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A three-dimensional fluctuation analysis valid at all temperatures is performed on the uniform

texture of 3He-A in a slab, in the presence of a uniform supercurrent parallel to the walls. A

textural transition is confirmed at a critical phase gradient Q„above which the texture must

vary periodically in the plane parallel to the walls if the temperature is sufficiently close to abso-
lute zero. In the Ginzburg-Landau regime, the texture developed above 0, varies only in the

direction perpendicular to the slab, but is nonplanar. The transition is predicted to be first order
as current is increased above critical, if the slab width is & &10 cm, so that the orbital axis I

II

and the spin axis d are effectively decoupled.

Recently, the hydrodynamic effect on the equilibri-
um texture of 'He-A has attracted much attention.
Several studies'~ have demonstrated that in spite of
the anisotropic superfluid density favoring the align-
ment of the orbital axis / with the flow, the uniform
texture with l parallel to the flow is only barely stable
in the dipole-locked Ginzburg-Landau (GL) regime
and actually becomes unstable against a helical distor-
tion if dipole locking is switched off, or if the tem-
perature is sufficiently close to absolute zero. These
studies have assumed an open geometry, but may be
applied to a slab geometry of width ~ if the condition
Qa' » 1 is imposed, where Q represents an overall
phase gradient, which is proportional to the super-
fluid velocity V, when l is uniform.

In the opposite limit Qw « 1, the orientation of I

is dominated by the boundary condition that l tends
to be anchored normal to the walls. ' In the slab
geometry, with planar walls located at.x =0 and ~,
and a flow along the y axis, it has been shown that
the I axis remains uniformly along x, until Q reaches
a critical value Q„where a textural transition then
takes place. These last two works, however, are sus-
ceptible to improvement, since (i) they have only
considered stabilities against fluctuations depending
only on x —a restriction which is clearly no longer
satisfactory, in view of the findings of Ref. I —4„(ii)
For Q & Q, they have assumed that the system takes
a planar texture, with /confined in the xy plane —an
assumption which is now known to be invalid be-
cause the gradient energy contains a term

cp(V, I ) ( I '7 x I ),"which favors a '7 x I & 0 in
the general direction of I, whenever V, I AO; (iii)
Their studies are confined to the GL regime (i.e.,
when the temperature T and the transition tempera-
ture T, satisfy T, —T « T,), and therefore need to
be generalized to the whole temperature range below
T,; (iv) The order of the transition was studied in
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Ref. 6 but not in Ref. 7, and, as we shall show
below, the true order of the transition was not
correctly determined in Ref. 6, because of the planar
textures it assumed for Q )Q, .

In this work I first perform a three-dimensional
fluctuation analysis on the l =x texture in a slab, us-

ing the approach of Ref. 1 which is valid at a// tem-
peratures, and derive a general expression for Q, .

For Q ) Q, it is established that the critical fluctua-
tion has a periodic variation in the yz plane parallel to
the walls, as well as the necessary x dependence, if
temperature is sufficiently close to absolute zero; but
in the GL regime, the critical fluctuation depends
only on x, whether dipole locking is in operation or
not, if only the strong-coupling effect is as small as
estimated recently. Having established the validity

of assuming only x dependence in the GL regime, I
then study the order of the transition at Q„without
restricting to planar textures for Q & Q, An exact
Landau-type analysis reveals that the transition is

nearly first order if e » 10 3 cm, so that dipole
locking is perfectly effective (except in negligible re-
gions near the surfaces). The transition though, is

unambiguously first order, with a discontinuous
change in the texture, if w « 10 cm when dipole
locking is effectively switched off. On the other
hand, the transition would always be second order,
had planar textures been assumed for Q ) Q, .

