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The density of Lee-Yang zeros, in the thermodynamic limit, for classical n-vector models and

for the quantum Heisenberg model is studied in the asymptotic high-temperature limit. It is

shown that the high-temperature series expansions for these models reduce, in this limit, to the

corresponding low-density expansions for the monomer-dimer problem with negative dirner ac-

tivity. If the density of zeros, g (h"), on the imaginary axis of the complex reduced-magnetic-

field plane, h = H/ka T = h'+ih", has an algebraic singularity at the edge of the gap in the zero
distribution, g(h") —I)A"

(
—ho(T)l, then o. is independent of n in this limit. Analyzing dimer

density series on various lattices by means of the ratio test, Dlog Pade, the recursion-relation

method, and inhomogeneous differential approximants, we obtain the estimates o-=—0.163+3
for d =2 dimensions and o-=0.086+ 15 for d =3.

I. INTRODUCTION

Although the concept of zeros of the partition
function' has been employed in proofs of the absence
of phase transitions in certain systems, little is known
about the actual form of the density of zeros in the
thermodynamic limit and its relation to observable
behavior. In the present work we address this prob-
lem by investigating the singularities in the zero den-
sity which occur at the edge of the distribution of
zeros in the complex magnetic-field plane for classical
n-vector models and for the quantum Heisenberg
model in the asymptotic limit of high temperatures.
These singularities, which represent the zeros lying
closest to real values of the field, should exert the
greatest influence on real physical behavior. We es-
tablish analytically that the nature of these singulari-
ties is independent of the symmetry number, n, of
the spins in the model for a wide class of Hamiltoni-
ans, and numerically estimate the exponents charac-
terizing them for models with ferromagnetic nearest-
neighbor interactions on lattices of spatial dimen-
sionalities d =2 and 3.

The relation of the distribution of Lee-Yang zeros
to the occurrence of phase transitions is conveniently
illustrated by the ferromagnetic Ising model. If the
partition function of this model is viewed as a func-
tion of complex magnetic field, H, then for real tem-
perature T its zeros are known2 to be confined to the
imaginary field axis (although with antiferromagnetic
interactions present, the location of the zeros is not
known rigorously). Yang and Lee argued' that for a
system above its critical temperature T„whose free
energy is an analytic function of the real field, the
partition function must be nonzero throughout some
neighborhood of the real axis in the complex

reduced-magnetic-field plane,

h =H/kaT=h'+ih"

where H is measured in energy units, k~ is
Boltzmann's constant, and h' and h" are, respective-
ly, the real and imaginary parts of h. Below T„how-
ever, the zeros will come arbitrarily close to the real h

axis as the thermodynamic limit is taken, destroying
the analyticity of the free energy in H for those real
fields at which zeros accumulate. Thus, for tempera-
tures above critical a gap will be found on the ima-
ginary It axis with edges at, say, iha(T), which is
free of zeros. In fact, the existence of such a gap has
been proven' for sufficiently high temperatures, and
Bessis er al give uppe. r and lower bounds for ho(T)
If we define a density of zeros, g(h"), in such a way

that as N, the number of spins in the system, be-
comes infinite, the quantity Ng (It ") dh" approaches
the number of zeros between ih" and I'(Ir" +di") on
the imaginary It axis, then g(h") will vanish for
~h "~ ( ha(T). Since nonanalytic behavior must set in

at T„ the size of the gap must vanish when T = T, .
Kortman and Griffiths' first pointed out the in-

terest of investigating the behavior of g(h") near
+ha(T). By analyzing high-field and high-
temperature series for ferromagnetic Ising models on
the square and tetrahedral lattices, they concluded
that the density of zeros near the edges of the gap
exhibits a power-law behavior

g(h") —i)h") —Its(T)1, for )It"
) ho(T) +

The estimates of the exponent o. showed little varia-
tion with temperature for T )-3T„and it was pro-
posed that cr should be independent of Tfor T & T„
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taking the values o-=—0.125 +50 for the square lat-

tice and o- =+0.125 + 50 for the tetrahedral lattice.
In the present work, we focus our attention on o-.

Since the Yang-Lee edge bears a strong resemblance
to an ordinary critical point, one ~ould expect o- to
depend not on the detailed lattice structure of the
model but only on its dimensionality d and symmetry
number n. However, we will further demonstrate ex-
plicitly that, in the high-temperature limit, a- is in-
dependent of n (&~), and also of the form of the in-

teractions between spins. The results of Kortman
and Griffiths, as well as exact solutions for the one-
dimensional nearest-neighbor Ising model, ' the mean
field model, ' and the spherical model, ' indicate that
the value of o- for any model should be the same for
all T & T, . Thus we expect to find cr independent of
n for all temperatures above critical. Accordingly, we
refine Kortman and Griffiths estimates of a- by
analyzing series expansions for Ising models in the
high-temperature limit, which reduce ' to those for
the monomer-dimer problem on the same lattice.
%e use longer series' and more powerful methods
of analysis" ' than were available to Kortman and
Griffiths, and study series, not only for the square
and tetrahedral lattices, but also for the triangular,
simple cubic (sc), bcc, and fcc lattices.

