z =0) results are identical with classical
theory, which is presented systematically in the Ap-
pendix.] ’

Real magnetic and fluid systems*~® should be
described not by n = o but rather by n =1 or 2.
Nevertheless, as shown in Ref. 7, the nonuniversal
amplitude ratios calculated for n = oo give a surpris-
ingly consistent description of deviations from classi-
cal theory observed in the best current experi-
ments.*® These experiments can be well fitted by
pure power laws with the classical tricritical ex-
ponents. None of the data seem to require the loga-
rithmic correction factors which are predicted for fin-
ite n on the basis of the renormalization-group calcu-
lations.!* Although the current renormalization-
group theories®!® do not yield a complete equation of
state (in particular, they fail to describe the critical
surface properly), there seems no good reason to
doubt that the predicted logarithmic factors should be
present in the full solution of the basic model for fin-
ite n, and, presumably, have some role to play in the
description of experimental results. In Ref. 7 it was
suggested that this paradox might find its resolution
in the replacement of the fixed, nonuniversal param-
eter z for n = oo, by a slowly varying logarithmic
function, Z, of ¢ and the other fields, when n < oo.
This suggestion can be made more concrete by refer-
ence to the renormalization-group calculations of
Stephen, Abraham, and Straley.’

As is customary,?® the calculation of Stephen et al.
starts from a field-theoretic formulation of the origi-
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nal spin Hamiltonian in the form

Jc =
kgT

Jatx Grls P+ L |vs)?
+—::T4|§'(x)|4+%!6-|§(x)|6). (5.1)

If, following standard procedures (involving the
Fourier representation, etc.),2 one converts Hamil-
tonian (2.1) to this form, one discovers, in particular,
the identification

u655!b¢k1§T2 Vaz'i/.](%ano6 o« sz/nz , (52)

for d =3 [where b, =1 if the spin-spin interaction
shape function, ¢ (x), is scaled appropriately while R,
is defined as a suitably normalized second moment of
J(R)]. Now Stephen et al.? argue that, away from
the critical surfaces, the equation of state can be cal-
culated to leading logarithmic order by perturbation
theory with the replacement of u¢ by a renormalized
sixth-order coupling constant

L(r)=1+3n%22

o= —_
L)’ 48072

uglnr~! | (5.3)
where r is essentially the inverse susceptibility 1/x
(although this identification has serious difficulties
for n =2 in the ordered region on the symmetry
plane, since 1/X vanishes identically for d < 4 due to
long-wavelength, Goldstone-type fluctuations).
Comparison with Eq. (5.2) then suggests that z
should, equivalently, be replaced by a renormalized
value

. z
- , 5.4
=%k [1+(cyz%/n) Inr 1112 54

with ¢; = [3 +(22/n)1bok3 T*V /472 J§cé. The inverse
susceptibility scales like 2, so the renormalized z
parameter vanishes as 1/(In|z|™")!? when the tricriti-
cal point is approached: various critical amplitude ra-
tios should then asymptotically achieve their classical
values. However, (In|7|™) "2 is a very slow decay,
so that in practical experiments one may expect to
see an effectively constant value of zz over several
decades of f and nonclassical, nonuniversal amplitude
ratios. This could account for the observed success
of the fixed-z (n = o) formulation in describing the
experiments. Note also that when » — oo the renor-
malized parameter reduces simply to z.

A full substantiation of the concept of a thermo-
dynamically varying renormalized value of z for finite
n will have to await further, more extensive calcula-
tions. In particular, it remains important to achieve a
description of the critical surfaces for n < oo in which
the correct, nonclassical exponents, 3, y, etc. are
properly embodied. As mentioned in Sec. IV D, this
seems crucial for a satisfactory account of the shape
of the three-phase monohedron near the critical
points C, and C_.
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APPENDIX A: COEXISTENCE OF TRICRITICAL
PHASES IN CLASSICAL THEORY

In this appendix we present an exposition of the
classical or Landau phenomenological theory of the
coexistence of phases in the tricritical region. As
mentioned, this analysis is not entirely obvious, and
does not seem to be in the literature. Furthermore,
we need it here since the classical theory becomes
valid in the long range or van der Waals limit
(p =2z=0) and provides a basis for our perturbation
expansion in z.

