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The coupled set of nonlinear kinetic Boltzmann equations governing the distributions of
quasiparticles and phonons in a driven superconductor has been numerically solved. When the

coupling between the superconductor and the thermal bath is weak, we find that the numerical

solutions are well approximated by an extension of Parker's T' model. This model leads to sim-

ple analytic forms in which the quasiparticle distribution is given by a Fermi function at tem-

perature T; and the phonon distribution is a weighted average of Bose distributions at tempera-

tures T' and the ambient bath temperature T, .

In order to determine the energy distributions of
quasiparticles and phonons in driven superconduc-

. tors, we have numerically solved the coupled kinetic
equations for a variety of external drives. ' When
there is strong thermal coupling between the super-
conductor and the substrate, the distributions show
specific structure associated with the particular drive.
However, when there is relatively weak thermal cou-
pling between the superconductor and the tempera-
ture bath, we find that our numerical results can be
reasonably approximated by a straightforward exten-
siori of Parker's T'model. 2 Here we discuss this ex-
tension and compare the numerical solutions with the
analytic forms of this extended T' model;

In these calculations the coupling of the supercon-
ductor to the thermal bath is characterized by a pho-
non escape time v„. A useful measure of the ther-
mal coupling is the ratio of ~„ to the zero-tern-
perature pair-breaking lifetime Yp" of a phonon of en-

ergy 2bp. Values of 7p for various metals obtained
from tunneling data are given in Ref. 3. For large
values of the ratio r„/re", phonons with energy
greater than twice the gap will tend to be trapped by
the quasiparticles, alternatively breaking pairs and be-
ing reemitted as quasiparticles recombine. Parker
suggested that under these conditions a 'useful theory
could be constructed based on a modified heating
model in which the strongly coupled system consist-
ing of the phonons with energy greater than 2A and
the quasiparticles would be characterized by a tem-
perature T' while the phonons with less energy than

2h would be characterized by the ambient bath tem-
perature T, .

The solid line in Fig. 1(a) shows the quasiparticle
distribution obtained from a numerical solution of
the coupled kinetic equations, Eqs. (7) and (8), given
in Ref. 1. Here the external drive was tunnel injec-
tion at a bias voltage 2he/e and with a tunneling cou-
pling4 A =0.01, The ambient temperature was 0.5 T,
and r„/raa" =20. Under these conditions the gap 5
in the nonequilibrium state was equal to 0,66 Ap so
that e V was well above the injection threshold. * From
the BCS equation relating b, (T) to T, it follows that a

gap of 0.66 Ap implies a value for T'of 0.84 T, . The
dashed line in Fig. 1(a) shows a Fermi function with
temperature T' =0.84 T, . While this fails to pick up
the small structure at the injection edge 2hp —5, it
clearly provides an excellent one-parameter fit.

The solid curve in Fig. 1(b) shows the numerical
results for the phonon spectrum (0/6)'n (0) ob-
tained from the full kinetic equations of Ref. 1.
Parker's model gives a phonon distribution set by the
usual Bose function n (D, T') for 0 ) 2b, and
n (0, T,) for 0 ( 2A. Using this, the phonon spec-
trum (0/he)'n (0, T') is plotted as the dash-dot
curve in Fig. 1(b) and gives a reasonable fit for
0 & 24 but fails for 0 ( 2A.

Now, it turns out that if we take the quasiparticle
distribution to have the form of a Fermi distribution
at a modified temperature T' it is straightforward to
solve the kinetic equation, Eq. (8) of Ref. 1, for the
phonon distribution. 5 For the present tunneling case,
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in which there is no external phonon source driving the superconductor, this solution is

r (n, r")n(n, r') +.;,'n(n, r.)
r (n, T") +r;, '

[. '(-n r") +.-'(n T')]n(n, r') +.;,'n(n, T)
(n, r") +. (n, r") +r;,'

with n the usual Bose function and r, (n, T" ) and rs(n, T') the scattering and pair-breaking lifetimes, respec-
tively, for a phonon of energy 0 in a superconductor at temperature T'.