In Sec. II, we recall the connection between the
magnetization of a model and its Lee-Yang zero dis-
tribution, Section III demonstrates the reduction of
Ising-model series to the corresponding monomer-
dimer series in the high-temperature limit, while
Sec. IV shows that these series also represent the
high-temperature limit of series for classical n-vector
models with general nearest-neighbor interactions
and for the quantum Heisenberg model. Our series
analysis and final estimates of o- for d =2 and 3 are
presented in Sec. V, and the results are discussed in
Sec. VI.

dF f g(h") dh"
T Qh J h ih" (2.2)

Now the thermodynamic equation of state defining
the function M(h), when written in this form, can
readily be continued analytically to give M as a func-
tion of complex h. Mathematically, the right-hand
side of (2.2) is closely related" to a Cauchy integral.
By applying this fact, which is equivalent to using
Gauss' law in the electrostatic interpretation, one
finds that the discontinuity in M(h) as one crosses
the locus of zeros at ih" from left to right is just
2rrg(h"). Thus in order to extract the zero density
g(h") for these models, one merely reads off the
discontinuity in M(h) at h =ih"

The edges of the locus of zeros stand identified as
branch points of M(h); if, near these edges, M(h)
displays the branch point behavior

M(h) —[h + «,(T)]. , (2.3)

then the zero density g(h") will have the asymptotic
form

g (h") —
[~ h "~ —ho(T)], for

~

h"
~

ho(T) +

=0 «r lh"
I

& ho(» (24)

At the critical temperature, however, one expects' to
find

M(h) —h't', (2.5)

so for T = T„o- is equal to the standard exponent
I/8 which describes the real critical isotherm.

form of the free energy is exactly the same as that of
the two-dimensional electrostatic potential due to a
line charge of density g (h") located along the ima-
ginary h axis; this fact gives the method its name.
The reduced magnetization, analogous to the electric
field, is then given by

II. ELECTROSTATIC ANALOGY

In the models we consider, we take the zeros of'

the partition function to lie on the imaginary h axis,
which is known rigorously to be the case for fer-
romagnetic quantum' "and classical' XYand
Heisenberg models. Although the corresponding
theorem for classical ferromagnetic n-vector models
with n )3 is not yet available, both renormalization
group6 and numerical' analyses support this view.
The zero distribution of such a model, g(/t"), is ac-
cessible from its thermodynamic equation of state by
means of the electrostatic analogy expounded by Lee
and Yang. This approach rests on the observation
that the free energy of the model can be written

F(T,II) = kttT J g(h") ln(h ——ih") dh", (2.1)

with h" running between appropriate limits. The

III. HIGH-TEMPERATURE SERIES
FOR ISING MODELS

In order to analyze the singularity (2.3) we will ex-
amine the high-temperature series expansions for
M(h) in the models under consideration. First,
ho~ever, we outline the we11-known development of
these series for Ising models. Baker and Moussa
and Fisher observed independently that for high
temperatures the Ising magnetization series reduces
to the dimer density series in the monomer-dimer
problem; we present the derivation here in order to
illustrate those features which will lead to a similar
reduction in other models.

The Ising model consists of N spin variables which
can take on only the values +I, associated with the N
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sites R; of a regular lattice; the total spin Hamiltonian
1S

limit then yields the form

&=—J ass, —H gs; (3.1)
t

F(T,H) =—ks T ln2coshh+ t q incoshK

The first summation on the right-hand side runs over
pairs (i,j ) such that R; and Ri are nearest-neighbor
lattice sites. If the exchange coupling J is taken to be
positive, the system is ferromagnetic. The partition
function is given by

Z„(TH) = Xexp K ass, +h Xs;
(s(} ' {~J)

where

(3.2)

K=J/k sT, h =H/ksT (3.3)

and the outer summation runs over all possible sets
of values of the spin s;. The binary nature of the
spins easily yields the relations

exp(Ks;sj) =coshK (1 + vs;si)

+ pi —lvl g y
2m (3.7)

M(T H) = r +2(1 —r ) X I 'v' $

mylar'

' (3 8)
I~1 m 1

Passing to the high-temperature limit will reduce
our prob1em from analyzing a series in two variables
to analyzing a single-variable series. In or'der to re-
tain a magnetic field dependence in M, we must take
this limit in such a way that the quantity

for the free energy per spin, with the constants P~
determined from the number of embeddings' of
graphs of l bonds and 2m magnetic vertices in the lat-
tice. The magnetization per spin is given by

with v = tanhK, (3.4) z = vr2= (tanhh)2tanhK (3.9)

exp(hs;) = coshh (1+rs;), with r = tanhh
approaches a finite limit as v 0. In this limit, the
magnetization is given by

(3.5)

so that v and 7 are small for small K and h, respec-
tively. If the lattice- has coordination number q, Eq.
(3.2) then becomes

with

M(T ~,h) =rtl —2p(z)]

p(z) = $ 4vz
l~1

(3.10)

(3.11)

Z, (T,H) = (coshK)'«'(coshh)" If, as expected, M(T ~,h) behaves according to
Eq. (2.3) near its singularities at +ihp(T 0o), then
clearly p(z) must obey

r

x X g (I + vs;s, ) fJ(1+rs;) (3 6)
fs,, } ' {ij) p(z) —(z + zp)

for z near —zo, where

(3.12)

By multiplying out the products and summing over
spin configurations we arrive at an expansion of Z~
in powers of v and 7.