According to the classical theory the free energy
may be written

F(t,g,h,h;)=Fo(t,g,h,hg)+m"§n[‘1>(m;l,g,h,h3)] )

v (A1)
where Fy(t,g,h,h3) is regular in the four fields t,g,h,
and hs, while, in the tricritical region, ® is a polyno-
mial of sixth degree in m, the order parameter,
namely,

D(mst,g.hhy) =—hm +5gm? — hym® + 1 tm* ++m® .
(A2)

Note that this polynomial is, in fact, the most general
sixth-order polynomial for this purpose, since a term
in m® could be eliminated by replacing m by m + my,
choosing m appropriately, and redefining the four
fields by corresponding shifts. Likewise, any con-
stant term, independent of m, can be absorbed in Fj.

In the case of the spherical model limit the con-
straint equation (2.8) or (2.16) reduces to m = m?
when p or z approach zero, and the free energy then
reduces to the form (A1). To analyze the phase dia-
gram, which is determined by the possible states of
coexisting phases, we exploit the fact that ®(m) is an
algebraic polynomial and hence can be factored
uniquely in terms of its roots.?!

1. Coexistence manifold

There will be coexistence of two phases with order
parameter m; and m_ < m in the system defined by
Egs. (A1) and (A2) if ®(m) has two equal minima.
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In this case ®(m) can be written

d(m) =;—(m —my)(m —m) (m*—2am +b)‘+ d, ,

(A3)
with the condition

b=a®, . (A4)

which is necessary and sufficient to prevent the ex-
istence of a third minimum with a lower value of ®;
at b =a? a third equal minimum arises. Note that &,
is just a constant. Now, by expanding Eq. (A3) and
comparing with Eq. (A2) one obtains the relations
between the fields t,g,h,h3 and my,m_,a,b, and ®y,
namely,

my+m_+a=0, (A5)
t=§[(m++m_)2+2m+m_+4a(m++m_)+b] ,
(A6)
hy =%[r_n+m_(m+ +m_)+a(my+m_)?
+2amim_+b(my+m)] (A7)
g =%[mim3 +damym_(my+m_)
+b(mye+m)+2bmyom_] (A8)
h=%m+m_[am+m_+b(m++m_)] , (A9)
®y=—+bmim? . (A10)

If, say, Eq. (A5) is used to eliminate m_, the Eqgs.
(A6) to (A9) may be regarded as providing a
parametric representation, in terms of (m4,a,6), of
the two-phase coexistence manifold in the thermo-
dynamic field space (1,g,h,h;). Evidently the two-
phase coexistence manifold has dimension 3, and,
hence, codimension 1. It is convenient and some-
what more explicit to reexpress this situation by using
Egs. (AS), (A6), and (A7) to eliminate m4, m_, and
b in favor of a, t, and h;. This yields

g=+(+2w@?+2a") —+hya +5ahy) ,  (AlD)
=1t +3a) +3hs(t+ 2al+2a7 hy)

(A12)
mi.=——;-a i(~-%t——152—az—a"h3)”2 ) (A13)
Of course the coexistence minima are real only if

t<-2a*-2a"'hy . (A14)
Moreover, the condition (A4) can now be rewritten

hyla <+a’+5t . (A15)

The coexistence manifold is therefore described by
Egs. (A11) and (A12) provided that both conditions
(A14) and (A15) are satisfied.

2. Ceritical surfaces

The coexistence manifold is bounded by critical
surfaces of dimension 2 and codimension 2 in the
space (t,g,h,h3). On a critical surface one must have
m4=m_ which implies that Eq. (A14) is satisfied as
an equality so that

ac3+—:-ta,+%h3==0 . (A16)

On using this to eliminate fin Eq. (A15) we obtain
12/13/acSac2 . (A17)

A solution of Eq. (A16) satisfying this condition will,
on introduction in Egs. (A11) and (A12), determine
a critical surface g.(¢,h3), h.(t,h3). One may, alterna-
tively, use Eq. (A16) to eliminate ¢ in Eqs. (A11) and
(A12) and thence obtain the critical surface parame-
trized by a and h3; this gives

gc=%a2(az—%4—a'1h3) , (A18)
hc=—le—a3(a2—3a_‘h3) , (A19)
t=—2(a+-2ahy) | (A20)
mc=-%a . (A21)

If h3=0 and ¢ <0 these equations reduce to

1
gc=TS-6—a“, he=—=5a°, tc=—%a2. (A22)