For the fluctuation analysis, I begin with the same
free energy as is used in Refs. 1 and 3 [cf., Ref. 1,
Eq. (2), or Ref. 3, Eq. (I)], and the expansion

V, =Qy" +SV, , I =x+7 ——,)'x

where 7. x =0. As in Ref. 1, Eq. (3), I obtain

SV, =-,'(X, V'I, —I, r7),)+V@

valid to second order in A. . To the same order, the
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gradient free energy then reduces to

F =J d r (
—p, [Q +Q(h. 8 X, —A.,B A, )+(V'$) ] ——pp[8 @+Qh. ]

—cp(h„y+Q), )(rl, x, —8,),)+'—,'K, (O 7)'+ —,'K, (B,Z, —8,),)'+ —,'K, (0„) ) ] .

The boundary conditions are 7. = $„=0at x =0 and w, so we introduce the expansions

[@(r),7(r)] =— X e„k, cos2 1

7r y g nkq

nmx
A

. nmx
Ankq sin

W W
t

exp(ikz +iqy)

The fluctuation free energy then becomes SF = V ' XA'MA", where A —= (4„~,Ar„a, , A,„k ), tr means
transpose, and nkq

p"n'+p (q'+k')
M= n(ppg+icpk)

—inco q

n (pp Q —icp k )

Kpn2+ Ks q 2+ Kt k 2
pp Q

2

[(K, K,) k ——i(p„—cp) Q] q

coq

[(K, -K,) k+I(p, -c,) Q] q

2+K k2+Ktq2

where

Q= ~ q=— k=—
~ p"=—p. —p

7r 7r 7r

To find the independent fluctuation modes, we

need to solve MA" = itA", or det (M —AI) =0. Since
det M is a linear function of Q, only one of the
three eigenvalues can change sign in the range
0 ( Q

z (~, and therefore the condition det M =0
uniquely determines Q, for each (n, k, q) At n =. 1,
k = q =0, it is found

a g, '
ppK, +p,~'K, —c,'

8 k pspo

IIp, Kb

ps po
(4)

The parameters p„pp, Kp, etc. appearing in Eq. (4)
have been evaluated by M. Cross in the weak-
coupling approximation but with the Fermi-liquid
corrections incorporated. In the low-temperature
limit T 0, simple limiting behavior of these param-
eters may be obtained and used to evaluate the quan-
tities in Eq. (4). This is presented in Appendix A,
which reveals that in the limit T 0, 8 Q, 2/8q z is
positive with or without dipole-locking and/or
Fermi-liquid corrections, while 8 Q, z/8 k z is negative
for the dipole-unlocked case only, if Fermi-liquid
corrections are not made. After such corrections are
made, 8Q,'/ilk' becomes negative for the dipole-
locked case as well (at all pressures). This means
that a search over the whole (k, q) plane must be
made in order to find the minimum Q, 2, and the tex-
ture for Q & Q, must vary in at least one, but may
be both directions parallel to the walls (besides the

0 Q,
' p, lp K, —(p, ' —o)']+ po'(K K,)—

PsPo

obviously existing variation in the direction perpen-
dicular to the walls). This finding is obviously relat-

ed to the findings of Refs. 1—4. But note that in

Refs. 1—4, which studied the limit Qa » 1, for
which the wall effects may be neglected, the texture
was found to have a periodic variation along the flow

only, while here it is the wave number k defined in

the direction perpendicufar to the flow (and parallel to
the walls) which favors a nonvanishing value. Fur-
ther study employing numerical methods will be car-
ried out to pinpoint the true texture about Q, in the

low-temperature limit. In the rest of this paper, I
shall confine myself to the GL limit, where we have

p. po II
co 2Ks 2Kt 2Kb

y+1 y, '
y 2y+3 2y+3 2y+3

if dipole-locking is assumed, and

(Sa)

ps pp cp 2Kb=—=p"=—=2K =2K = (5b)y+1 y
'

y
' 2y+1

0 Qc' 7y —2

2y
(dipole locking on)

(6a)

if dipole locking is effectively switched off. The
parameter y has a value unity according to the weak-
coupling theory, but strong-coupling effects can give
it a pressure-dependent deviation from unity by
about a few percent, according to a recent theoretical
estimate. ' Thus Eq. (4) becomes

2y+3 0 Q. ' sy+3
2y(y+1) '

0k ~ 2y(y+1)
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and

2y+1 0 Qc 1

2y(y+1) I) k 2y

BQ 3 +3y —2
(dipole locking off).