Each term in the expansion of the products in Eq.
(3.6) can be represented by a graph'9'p drawn on the
lattice, with each factor of vs;s& represented by the
corresponding bond and each ~s; by the correspond-
ing vertex. A graph in which any spin sk occurs an
odd number of times gives no contribution, since the
sum over sk gives zero. Thus only even powers of '7

appear in the expansion of Z~, reflecting the sym-
metry of the system with respect to reversal of the
magnetic field. This fact also implies that no terms
involving v"7" with l ) k can contribute, since any
graph of k distinct bonds and 2l & 2k distinct mag-
netic vertices must have isolated vertices. In addi-
tion, since s;2 =1 holds identically, the sum over spin
configurations in the remaining terms is trivial,
reducing to multiplication by 2N. Taking the loga-
rithm of Eq. (3.6) and passing to the thermodynamic

zp- lim tan [hp(T)] tanhK (3,13)

The existence of zp implies that hp(T) is given
asymptotically by

hp(T) =-m —(J/zpks T)' '+O(T 3 2), (3.14)

for high temperatures. For J &0, zeros of the parti-
tion function occur only at purely imaginary values of
h, so zo must be real and positive.

Since no v'7'~ terms with m & l can occur in
Z~(T, H), the z' terms in the magnetization can arise
only from v'v ' terms in the partition function, which
correspond to graphs of l bonds and 2l magnetic ver-
tices, The only contributing graphs of this type con-
sist of l separated bonds with magnetic vertices at
their end points, since if any two bonds shared an
end point, some magnetic vertex would necessarily
be isolated and the weight of the graph would be
zero. These f bonds, then, behave exactly as hard di-
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mers, and so the coefficient of z' in Z~(T ~,H) is

simply the number of ways of placing /hard dimers.
on the lattice. In other words, as T —~, Zn(T, H)
becomes the partition function for ideal hard dimers
on the lattice with dimer activity z, and p(z) is then
the dimer density series.

where the integral runs over the surface of each unit
n sphere, and

(4.2)

The factors of n in the exponent ensure that the free
energy per spin component,

IV. HIGH-TEMPERATURE SERIES
FOR n-VECTOR MODELS F(T,H) = k&T —lim (nN) ' InZ&(T, H)

N oo
(4.3)

The development of high-temperature series ex-
pansions for classical n-vector models parallels the Is-
ing analysis quite closely. We will consider a model
in which the sites of a lattice are occupied by n-

dimensional unit vector spins which interact through
the general nearest-neighbor potential nJP(s, s ').
With a magnetic field of strength nH = nk~Th applied
in the z direction, the partition function for n spins
on the lattice is

Zn(T, H) =c„nJr dna exp nK $P(s;, s, ) +hngs, *

(~J) i

(4.1)

continues to exist in the spherical model limit
n ~." ' Taking n =1 reproduces the Ising model,
but with a generalized spin-spin interaction; Note
that P(s, s') need not be isotropic, and in fact the
following analysis is not affected by the presence of a
single-spin or "hidden field" term in V. However, 0
must satisfy a condition, to be made explicit belo~,
which excludes the form V(s, s') =P~(s) + W~(s'),
so that nontrivial coupling must be present, Further-
more, for a thermodynamically sensible model, 0' will

have to satisfy certain conditions; for all practical pur-
poses uniform boundedness should suffice.

The partition function (4.1) may be rewritten in

the form

Z, (T H) =f'c„-'J d'II g [1 + v(s;, s, ;K)] g [I + r(s;;h)l, (4.4)

r
v(s;, s&, K) = exp[nK&(sfr s, )] c„z J~ dII &l d 0'exp[nKV(s, s')] —1

1

7(s;;h) = exp(nhs, ')/c„'&~ d& exp(nhs*) —1 =[(, nh) "~' 'exp(—nhs,')/I'( —,n)l„~z ~(nh)] —I

with 1„(x) denoting the usual modified Bessel function, and
' q/2f = 'c„' dI) J dII'exp[nKP(s, s')] c„' dII exp(nhs')

(4.5)

(4.6)

(4.7)

The functions u(s„s&',K) and r(s;;h) vanish linearly
as K and h go to zero respectively, and also yield zero
when integrated over their spin arguments; they play
the same roles as vs;s& and vs; in the Ising model. By
multiplying out the products in Eq. (4.4) and per-
forming the required integrations one obtains, as in
the Ising case, an expansion in graphs having no
multiple bonds or repeated magnetic vertices. The
weight attached to each graph is calculated by writing
a factor u(s;, s~, K) for each line in the graph and
7(s, ;h) for each magnetic vertex, and then integrat-
ing over all spins. Since r(s;;h) by itself integrates
to zero, no graphs containing isolated magnetic ver-
tices can contribute to Z~(T, H). This is the feature
crucial to the emergence of the monomer-dimer
series at high temperatures: any contributing graph
with / bonds and m magnetic vertices must satisfy
m «2/, with equality attained only in graphs consist-

I„„„,(nK)
X (4.9)

ing of /hard dimers. Each /-dimer graph carries a
~eight z', where the "dimer activity" z is now given by

z =c„J d Qt JfdIIzr(st, h) v(st', sz', K)r(sz', h) .
(4.8)

We will argue that for high temperatures with z kept
finite the weights of all other graphs go to zero.