r, '(Q, T")=, Jl dE p(E) p(E+ n) 1 — [f(E,T') —f(E+ Q, T")]
m'70 0

t

p oo g2( T«)rs'(n T ) =- dE p(E)p(n —E) 1+ [1 f(E, T—') —f(n —E, T")]
phd J g(y ) E(n -E)

(2)
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Here p(E) is the usual BCS density of states.
From Eq. (1) we see that if the quasiparticles have

a T'Fermi distribution, the phonon distribution is
simply given by a weighted average of Bose factors at

temperatures T'and T, . Since we have assumedr„» rf ", which implies that r„» ra, n (n, T')
provides a reasonable approximation for 0 & 2A.
However, for 0 & 2h it is the scattering time v,
which must be compared with ~OS. If ~es && ~„ then
Eq. (1) gives Parker's result n(Q, T,) for n & 2h.
However, if res 7„ then there will be a significant
weight of the n (n, T') distribution altering the Park-
er result. The form for n(n) given by Eq. (1) takes
the interplay of 7„v&, and Ye, into account-and gives
the actual n (n) provided f(E) is a Fermi distribu-
tion characterized by a temperature T'.

The extended T' model result for the phonon spec-
trum (n/50)'n(n) obtained from Eqs. (1) and (2) is
plotted as the dashed curve in Fig. 1(b). This curve
provides a significantly better fit to the numerical
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FIG. 1. (a) Solid curve is the quasiparticle distribution
obtained from a numerical solution of the kinetic equations
for T~ =0.5 T„~e,/~oI'"=20, eV=25o, and A =0.01. The
dashed curve is a Fermi distribution with T' =0.84 T,. (b)
Solid curve is a phonon spectrum obtained from the numeri-
cal solution. The dash-dot curve is Parker's T'model, and
the dashed curve is the extended T' approximation given by
Eq. (}).
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FIG. 2. Scattering and pair-breaking lifetimes of a phonon
of energy 0 =. 26(T') vs T'/T, . Here 7I'h is the zero-
temperature pair-breaking lifetime of a phonon of energy 2bo.
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solution both above and below 2h. The deviations
reflect the fact that f(E) is not strictly a Fermi func-
tion at temperature T'as seen in Fig. 1(a).

A further simplification can be made without seri-
ously degrading the approximate form for n (Q)
given by Eq. (1). This consists in replacing the fre-
quency-dependent lifetimes r, (Q, T') and rs (Q, T')
by their values for Q =25(T'). The integrals in Eq.
(2) have been carried out for Q =25(T') and the
results versus T'/T, are shown in Fig. 2 and tabulat-
ed in Table I. Using this information it is then
straightforward to determine an approximate n(Q)
distribution. For example, in the case just discussed
T'=0.84 T„and from Fig. 2 we find that
r O"I/rs(25(T'), T') =0.40 and r~"/r, (2/t, (T'), T")
=0.087. Therefore, for rg"/r„=O. OS we have
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FIG. 3. Comparison of Eq. {3) {dashed curve) for n(O)
with 7-, and 7& evaluated at 0 =2~(T') with Eq. (2) (solid
curve) for n(O) with the full frequency dependence of 7,
and T&,

2b, & 0 &0,

Q&26 .

0.087n (Q, T") +0 05n (.Q, T,)
0.087 +0.05

(0.40+0.087) n (Q, T") +0.05n (Q, T,)
0.40 +0.087 +0.05

(3)

In Fig. 3 we compare the approximation for n (Q)
given by Eq.. (3), dashed line, with n(Q) given by
Eq. (2), solid line, which contains the full frequency
dependence of 7, and 7~. Clearly, little is lost by us-

ing the simpler form in which 7, and ~~ are evaluat-
ed at Q =26(T'). In the following we shall use only
this simpler form.