I) q
' 2y'(y+1)

(6b) &0=

Equations (6) show that the n = 1 branch of Q, has
a local minimum at k = q =0, for y & 0.286 if dipole
locking is on, and for y & 0.457 if dipole locking is
off. Next it is necessary to investigate whether a
lower minimum of Q,

2 might occur for n & 1 and/or
at finite k and/or q. Numerical evaluation of det M
shows that we can always put n =1, k =0, but the q
dependence is less trivial. If dipole locking is on,
Q, (q ') at n = 1, k =0 is found to have only one
minimum at any given y & 0, but if dipole locking is
off, Q, '(q ') actually can have two minima in the
narrow range

0.457 ( y (0.575 + 0.025

and the minimum at q —1 becomes lower than
the minimum at q =0, when y is decreased below
the critical value 0.527 (cf, Fig. 1). This means a

first-order textural transition as y is varied, but un-

fortunately the required range of y is unrealistic.
However, I believe that a suitably applied magnetic
field can move the transition into the physical range,
as we have already found in the limit Qw » 1, '0

Leaving the magnetic field effect for future studies,
we now examine the order of the transition in the
GL regime, as the current is increased beyond the
value determined at Q = Q, for the uniform. i =x tex-
ture. " For this purpose, we introduce the represen-
tation for the order parameter

''A "+A +30 + 1/2 1/22 2

0
I

0.4
I

0.6
I

0.8
I

l.0 1.2

FIG, 1. Restricted to the Ginzburg-Landau regime
T, —T « T„when the parameters p„po, Kb, etc, , can all

be expressed in terms of one parameter y [cf, Eq. (5)1, the
quantity 0, 2 {n, q, k) for n = I, k =0 is plotted as a function
of q, for various values of y (given right above the left end
of the curves). The upper set of curves [case (a)] assumes
dipole locking. The lower set of curves [case (b) J assumes
no dipole locking. The inset gives further details of case
(b), revealing that the curves have double minima in the
narrow range 0.457 & y & 0.575 +0.025.

Ao = sin X exp(iS ~)

A+ = (1/2'/2) (cosX+ 1) exp(iS, +iS2)

In view of the above fluctuation study, we can safely
l

assume that S&, X, and 52 depend on x only, at least
for Q —Q, (( Q, . Note that for planar textures
(I.z =0) we would have St=0, but we shall not
make this assumption here. The gradient energy
density, after normalized by 2I 250', " becomes

fG = (y sin X+1)S~'„+[y(sin'Sq +cos'X cos'S2) + 1]Q +2yg sinX cosS2(cosxS~„+S2„) +2 cosxS~„S2„

+ (y cos'X+ —,
' ) X„'+(—,

' ) (1+cos'X) S22„+ [(y sin X +1)(X„+sin XS2„)]

where an irrelevant pure-divergence term has been
dropped, and the last term in the bracket arises from
the dipole locking of the spin axis d with I. Minimiz-

ing ~ffo d'r with respect to St gives a current con-

servation equation dj„/dx =0 and a boundary condi-

tion j„=0at x =0 and w. Together they may be
solved to give

cosx(S2z + yg slnx cosS2)
1x

(y sin'X+1)



20 FIRST-ORDER CURRENT-INDUCED TEXTURAL TRANSITION. . . 279

which may be used to eliminate S~„ from fG.
Further minimization with respect to X and S2 would
result in two nonlinear coupled differential equations
which must be solved by numerical method, together
with the boundary conditions X =S2„=0 at x =0 and
w. While this is currently being attempted, here I
perform a Landau-type analysis for Q —Q, « Q, by
expanding fG(X,S2) to fourth order in its arguments,
giving C