Consider the argument first for the usual isotropic
interaction 9'(s, s ') =s s ', for which explicit calcula-
tions are possible. In this case, Eq. (4.8) can be
evaluated by expanding v(sttsz, K) and v(s;;h) in

n-dimensional spherical harmonics, "yielding
'2

(n + 2 I —2) (n + I —3)! I /z+i ( ht)n-z=
I!(n —2)! I„p t (nh)
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Since l„(x) behaves as (—,x) "/v! for large v, this

series converges for all fixed K and h. For small K it

reduces to

1 ' ]/2
nK

nh lx] J.'g & («) z
, for K 0, (4.11)

where J„(x) is the ordinary Bessel function and ixt is

the smallest zero of l„j2,(x). For n ~0, xt must be
purely real, so that imaginary values of h correspond
to real negative values of z. Now if Eq. (4.11) gives
the behavior of It, then from Eq. (4.6) one finds that

r(s;;h) grows as K 'I' for small K, while v(s;, sj K)
is of order K; any graphs consisting of i bonds and

m & 2/magnetic vertices will then carry a ~eight
which vanishes as K' . Thus only dirner graphs
survive in the high-temperature, finite-z limit as as-

serted.
The argument for general pair interactions,

P(s;, sj), proceeds similarly. For small K one may
expand Eq. (4.5) and thence write the dimer activity
as

z = nK y(nh) /[l„g, (nh) ]'

provided the leading amplitude function

(4.12)

e(((l() =z X( I )( I, )((((

~n/2+/ 1(n~) Inj2+—/ t(nit)' — (4.13)

does not vanish identically. In this expression 0'll is

the coefficient of Y(I, O, . . . , 0;s) Y(I', 0, . . . , O, s')
in the expansion of P(s, s ') in n-dimensional spheri-
cal harmonics, ' normalized so that

Y(I, O, . . . , 0;z)=, for n )2, (4.14)
(n + I 2)!—
i!n —2I

and taking Y(I;s) =cosl s z for n =2. Note that this
differs by a factor of (n + I —2)/(n —2) from the
usual normalization. Since &P(z, z) is bounded, P(nh)
is finite for all h; thus z can approach a finite limit as
K 0 only if nh approaches a zero, ix~, of I„I2,(x)
(for our purposes, the smallest zero is the most im-

portant) with corrections of order K'I', and provided

Q(ix, ) is nonzero, or, equivalently,

c„J~ d 0) JI d 02 &(s), s2)

&& exp[ixg(s; +s2)] A0 (4.15)

z =nK[I„jq(nh)/I„I2 &(nh)] +O(K ) . (4.10)

As K 0, z can approach a finite limit z only if the
bracketed quantity diverges as K ' '. Ho~ever, this
quantity is the logarithmic derivative of the entire
function x' " 'l„j2 ~(x), which forces

Under these conditions, imaginary values of h

again yield real negative values of z, and the contri-
butions from all but hard-dimer graphs vanish as
K 0, as argued above. Note that any "hidden field"
term in @(s, s') could be absorbed into the magnetic
field„at high temperatures its contribution would be
of order K, and so would not enter into the leading
behavior of h.

We see, then, that with an appropriately defined
"dimer activity" held fixed, the high-temperature
series expansions for classical n-vector models with
general nearest-neighbor interactions become identi-
cal to those of the standard Ising model in the
asymptotic high-temperature limit. In particular, the
same analytic structure is manifest in all these models
at high temperatures. This analysis breaks down, as
it must, in the spherical model (n ~) limit. Using
standard asymptotic expansions for the Bessel func-
tions occurring in Eq. (4.9) for the isotropic case, one
can see that the dimer activity is given asymptotically
by

8nKh
[1 + (1 +4/t2)'j2]2[1 + (1 +4K2) tj2)

(4.16)

so that as n ~, z diverges for K & 0 and real h ~0
while z goes to —1 for K & 0 and any imaginary h.
Thus the above analysis does not apply in the spheri-
ca) model limit. '

The arguments given here can be generalized to
cover further-neighbor pair interactions nJrIPJ(s, sj)
and m-body interactions. In the former case, the di-
mer graphs still dominate as K 0, although the
various classes of dimers (nearest-neighbor, second-
neighbor, etc.) will carry different weights, given by
replacing W(s;, s, ) by Vj(s;, sj) in the expression
(4.5) for v(s;, sj,K) and using this in Eq. (4.8).
With m-body interactions present, however, the "m-

mer" graphs of highest m will dominate at high tem-
peratures. In such a graph, each m-body interaction
term, which gives a factor of order K, has associated
with it m magnetic vertices, and so has a ~eight
whose small-K behavior is governed by a factor
K[I„j2(nh)/I„jq ~(nh)] for each nt-mer. In order for
the m-mer activity to remain finite, it is only neces-
sary to have the bracketed quantity growing as K
and so the ~eight of, say, a graph of i dimers would
vanish as K™~2)/

We also expect that this analysis extends to cover
models in which the spin length is a continuous vari-
able, where a weighting term exp[ —g, W(s )] is in-

cluded in the partition function to control the fluctua-
tions in spin length. In this case, integrals over the
surface of the unit sphere are replaced by integrals
over all s; for small K, the dimer graphs will be dom-
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inant provided h varies in- such a way that

goo

(z nh)' " ' s" '1„~2 ~(nh s) exp[ —W(s')] ds

vanishes as K' '. However, even for the commonly
used forms of W(sz), it is difficult to establish direct-
ly that. this behavior is possible let alone to find the
appropriate variation of h. In fact, for the (unphysi-
cal) Gaussian model weighting function, W(s') = a'sz,
one finds"

Then the partition function may be expanded in
powers of K to give

'N

Z (TH) = ~ ' XK'S "(I!) '
(2S +1)

1 r

x Tr XS; S + exp(AS;/S)iiJ&; ((A, S)

(4.22)

( , nh—)' " ' t s" 'l„~z ~(nhs) exp( —a' s') ds
0

, a "—exp(n h /4a') (4.17)

which is nonzero for all h. Yet if, for a given weight-
ing function, h can vary in the desired fashion, then
the model reduces to the monomer-dimer problem at
high temperatures.