To get a further idea of the utility of the extended
T'model, we now examine some more cases. Basi-
cally we expect that our T'description will be useful
when fes && 70~". However, there is also the question
of the signature of the drive. For example, tunnel
injection has a strong signature compared, say, with
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TABLE I. Pair-breaking and scattering lifetimes of a pho-
non of energy 2b, (T').
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7PhyT&(25 T .~ /. ,(2S;T') &3
0.5

0.0
0.1

0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.98

1.00
1.00
1.00
0.99
0.96
0.89
0.79
0.65
0.46
0.25
0.052

0
3.2x10 9

3.1 x10 ~

7.4 x10 4

4.0 x10 3

1.2 x10 2

2.6 x10 2

4.7 x10
7.7 x10 '
1.1 x10 ~

1.0 x10 '

0
0

I I

2
Q/6

FIG. 4. (a) Solid curve is the quasiparticle. distribution
obtained from a numerical solution of the kinetic equations
for T~ =0, Ye,/tT&&"=60, eV =250, and 3 =0.01. The
dashed line is a Fermi distribution with T'=0.94 T, . (b)
Phonon spectrum with solid curve the numerical solution,
the dash-dot curve Parker's T'model, and the dashed curve
our extended T'model result with 7, and T& evaluated at
2a(T').
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that produced in a heat or laser driven film because
of the overlap of the density-of-states peaks when the
bias voltage approaches 2h/e. For tunneling, with
e V —2A, previously reported calculations' using the
full kinetic equations have shown sharp structure in
the driven quasiparticle and phonon distributions
when r„—7~. Here we will continue to study the
weakly thermal coupled case where ~„))~q,

In the following we consider several cases with

T, -0 and the tunneling coupling fixed, as before, so
that A -0.01. We will look first at what happens if
r„/rs is increased by a factor of 3 to 60 and the bias
voltage is again taken as 26O/e. Figures 4(a) and
4(b) show f(E) and (0/ho)~n (0), respectively.
The solid lines are the results obtained from solving
the full nonlinear kinetic equations. The dashed
curve is obtained from the extended T'model using
the simplified form in which v., and v& are set equal
to their values at 26(T"). The dash-dot lines in
Fig. 4(b) show what one would obtain from Parker's
T' model which has n (0) = n (0,T') for 0 & 24
and n (0) -Q for 0 & 2h, Keeping all the parame-
ters the same but decreasing r„/r~~" to 20 we obtain
the results shown in Figs. 5(a) and 5(b). Thus, as

r„/ro is decreased, deviations in the excitation dis-
tributions from our extended T'model become ap-
parent.

These deviations become larger when the, bias vol-
tage is decreased, but the tunneling coupling 3
remains fixed. In this case, approximately the same
number of quasiparticles are injected into a narrower
band of energies near the gap edge. In Figs. 6(a) and
6(b) we show results for eV=1.8 Ao, r„/r~~"=20,
and T', =0. Here the steady-state gap is 0.776O so
that e V is greater than 2A. In this. case one sees pro-
nounced deviations between the solutions of the
kinetic equations and our T' model results.

For tunneling injection we find that the steady-
state quasiparticle and phonon distributions can be
well described by the extended T' model if the bias
voltage is away from the gap edge and the phonon
trapping factor is large. For other forms of the drive
such as phonon injection via an external heat source
or laser light where the initially generated excitations
are more broadly distributed, the T'distribution is
even more closely approached for a given r„/r~~" ra-
tio.