J, = (y+ I) Q'+ f(y+ —,') x„'-y(y+ I) Q'x']

+y(y+1)[(y+ 3)Q X +2QX S2„+Q X S2]

+ (y+ —) x S2 —yx x + (x'+ x'S2 + yx'x')

7TxX=asin
W

30. n'x
cos

4 Q w

r

8y(y+I) (g2 g~2)
f(y) (12)

where f (y) =3y2+13y+6, . if dipole locking is on;
and f(y) =3y2 —3y+2, if dipole locking is off. In
the above equations, Q, is given by Eq. (6a) or (6b),
for the two cases, respectively. The total free energy
per unit area may then be evaluated, giving

f+ W

F = (w/2n')
~

f—G dx

= —,
' (y+ I) Q

'—(y'(y+ I)'/f (y) l(Q ' —{?,')'. (13)

The current density along y" may be obtained from

j» = (2m/f)(8fG/'dQ) Introducing th. e normalized
total current

I = (

tho/gism

I'2) J j» dx
0

(see Ref. 11) I find

1

Q ( +I) 4y (y+I) (g2 g 2)
f(y) (14)

The slope 81/8 Q is seen to change from (y+ I) for

Q & Q„ to either

(y+ I)'(6 —5y)/(3y +13y+6)

if dipole locking is on; or

—(y + 1)(5y +7 y —2) /(3 y —3y +2)

if dipole locking is off, for Q & Q, . For the weak-

(10)

Again, the last part in the parantheses arises from di-
pole locking. The minimization of this free energy
for Q just above Q, may be carried out in the stan-
dard fashion, giving

coupling case y =1, this is a change of slope from
+2 for Q & Q„either to +—„ if dipole locking is on,
as found already in Ref. 11; or to —10 if dipole lock-
ing is off, for Q & Q, . This means that as the
current is increased toward the critical value
I, = (y+1) Q„ the textural transition is second order
but very close to being first order, if ~ & ) 10 cm,
so that dipole locking is on. It is unambiguously first
order, with a discontinuous change of the texture, if
e (& 10 'cm, so that dipole locking is effectively
switched off." In the latter case, of course, one
must still interpret the critical current 1,= (y + 1) Q,
as the "superheating" critical current, and expect the
thermodynamic transition to occur at a lower "thermo-
dynamic" critical current, the exact value of which
can be determined only after numerical study is corn-
pleted for all Q & Q, . The orbital axis I, however,
can not reorient rapidly due to the Cross-Anderson
dissipation mechanism. " Large hysteresis should,
therefore, be readily observable near this first-order
textural transition. Note that had we assumed a
planar texture for Q & Q„by putting S2=—0, we
would have predicted for the slope Il I /8 Q just above
Q, the value (y+ 1)~/(3y+ I) if dipole locking is on;
and the value

(y+ I) (2y'+ y+ I)/(6y'+3y+1)

if dipole locking is off, which would mean second-
order transition for both cases, and for all values of
y &0. (The last slope was the value previously cal-
culated by de Gennes and Rainer. 6) Note also that if
no more textural transition is to occur for Q & Q„
then as {? ~, the texture should merge continu-
ously into the one determined in Ref. 1—4, which is
I =—y (except within a distance —Q

' from the walls),
if dipole locking is on; and is a helical texture varying
periodically along y, if dipole locking is off. In the
latter case, therefore, a periodic y dependence in. the
texture must develop as Q increases above Q„either
continuously from zero, or through another textural
transition. Finally, we note that should strong-
coupling effect be capable of making y & 1.2 at any
pressure, (below the solidification pressure), then
even in the wide-channel dipole-locked case, the
predicted transition ~ould be first order.