The high-temperature series for the quantum-
mechanical spin-S Heisenberg model with nearest-
neighbor interactions also reduce to the correspond-
ing monomer-dimer expansions at high temperatures.
Consider first the standard isotropic interaction
—JS, S~, where S; = (S,",S/, S ) is a quantum-
mechanical spin operator, associated with the site R;,
which satisfies the usual commutation relations

By multiplying out the I th power of XS; SJ one ob-
tains a series which admits a graphical interpretation:
in a given term, each factor of S; S~ is represented
by the corresponding bond on the lattice. Alterna-
tively, any graph on the lattice (with multiple edges
allowed) can be viewed as carrying a weight deter-
mined by writing a factor K S; S&/S for each bond,
multiplying by g [exp(AS)/S)/((A, S)] and taking
the trace over all spins, then averaging over all possi-
ble orderings of the bond factors. The trace over any
spin not met by any bond gives a factor unity.

We now show that the graphs with t bonds meeting
exactly 2/ magnetic vertices dominate the expansion
at high temperature. Such graphs must consist of l
single-bond hard dimers, and carry a weight z', where

S; &S;=iS; (4.18) z =K[ST(A,S)] 'Trlexp(AS[/S) S~ S2exp(ASz/S)]

The partition function in this case is

Zn(TH) =(2S+I) nTr exp KS z $S, S&

=K(Bin(/Bh)z, .

By writing this out in explicit form, namely

(4.23)

+AS ' $S,*
I

(4.19)
z = KS ' [(S+ —,

'
) coth [(S + —,

' ) h /S]

with Tr denoting the trace over all states of the sys-
tem which are eigenstates of all of the (S;)' with
eigenvalue S(S+I). The factors of S ' and S z in
the exponent and the prefactor (2S + I) n guarantee
the existence of the classical (S ~) limit. The
operators $S; S~ and $S,' can be shown to com-
mute; as a consequence of this fact and the commu-
tation of spin operators on different sites, Eq. (4.19)
becomes

Zn(T, H) =(2S+I) Tr exp KS ' XS; S~
(rj)

x g exp(AS;/S) . (4.20)

It is easy to establish the relation

((A, S) =—Tr[exp(AS'/S)]

= sinh[(S + —,) h/S]/ sinh(h/2S) . (4.21)

——coth(h/2S) ]z (4.24)

we see that taking S ~ regenerates the classical
result (4.10) for n =3 (with nK and nh replaced by
K and h). From Eq. (4.23) we see that z can ap-
proach a finite value as K 0 only if 61n(/Bh is of
order K '~', since f(A, S) is finite when
sinh(h/2S) =0, this forces h to approach a zero of
sinh[(S + —) h/S] with corrections of order K' z.

However, graphs of l bonds meeting only m & 2l
magnetic vertices, whose weights then contain only m
factors of (sinh[(S + —,)h/Sl[ ', give contributions
which vanish as K' under these conditions. Thus
only the single-bond dimer graphs contribute at high
temperatures with fixed z, so that the high-
temperature series for this model also reduce to the
corresponding monomer-dimer series in this limit.
This analysis is still valid (with the form of z un-
changed) if the interaction between neighboring spins
is of the cylindrically symmetric form
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J(—~S,". SJ"+ ~S/SJ+ S;*Sf); specifically, taking n = 0
yields the spin-5 Ising model.

The above analysis also extends to general interac-
tions JP(—S;, S&) between nearest-neighbor spins.
As in the classical n-vector models, "hidden field"
terms in P are allowed, although a condition analo-
gous to Eq. (4.15) must be met. The partition func-
tion, given by

Z~(TH) =(2S+I) ~Tr exp K XP(S;,S,)

provided Ps(h), defined by

Ps(h) = X[(i+I)!] 'h'S '

lW

x Tr I[(S[ +S2)', 9'(S~, S2)]exp
h(S[ +S*)

S

(4.32)

+hS ' XS,', (4.25)

In[exp(XA) exp(ltB)] = g h."C„
n 1

(4.27)

where the C„are to be found from

g[(k+1)!]-' $ ~.C. , gn! -'C„
'nr I n I

=A+8+X(i~)-')i(AJB] (42g)
j~i

Setting A equal to the total reduced Hamiltonian and

taking 8 =—hS ' gS,*, one finds that the expression

(4.25) can be written

can be put in a form resembling Eq. (4.20), despite
the fact that the field and interaction parts of the
Hamiltonian will not in general commute, by applying
the Baker-Campbell-Hausdorff formula, '4 which

expresses in[exp(A) exp(B)] for general operators A

and B in terms of repeated commutators of A and B.
Adopting the notation

[A",Bj = [A, (A" ',8]], with [A,B)=8, (4.26)

this theorem states'

is nonvanishing. If ps(h) is finite (boundedness of
rp would guarantee this), then z can remain finite as

0 only if $(h, S) vanishes as K' 2, i.e., if h ap-

proaches jSn/(S + —,') with corrections of order K'i',

provided ps[iSm/(S + —,)] is nonzero. This latter

condition reduces to (4.15) in the classical limit,
assuming 9'(S, , S,) is a function only of the normal-
ized spins S;/S, and means that the single-bond con-
tribution to the free energy does not vanish.