Finally, then the critical lines bounding the symmetri-
cally disposed tricritical "wings" (for A3 =0) are given
by

ge() =22, h(0) = 232 ()52, (A23)

and

me(t) = £(35)2[e |12 (A24)

For h3=0 and ¢ =0 one obtains the lambda line
given simply by

g=h=m=0 (all t=0) . (A25)

An alternative, rather more explicit representation
of the critical surface may be obtained by using Eq.
(A13) to conclude a =—2m,, as in Eq. (A21). Then
one may eliminate A3 between Eqgs. (A16) and (A18)
to obtain

15md +3tm2—g =0 . (A26)

This is simply a quadratic equation for m? and hence
may be solved explicitly to yield m.(t,g). (One must,
of course, choose the root which gives m?=0.)

Then by solving Eq. (A16) for A3, and substituting in
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Eq. (A19) one obtains
h(t,g) = ;—mc(Zg —tm?) ,

hJc(t:g) =mc(t + l3_0”102) ’ (A27)

so that for given 7 and g the coexistence surface may
be exhibited in closed form.

3. Triple surface

When Eq. (A4) or, equivalently, (A15) is satisfied
as an equality, the polynomial ®(m) in Eq. (A3) has
three equal minima and can be rewritten?!

O(m) = -(m = m ) (m —m )2(m —me)? + @, .
(A28)

In this case three phases coexist: Thus with a =m,
the condition

b—a’=b-—mé =%m0_' (mg +%tm0——3h3) =0 ,
(A29)

determines the triple surface. Using this to eliminate

h; in (A13) one obtains, for t <0, the three values

mox==l-mo23(t| —m$)' (A30)

m,=mg . (A31)

The triple surface exists, of course, only for 1t <0
and mq ranges only from —|¢|"2 to +|¢]"2. From Eq.
(A29) one finds the value of A3 on the triple surface
as
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Introducing this value in Eqs. (A11) and (A12) final-
ly yields

g=t, (A33)

ho==7ltlmo(m¢ —Zleh (<0 (A34)

A (g,h) section of the phase diagram in field space is
shown in Fig. 2. The triple surface appears as a
straight line as follows from Eq. (A33).

4. Critical end-points and tricritical po:"nts

At a critical end-point two of the three coexisting
phases become identical and, hence, critical. Inspec-
tion of Eq. (A30) shows that this happens only when
the noncritical phase is given by

(A35)

corresponding to mg= *|¢|'2. The conjugate critical
end-point phases are thus specified by

m‘r=mEi=i'tll/2 ,
1/2.

(A36)

and, from Eqgs. (A32) to (A34), the corresponding
end-point fields are

8re =8E =ﬁ12 , (A37)
hoet=hps=Fc 1|2 (A38)
hycet=hyps=t[e]2 (A39)

1 3
h3,.=5mo(mg —|t]) (1 <0) (A32) Finally, the tricritical point is attained when all three
0.5 —
t L ]
ol— tricritical point——L —
L I ]
/:
: hy=0—a/ 1
-0.5+ / -
L / J
critical endpointkﬂé_ i
s 7
- 7/ v 4
o
” 7 <:h=005 I
-1 ) ~ < | ./. N K 3 .
-0.2 -01 (o} h 0.1 0.2

FIG. 3. Projections for the classical phase diagram of a critical end-point locus onto the (¢,k) plane (dotted curve) and of the

critical lines for h3=0 (dashed), 0.05 (dot-dash), and +5- (solid).
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coexisting phases become identical which occurs only
when
my=my=0, t=g=h=h3;=0 . (A40)

Figure 3 shows the projection of a critical end-point
locus (dotted line) and of the critical lines onto the
(t,h) plane for fixed values of k3 according to the
above results.

5. Three-phase monohedron

Consider now the phase diagram at fixed ¢ <0, in
the region where three phases coexist, in terms of
the three densities

m=—2= (=123), (A41)

where we have written g =—2h, for convenience.
From Egs. (A1) and (A2) one sees that these densi-
ties always obey the simple relationship

my=m¢, my=mi , (A42)

provided one neglects the dependence of the regular
term Fy on the #;. This amounts to making appropri-
ate subtractions of regular terms in the definition of
the m;. Note, however, that these terms are signifi-
cant in the interpretation of experiments on fluid sys-
tems.'® It is also convenient to introduce the scaling
densities

wy=m/|tJ? (j=1,2,3) , (A43)