A useful remark to add is, while both X and S2 are
first-order small quantities just above Q„ the devia-
tion from a planar texture, as measured by
l, = sinX sinS2, has actually second-order smallnesst
This is why in our fluctuation analysis, I actually ob-
tained h., =0, above the Q, of n =1, k =q =0. This
point reveals a curious advantage of the coordinates
S&, X, and S2 used in the second half of this analysis.

I have attached an Appendix B at the end of this
paper in order to clarify the procedure used here to
discuss a first-order phase transition, and to reconcile
it with the familiar Landau's picture.
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APPENDIX A: ZERO-TEMPERATURE
LIMIT OF Eq. (4)

According to Cross, the parameters appearing in
the gradient energy expression can all be expressed in
terms of three parameters a, P, and y. It can be
readily verified that in the limit T 0, the values of
these three parameters are approximately

a = —,
' [1 —0 (a') ], P = —,

' (1 —a'),

Kb =3 [In(4 p/p) —
—,', (26 —FI ) ]

On the otherhand, if dipole locking is in effect, then

K, =A(b +
3 FI) —O(p)

K, = —, A ((17+Ff +4Ff)

—[4+2F' + , (F')—']a]

Kb =3 [In(4 P/e) —(14 —F[ —4Ff)]

(If the Fermi-liquid parameters F[ and Ff are set
equal to zero, the bare values of these gradient-
energy parameters can be regenerated. ) The values
of F~ and FI at various pressures between zero and
the melting pressure have been given by Ref. 14. In
particular, FI =15.66, F] = —0.555 at the melting
pressure, and FI =6.04, FI = —0.670 at zero pres-
sure. %e also note from the same source that F] is a
monotonically increasing function of pressure, while
F~ peaks near P = 18 bar with a value —0.500 (0.
Using these pieces of information, one can establish
the following limiting behavior for Eq. (4) as T 0:

Dipole-locked case

In this case, we find

y =3[in(2y/p'") ——', ]

Q Q
2

Bk

5 3Fgi +4F~i

12(1+
3

Ff)~e

where

a —= (m 1"/Ap)', Ap
-—2.029ks T,

and

p, ( g/2m ) = A (I +
3 F]) [I —0 (a)]

&,(t/2m)'=W (I+ —,Ff)",
c( g/2m) = —,'A (1+—,

' Ft)(1 —p)

cp(tt/2m ) =2 (1+ 3 Ff) [I —(I +
b F])p]

where

(p/tr2)m' ( /I+'Ff) .

Furthermore, if dipole locking is not in effect,

K, =
4

A [I —O(a)]

Kg =
)q

A {(5+FI)—[8+4Ff +—(Ff)~]p}

is the zero-temperature maximum gap over the Fer-
mi surface, and ln y = C =0.5772 is the Euler's con-
stant. Using these parameter values, it can be shown
that

which is clearly positive at all pressures, and is also
positive without Fermi-liquid corrections.

2. Dipole-unlocked case

In this case, we find

Q Q
2

Qk~

7 +3F'j

12(1+
3

F'j)~a

which is clearly negative at all pressures, and is also
negative without Fermi-liquid corrections.

Q Q
2

8 2

1

4(1+
3

F[)~a

which is —0.0952~ ' at the melting pressure;
—0.145m ' at zero pressure; and is in fact negative at
all pressures between them. However, if Fermi-
liquid corrections are switched off, it would become
(—,', )p ' &0.

II Q
' 15+4FI

Bq ' 12(1+—F*)'p
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which is clearly positive at all pressures, and is also
positive without Fermi-liquid corrections.

Combining the above results, we can conclude that
at sufficiently low temperatures the critical fluctua-
tion does not correspond to n = 1; k = q =0, and
therefore the texture for Q & Q, must have a period-
ic variation in the plane parallel to the walls.