Now if these conditions are met, no contributions
arising from the 0 with m «2 can survive in the
high-temperature limit. Each 0 arises from the m-

fold commutator of $ 9'(S;,S,) with itself, and so
contains terms involving at most m +1 spins. Thus
it can bring at most m + I factors of [((h,S)] ' into
the weight of any graph. However, 0 carries a fac-
tor K, and so any term including an 0 with m «2
must vanish at least as fast as K ~ ' ~ as K 0. Fi-

nally, the contributions from non-dimer graphs aris-

ing only from Oi terms also vanish in this limit by

the same argument used above for the case 9&(S, S ')

=S.S'. Thus for general Heisenberg models, high-

temperature series also reduce to the corresponding
monomer-dimer expansions at high temperatures.

oo

Z~(T, H) =(2S+1) Tr exp X K 0

x g exp(hS;*/S) . (4.29)

The operators 0 arise from multiple commutators
involving m factors of XP(Sr, SJ); explicitly we find

0( = X [(1+1)!]'h'S '[(S;+&f)',0(S;,&))], (4.3o)

z =Kg, (h)/[~(h, S)]', (4.31)

and the 0 for m «2 will be seen to be unimportant
in the high-temperature limit.

Upon expanding the partition function as in Eq.
(4.22), the weights of dimer graphs are seen to arise
from a dimer activity which is given, for small K, by

V. ANALYSIS AND RESULTS

Having established that the dimer density series in
the monomer-dimer problem with negative dimer ac-
tivity describes the high-temperature behavior of the
Lee-Yang zero distribution in a wide range of
models, we proceed to investigate the position and
character of the dominant singularity in p(z). The
series coefficients P„which determine p(z) are
known exactly9' through I = 17 and I = 14 for the
square and triangular lattices, respectively, and
through I =16 for the tetrahedral, I =15 for the sc,
I =13 for the bcc, and I =10 for the fcc lattices, and
are given in Table I. W'e expect the exponent o- in

Eq. (3.12) to lie between the d = I value, o =——,
and the mean field value, a-= —,, which is found for

high dimensionalities. 6 Thus cr could be quite small
and difficult to fit. We therefore analyze the series
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TABLE I. Coefficients /II of z in the dimer density series for various lattices. Coefficients
through / =15 (square), / =10 (triangular}, /=16 (tetrahedral}, /=12 (sc}, / =12 (bcc), and /=8
(fcc} are derived from Gaunt (Ref. 9); further coefficients are from Sykes (Ref. 10).

square triangular tetrahedral

1

2

3
4
5

6
7

8
9

10
11
12

13
14
15
16
17

2
—14
116

—1 042
9812

—95 288
945 688

—9 537 906
97 398 764

—1 004 479 624
10442 811 216

—109291 830 952
1 150 263 509 280

—12 164408 791 920
129 177 146 454 536

—1 376 741 271 026 898
14 719835 348 283 940

3
—33
432

—6 141
91 578

—1 409 016
22 160 988

—354 276 333
5 735 254 230

—93 777 340 398
1 545 855 051 480

—25 654 471 240 104
428 174 286 953 676

—7 180946 872 612 560

2
—14
116

—1 046
9932

—97 664
984 944

—10124846
105 646 220

—1 115647 544
11 897 857 688

—127 929689 312
1 385 122 530 872

—15 086 511 225 632
165 168 901 183 496

—1 816460 831 076 302

simple cubic body centered face centered

1

2

3

4
5

6
7
8

9
10
11
12
13
14
15

3
—33
438

—6381
98 298

—.1 571 646
25 804 572

—432 195 261
7 351 521 882

—126 601 633 818
2 202 345 302 028

—38 634 960 958 878
682 589 371 293 612

—12 133 302 712 160 964
216 812 614019536 368

4
—60

1 096
—22 076
471 384

—10462 752
238 712 352

—5 559491 148
131 557 495 336

—3 152 926 387 520
76 350 685 086 240

—1 864 887 612 147 680
45 882 795 957 148 336

6
-138
3 876

—120126
3 947 676

—134 869 584
4 736 696 040

—169820 492 046
6 186455 616 228

—228 257 469 246 168

for the susceptibility /dimer compressibility

( )
dp(z)

dz
(5.1)

same value in both two-dimensional lattices and in all

of the three-dimensional lattices; this is not incon-
sistent with the results and leads to the overall esti-
mates6

which must then have a stronger singularity than

p(z), namely
o =—0.155+10, for d =2

(5.3)
X(z) —(z +zo) ', for z ——zo (S.2)

Since the constant term in each of the p(z) series is
zero, no coefficients are lost in this differentiation.

Ratio analysis' of these series yields estimates for
the singularity position zo and the exponent o- which
are shown in Table II. We expect o- to have the

o- =0.098 + 12, for d = 3
I

with uncertainties covering the spread in the esti-
mates of o- for lattices of the same dimensionality.
The ratio test and Pade approximant methods were
applied to these series by Gaunt, although fewer
terms were then available. His estimates for the
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TABLE II. Estimates, zQ, of the position of the singularity, z =—zQ, and 0., of the exponent 0-,

from various studies of the monomer-dimer compressibility series for several lattices. Gaunt's
results (Ref. 9) were obtained from shorter series than are now available. As explained in the text,
the current ratio estimates (central column and Ref. 6) are considered less reliable, owing to the
severe curvature of the ratio plots, than the estimates based primarily on the inhomogeneous dif-
ferential approximants (and recursion relation analyses) as illustrated in Figs, 1 and 2.

lattice Gaunt ratio (present) overall (present)

square

triangular

ZQ

(T

ZQ

0

0.088 95+2

0.05600 + 10

0.088 952 + 2
—0.159 + 14

0.056 060 + 6
—0.153 +6

0.088 963 + 2
—0.164 5 + 20

0.056076 + 2
—0.1620 + 15

tetrahedral

simple cubic

body centered

face centered

ZQ

0

ZQ

0
zo
0

ZQ

0

0.085 00~g

0.05200 + 6

0.037 30+45

0.024 20 + 10

0.084 959 + 11
0,090 + 6
0.052 002 + 6
0.096 + 6
0.037 294 + 14
0.103 + 10
0.024 213 + 18

0.109 + 17

0.085 015 + 15
0.070+15
0.052 025 + 5

0.081 + 6
0.037 309 + 4

0.090 + 5

0.024 224 + 6
0.097 + 11

singularity position are displayed in Table II; no
values for o- were quoted. The present estimates of
zQ are consistent with those of Gaunt and are more
precise. However, an appreciable curvature in the
dependence of the t th ratio on t ' makes extrapola-
tion difficult and suggests that the form

X(z) =A(z)(z+zp) ', for z =—zp (5.4)

with A(z) analytic and finite at —zp, may not be suffi-
cient to describe the asymptotic behavior of x(z).