For situations in which the T' model is a good ap-
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FIG. 5. (a) Quasiparticle distributions obtained from the
numerical solution (solid) and the extended T' model
(dashed) for the same parameters as Fig. 4 except that

ve, /~o" is decreased to 20. The dashed curve has
T' 0.82 T, . (b) Phonon spectra, numerical (solid) and ex-
tended T" (dashed).
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FIG. 6. (a) Quasiparticle distributions for a decreased bias
voltage eV=1.8 Ao and ~e,/~o=20, T~ =0, and 3 =0.01.
The dashed curve has T' =0.75 T, . (1) Phonon spectra, nu-

merical (solid) and extended T' (dashed).
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(4)

proximation, it is useful to consider the relationship
between the injected power and the steady-state gap
h. This provides a way of predicting T'and hence
completes the T'model since one no longer needs to
measure 4 to get T'. In steady state, the injected
power P must be equal to the power emitted by pho-
nons crossing the boundary. Therefore,

P= Jl dQ Q'[n(Q) —n(Q, T,)l~4S,'

IQ—

T"
Tc

Here we have replaced the transmission coefficient
for phonons near 2A by a constant and used the
low-frequency phonon density-of-states form 0'.
Taking n (Q) equal to our extended T'model form it

is straightforward to express the integral in Eq. (4) in

terms of the Debye-like energy function
ra Z

g(x) = „dy y'n(y)

0.5

0.2 04 0.6

We find that
1

P &s (kT') 2l
C &-'+ &~ a4 T»

t

kT,

rs '+ res' ~p

1 4 r

2h

+ s +TB
-1 -1 -1

Ts + 7B + res

i4
kT' 2A

Ap T"

Ts + '.rB

rs + rB + 7es

'kT, 2

~p Ta
1 —g (6)

with

rg
' =r, '(2h, T'), rs =ra'(2h, T")

given in Fig. 3, and 6 = h(T") determined from the
BCS relation. Thus Eq. (6) is an implicit relation for
6 or T' in terms of the drive power P. For T, = 0,

FIG. 7. Plots of T'/T, vs P/C for T, =0 and ve, /7pl'"=10
and 60. The dashed curve corresponds to simple heating,
Eq. (7).

we have plotted T'/T, vs P/C in Fig. 7 for
r„/rop"=10 and 60, Note that if the film was simply
heated to a temperature T' so.that n (Q) = n (Q, T'),
we would have

P
C

kT' kT,

~p ~p

This equation with T, =0 is shown in Fig. 7 as the
dashed curve.

To summarize, if ~„&&7p" as is often the situa-
tion, we find that the quasiparticle and phonon distri-
butions can be described by an extension of the Park-
er T"model. Here the quasiparticles are determined
by a Fermi distribution at a temperature T' and the
phonons are given by

r, ' n ( Q, T') + r,,' n ( Q, T,)

7s + 7es

(r, '+ rs ') n (Q, T") + r,,'n (Q, T,)
-1 —1 —17's +'rB +'res

Q&25 .

The lifetimes v, and ~B are evaluated at 0 =26„with 5 the BCS gap for a temperature T'. If the thermal cou-
pling parameter r„/r~~" and the drive level P/C are known, Eq. (6) can be used to determine lk(T") and hence
T'. Alternatively, if the nonequilibrium steady-state value of 5 is known, it can be used to determine T'. Then
r, and rs can be found from Fig. 2 or Table 1 and used in Eq. (8) to specify n(Q).
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If f(E) =f(E, Tap ) = (exp[(E —p )IkTa) + I) ', the steady-state phonon spectrum calculated from the kinetic equation

would be

n(n, T.), n&2~,
n(O) = n(A, T~)[~~ (0 p. ) +7e ]+'n(Q, T~ 2p )Tg'(0 p, ) 0 &25,

7, '(0, p, ') + ve, '+ 7~'(0, p, )

Here ~, '(0, p, ) and ~z'(0, p, ) are given by Eqs. (2a) and (2b), respectively, with f(E, T') replaced by f(F., T, , p, ) and

n(Q, Ta, 2p, ) = [exp[(Q —2p, )/kT ) —I} '. Note that, contrary to the numerical solution of the kinetic equations, the

form for n (0) predicted using this p, Fermi distribution is equal to n (0,T,) for 0 & 2h,