APPENDIX B: REMARKS ON THE PROCEDURE USED
FOR STUDYING A FIRST-ORDER TRANSITION

multivalued G,p(l ) curve, and also allows us to re-
generate the latter by the prescription

G,q= —„Qd I +constant. [The Van der Waals
nonmonotonic iostherm P(u), after realizing the
correspondence of ( P, 4—i) with (I,Q), agrees with
this picture. "1 The function I ( Q ) may also be ob-
tained directly from minimizing F (T,Q, q) with
respect to Yi, and then using I = 8 F~( T, Q )/8 Q ~ r.
The two ways of determining q are necessarily
equivalent, because

In this work, we have studied a first-order transi-
tion in terms of an extensive variable Q and the
corresponding (normalized) free energy F (T, Q, g)
[where we have used a single variable g to symbolize
the functions X(x) and S2(x)]. Another approach
should be to use the conjugate intensive variable
I =—8 F /8 Q ~ r „, and the corresponding "Gibbs ener-
gy" G (T, I, q) —= F I Q, wit—h the Q dependence el-
iminated in favor of I. In the present case when

g =0 is a solution for Q ~ Q„and F and G are both
even functions of g, Landau's picture of a first order-
transition tells us that for I very near I, = I ( Q = Q, )
(assuming that I increases with Q up to Q,), we must
have the following expansion:

G ( I, v) ) = Gp(1 ) + a ( I, —I )g2+ b q4 +, (81)

with a & 0, b (0, so that for I just belo~ I, the
point q =0 is a very shallow minimum, sandwiched
between two very closed by maxima at
g=+[a(l, —I)/~b~]' ', and at least two more
(lower) minima at some still larger )q~, allowing
( Q„I,) to be identified as the superheating critical
point of the q =0 branch. If the values of G at all of
its minima and maxima are used to define G,p(l ), it
would give a familiar looped structure as shown, for
example, in a textbook by Reif. '5 [The unstable

q =0 branch for I & I, must be ignored for this pur-
pose and the discussion below. %e shall see that this
ignored branch actually corresponds to a maximum of
F ( Q, q), while all the branches kept in defining
G,p( I ) corresponds to Q-dependent minima in
F ( Q, q) as a function q.] Since
Q = —8 G,4( T, I )/8 I

~ r, this multivalued G,p also
implies an S-shaped Q ( I ), which may be inverted
into a function I ( Q ) that is single valued, but non

monotonic, like the greek letter p, without the last
downward stroke. This nonmonotonic character of
I ( Q ) is actually the necessary and sufficient condition
for a first-order transition, since it follows from the

Furthermore, for Q very near Q„when the relevant

g is small [corresponding to finding the maxima near

g =0 in Eq. (Bl)], the following expansion may be
used:

F (Q, q) =Fp(Q)+a'(Q, —Q)q'+Ii'v)4+. . .

(B2)

Here we must have a' & 0, b' & 0, so that new mini-
ma at q & 0, but very near g =0, can appear when Q
is increased beyond Q, . The point g=0, then, has to
change from a local minimum to a local maximum at
this point. Equation (10) of this paper is precisely a
more complex version of Eq. (B2), with the prop-
erties described here, so when it predicts a negative
8 I /8 Q for Q = Q, + e, we can be sure that the tran-
sition is first order.

It remains to comment on why I should be identi-
fied as an intensive variable, while Q is an. extensive
variable, and not vice versa. The key lies in the pos-
sibility for the system to split into stripes of different
Q (but the same I ), all aligned perpendicular to the
current. This is in analogy with the liquid-gas system
which has the possibility of forming a heterogeneous
mixture of the gas and liquid phases, with different
molar volume, but the same pressure P. In this
sense, the current-induced textural transition behaves
more like a one-dimensional system, because the
heterogeneity occurs only in one dimension. Of
course, the system has also the possibility of splitting
into stripes aligned parallel to the current. Then all
the stripes must have the same Q, but different I. If
this were the favored situation, by the physical laws

governing the system, then a first-order transition
would have been predicted by treating Q as an inten
sive variable, i.e., I would have found b'(0, b &0,
and F,p( Q ) would be multivalued. The fact that this
is not found in my study, rules out this possibility.
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