Fitting Pade approximants to the logarithmic
derivative of the function under consideration2' has
proven quite successful for analyzing algebraic singu-
larities such as Eq. (5.4). We have applied this tech-
nique to the series for X(z); the estimates zp, for zp,

and o-, for o-, obtained for the square and sc lattices,
which are typical of the results for two- and three- .
dimensional lattices, respectively, are plotted as open
circles in Figs. 1 and 2. The correlation between zQ

and o- is quite strong and shows, very little scatter,
but the results converge rather slowly as the number
of terms used in calculating the approximants is in-

creased. The apparent limits of the sequences of zQ

values differ from the ratio estimates, although they
fall within the ranges given by Gaunt. Furthermore,
the estimates o- seem to converge to values which
disagree with the ratio estimates and with the ap-
parent limits for other lattices of the same dimen-
sionality.

In order to obtain more estimates of zQ and o-, we
have also applied the Dlog Pade technique to the

series for

( ), d [z x(z)]
dz

(5.5)

whose behavior is near —zQ is given by

[z X(z)]' —(z + zp) ', for z zp (5.6)

The estimates obtained in this manner for the square
and simple cubic lattices are plotted as crosses in

Figs. 1 and 2. The trends followed by these estimates
are consistent with the apparent limits of the ZQ and
o- sequences obtained from Dlog approximants to
x(z). The approximants for x(z) and (z x) ' tended to
place sequences of pole-zero pairs along the negative
real z axis to the left of —zQ, beginning within about
10% of —zQ, which suggests that they may be trying
to fit a branch cut. This provides further evidence
that Eq. (5.4) must be generalized in order to ade-
quately represent x(z) for z near —zp.

In order to obtain refined estimates of o- we have
formed Pade approximants to the function
(z +zp) d[logx(z)]/dz and evaluated the approxim-
ants at z =—zQ, using ZQ as an input parameter. If the
exact value of zp is used, this function takes on tge
value o- —1 at z =—zQ. For each lattice a range of
values of zQ around the apparent limit of the Dlog
Pade estimates was used. The results for the square
and sc lattices are plotted as solid lines in Figs. 1 and
2. Clearly the values of o- thus obtained depend
strongly on the specified zQ, with the dependence fol-
lowing closely the correlation which arises from the
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I I I
I

I I I I
I

I I I I
I

I I I O.t 0

-0.160

si.tT]pie cubic lattice

0.08—

-0.165

0.06—

0

—0.1 T0 I I I I I I I I I I I I I I I I I

8.8960 8.8965 8.8970
100 zo

FIG. 1. Estimates obtained from analysis of the dimer
density series on the square lattice. Open circles mark the
estimated singularity position —zp and exponent {7given by
Pade approximants to the indicated number of terms in the
series expansion of d lnX(z)/dz; crosses are from Pade ap-
proximants to d ln[z X(z)]'/dz. Solid lines are the results of
Pade approximants to (z +zp) d lnX(z)/dz with zp given as
an input parameter. Squares indicate points obtained from
inhomogeneous Dlog Pade approxirnants to X(z) and
[zX(z)]', and triangles locate estimates provided by the
recursion-relation method. The "error box" corresponds to
the best estimates quoted in Table II.

unbiased methods.
The inhomogeneous differential approximant, or

UPQ approximant, method"" is designed to analyze
singularities which are superimposed on an analytic
background, and so could fit the form

X(z) =A(z)(z+zo) '+B(z), for z =—zo, (5.7)

where A (z) and B (z) are finite and smooth at
z =—zp. We have tested this method on the dimer
density series for the Bethe lattice with coordination
number q, whose singularity is known exactly to be
given by o- = 2. Dlog Pade approximants to the first

seventeen terms of the series for q = 4 and q = 12
can only come within 25% of the correct value of o-.

The [J/L;M] UPQ approximants with L ( 2 or
M & 3 do no better than the Dlog Pade approxim-
ants, but all those we have calculated with L «2 and
M «3 give excellent estimates for o-, falling within a
few parts in 104 of the exact value for q =4 and
within parts in 10 for q =12. In fact, the singularity
is reproduced exactly by a [0/2;3] approximant.
Clearly the pole which lies on the second Riemann

I I l I

5.206 5.208
100 z™~

FIG. 2. Estimates for the simple cubic lattice, as in Fig. 1.

I

5.202
I

5.204
0.04

5.200

X(z) =&(z)(z+zo) ' B+(z)( zz+)~ '

Z Zp (5.8)
with o. ( $. The method can also be modified to in-

sheet of the dimer density function, 4 and which slows
the convergence of Pade approximants, fails to de-
ceive the UPQ approximants. The nonoccurrence of
singular matrices in the calculation of the longer ap-
proximants is indeed remarkable, and points out the
present lack of understanding of the uniqueness
problem for UPQ approximants.