W

together with the scaling fields
x=g/e, y=h/|t]? ys=h/[1]?* . (A44)

If, furthermore, one sets mg=sin¢ in Eqs. (A30) to
(A34), the three-phase region is given by

wi=sing, wi+=-sin(¢p £1m) , (A45)
and, using Eq. (A42), one has
wy =sin’¢ = % - % cos2¢ ,
v | (A46)
wr=5+7 cos(2¢ + ?W) ,
wi=sin’¢ = % sing — l— sin3¢
(A47)

Wit = t%cos(qb + ;—w) ++cos(3¢ + %w) )

Finally, the values of the fields g, A, and A; in scaling
form are simply

x=—%, y=%sin3¢, y3=——l%sin3¢>. (A48)

When ¢ = i;—n, the w;, y, and y; take their critical
end-point values [see Eqgs. (A35)—(A39)]. There-
fore, at fixed ¢+ < 0 the whole three-phase region is
parametrized by

—tr<¢<cm , (A49)

each value of ¢ in this interval specifying three
points in (wy,w,,w3) space corresponding to three
coexisting phases determining a coexistence triangle.
As ¢ varies, the vertices of the triangle move along a

|
1
-1 -4

| }
12 12,/3 M Wy

FIG. 4. Projection of the classical three-phase monohedron onto the (w,w,) scaling variable plane showing various coex-
istence triangles (dashed lines), including the "central” or symmetric triangle O 00 _, and the conjugate pairs of critical end-
points C4,E_, and C_,E joined by degenerate triangles, i.e., tie lines. The points P, Q, and R lie on the w, axis at the mid-
points of the lines C,C_, 0,0_, and EE_, respectively, in the full (w,w,, w3) space.
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W3

Wy

+
|

- 1 i

FIG. 5. Projection of the classical three-phase monohedron onto the (w,w3) plane. Compare with Fig. 4: the same coex-
istence triangles are shown, but they appear as parallel straight lines in this view. Note the tangency at C, and C_ of the end-
point tie lines.

smooth, analytic curve given by [see Eq. (A42)]

W2=W12, w3 = W13 B (ASO)

with —1 < w,; <1. Different values of ¢ in the inter-
val (A49) specify distinct triangles which as

¢— i%'rr degenerate into the critical end-point tie
lines E+C_ and E_C.. The coexistence triangles fill
out a volume in density space which is bounded by a
single ruled surface with a single smooth edge [given
by Eq. (A50)]. The whole figure may thus be called
the three-phase monohedron.

A general view of the monohedron is shown, for
example, in Fig. 2 of Ref. 7. In Figs. 4 — 6 are
drawn three canonical projections onto the (w;,w,)
plane (parabolic), the (w;,w3) plane (cubic), and
onto the (w,,w3) plane (cuspoidal). In these figures
the end-point £, corresponds to ¢ = +%7T and is con-
jugate to the critical end-point C_, whereas £_ and
C, correspond to ¢=—%1r. The "central triangle",
0,00_, corresponds to ¢ =0, which represents the
symmetry plane & = h3 =0 in field space.

-1

As pointed out in Ref. 7, the shape of the 1,‘ E_
monohedron may be characterized in terms of the ra- 4
tios FIG. 6. Projection of the classical three-phase
®@,,=[0,0],/[E.O]; , (A51) monohedron onto the (w,,w3) plane. Compare with Figs. 4

and 5: note the tangency of the endpoint tie lines at £, and
(Rc,j=[C+0]j/[E+O]j B ! (A52) E_.
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for j=1,2,3, where [XY],- denotes the projection of
the line XY onto the w; axis. These ratios may be
evaluated immediately from Egs. (A45) to (A47)
with the simple result

Roy=(CV2, ®oy=(3) . (A53)
Finally, on using again Eqs. (A45)—(A47) it is easy

to prove the following properties:
(i) The coexistence triangles are parallel to one

another and lie in planes parallel to the w, axis (see
Fig. 5).

(ii) The tie line E.C_- (or E_C,) is tangent tothe
curve £,0,C,OC_O_E_ at C_ (or C,) in the pro-
jection along the w, axis (Fig. 5), and at £ (or £_)
in the projection along the w, axis (Fig. 6).

As shown in Sec. IV, these metrical properties and
the simple expressions (A50) and (A53) do not apply
to the spherical model for p,z > 0, although all the
topological features of the monohedron survive.
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