For the square and sc lattices, the estimates for zp
and rr obtained from UPQ approximants with J ~1
and X(z) and (zX)' are displayed as squares in Figs. 1

and 2. The values of zp and o- taken from these ap-
proxirnants fall near the estimates obtained from the
other methods described above and are much more
consistent for each lattice; furthermore, the values of
the backgrounds at —zp and the positions of the
second singularities along the negative real axis are
fairly consistent for the "diagonal" [J/L;L] and
[J/L;L + 1] approximants. The UPQ approximants
can also be biased to force a singularity to occur at a
specified position —zp, thus yielding refined estimates
for cr. The estimates obtained in this manner are
consistent with the above results,

The recursion relation method" is capable of
resolving confluent power-law singularities,
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elude an analytic background term C(z) in Eq. (5.8).
However, when applied to the present series, it pro-
duces no evidence of confluence, but reconfirms the
estimates of zo and cr obtained from the other
methods. The estimates obtained from the series for
the square and simple cubic lattices are plotted as tri-
angles in Figs. 1 and 2, and can be seen to be almost
as consistent as the estimates taken from UPQ ap-
proximants. The recursion relation method can also
be biased to force a singularity at any desired loca-
tion; using this technique to obtain refined estimates
of o- yields estimates which are consistent with the
overall pictures emerging from the results of the oth-
er approximation methods.

Our final estimates of zo and a- for the various lat-
tices, taken mainly from the UPQ approximant and
recursion relation analysis, are listed in Table II. Ow-

ing to the curvature in the ratio plots for these series,
we expect these estimates to be more reliable than
those obtained from ratio analysis. On the assump-
tion that o- is independent of details of lattice struc-
ture for a given dimensionality, we conclude

o-=—0.163+3, for d =2
(5.9)

cT =0.086+15, for d =3

The differences among the estimates of a- obtained
for different lattices of the same dimensionality sug-
gest that the apparent consistency and convergence of
the estimates for any one lattice. are somewhat
misleading. A similar situation arises in most other
lattice extrapolation problems, although with series as
long as available here the spread of exponent esti-
mates is often smaller. One possible cause of slow
convergence is the presence of confluent singulari-
ties; however, the recursion relation method gave lit-
tle positive indication of their presence. Neverthe-
less, the apparently better behavior of the differential
or UPQ approximants and the recursion relation tech-
nique suggests that background terms and confluent
or close-by singularities are playing a larger role than
in some other lattice problems.

VI. DISCUSSION

ture of the spins and of the detailed form of the in-
teractions between spins, and seems to depend only
on the fact that the interactions link nearest-neighbor
spins,

In fact we expect the universality of the exponent
o- to persist for all temperatures above critical,
although the symmetry of the model may affect the
behavior of the amplitude of the singularity and must
enter into the position of the Yang-Lee edge near
T = T, . The temperature independence of o- for tem-
peratures not too close to T, has been checked nu-
merically for Ising models on the square and
tetrahedral lattices by Kortman and Griffiths, '
although high precision was not possible. The n

independence of o- accords with renormalization-
group analysis, and with numerical work" based on
transfer integral methods for one-dimensional sys-
tems, which likewise indicate that 0- is independent
of temperature for temperatures above critical. It is
clear that this n independence does not extend to the
infinite-n limit, since the Yang-Lee edge singularity
in spherical models is given by' o- =

2
for a11 d.

Understanding this nonuniformity of the infinite-n

1

2
spherical model

I
/

/
/

/

/
/

/
/

~O
/

/
/

/
/

/
/

/: /: /
I

/

/

We have shown that the nature of the singularity
in the density of Lee-Yang zeros at the edge of the
zero distribution in n-vector models with nearest-
neighbor interactions is independent of n at high
temperatures. This may not be so surprising, since'
the magnetic field present at the edge breaks the
symmetry of the problem in spin space, leading to
Ising-like (n = I) behavior near the singularity. More
remarkable, perhaps, is the fact that the form of the
zero density in this limit can explicitly be demonstrat-
ed to be independent of the quantal or classical na-

I I

3
~

4

FIG. 3. Dependence of the exponent a. on dimensionality
1

d. For d )6, (T maintains the value +2 ', for the spherical
1

model o- =+—for all d. Solid bars mark the present esti-
2

mates, while open error limits locate those of Kortman and

Griffiths. Lines are taken from renormalization-group
analysis, with o- given by the hyperscaling relation (6.1), and

with q given by the [1/1] (dotted line) and [2/1] (dashed
line) two-point Pade approximants in Eq. (6.4). The point

1
(d =1, o- =—

2
) is exact (Ref. 6).
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~=(d -2+~)/(d+2-~) . (6.1)

limit requires further study.
The estimates of a- obtained here are more precise

but fall within the ranges proposed by Kortman and
Griffiths in their original work. Renormalization-
group analysis predicts that for d ~ 6 the exponent
o- is related to the exponent q for the scaling decay
of the basic two-point correlation function at the
Yang-Lee edge by

and

rt =—~(180+179m)/(1620+7S 1 m) (6.4b)

0- = —0.1623, for d =2

cr =0.0800, for d =3 (6.5)

The corresponding continuous variation of o- with d
is plotted in Fig. 3 along with our best estimates and
those of Kortman and Griffiths; the [2/1] approxi-
mant in Eq. (6.4b) leads to

The estimates (5.9) then correspond to

q= —0.78+2, for d=2

q = —O.S2 + 8, for d = 3
(6.2)

which compare very favorably with the estimates (5.9).
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