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Measurements of the attenuation of pulsed longitudinal sound at frequencies of 5, 15, 25, 35,
and 45 MHz have been made in hcp *He crystals grown under constant pressure of 32.5 and
60.0 atm at molar volumes of 20.5 and 19.2 cm3/mole. The specimens used for the measure-
ments were considered to be single crystals. The attenuation versus frequency dependence
measured for a number of crystals always revealed a broad peak. The height of the peak was
dependent on the crystallographic orientation of the specimens. When the temperature was sud-
denly changed, the peak gradually shifted to a new location. The frequency dependence of the
attenuation was measured at various temperatures between 1.3 and 2.3 K, and the height and
location of the peak were found to be dependent on temperature. It was also found that the at-
tenuation increased markedly when the strain amplitude of ultrasound was increased above a
certain level. By the analysis of these experimental results the following conclusions have been
obtained: The main origin of the attenuation is the overdamped resonance of crystal disloca-
tions; the slip plane of the dislocations is the basal plane; the dominant pinning points are jogs
existing on the dislocations in thermal equilibrium; the damping of dislocation motion originates
from the energy loss due to three-phonon processes between thermal phonons and quasilocal
phonons around dislocations. The argument was essentially classical, and the quantum character

1 OCTOBER 1979

of dislocations was thus far not taken into consideration.

I. INTRODUCTION

Helium is unique in that it does not freeze under
its saturated vapor pressure even at the lowest tem-
perature, and solidification can only occur when a
considerable pressure is applied. This is a conse-
quence of the quantum-mechanical large-amplitude
zero-point motion of atoms, and thus solid helium is
labeled a quantum solid. Under the stimulus of this
point, a great deal of theoretical and experimental in-
vestigations have been made concerning solid heli-
um.'™ The acoustic method is powerful in investi-
gating the properties of the crystal lattice. There
have been many experimental studies on sound velo-
cities in various phases of *He and *He crystals. In
this respect, solid helium is distinctive in its small
sound velocities, and this is due to the weak interac-
tions between atoms in the crystal. It is regrettable,
however, that there has been no extensive study of
ultrasonic attenuation in this material, since attenua-
tion measurements are able to reveal much about the
properties of crystals.

The present authors have started the attenuation
experiment in hcp “He crystals with interest as to
whether or not the characteristic features of quantum
solid would be detected.® Afterward, our experimen-
tal results were found to be reasonably explained by
the mechanism of dislocation damping, namely, the
acoustic loss arising from the vibration of dislocations
in crystals.>” The problem of lattice defects in quan-
tum solids is also a very interesting subject.* There
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are many studies on the point defects in solid helium,
while those on crystal dislocations in the material are
still very few. We found that attenuation measure-
ment was well adapted to study the properties and
behavior of dislocations in solid helium. A prelim-
inary summary of our work has been issued® in which
a semiquantitative interpretation of our experiments
has been given. We present in this article our experi-
mental results in more complete form, and the
analysis of the results in a more thorough and con-
sistent manner.

II. EXPERIMENTAL METHOD

Crystals of hcp “He were prepared by cooling nor-
mal liquid helium in a sample cell. They were grown
under constant pressure of 32.5 and 60.0 atm at
molar volumes of 20.5 and 19.2 cm*/mole. A pulse
reflection method® was used in the attenuation meas-
urements with longitudinal sound at frequencies of §,
15, 25, 35, and 45 MHz. The measurements on the
crystals were made at temperatures between 1.3 and
2.3 K. '

A. Sample cell and cryogenics
The construction of our sample cell is illustrated in
Fig. 1. The main body is made of a copper block
with a cylindrical cavity and a couple of stainless steel

flanges to support a quartz transducer and a reflecting
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FIG. 1. Cross-sectional view of sample cell.

plate. Six stainless-steel screws and indium wire seals
are used to assemble these parts. The assembly is at-
tached to a supporting flange connected to the capil-
lary tube for supplying sample helium. The cell is
dipped in liquid helium in a glass Dewar. On the
outer bottom of the cell wall, a pit is drilled so as to
produce a cold spot on the inner bottom of the cell.
An electric current in the heater wound around the
fill capillary produces an upwards temperature gra-
dient. These circumstances are favorable in growing
a single crystal in the cell. The heater is also used to
prevent the capillary from blocking before the crystal
growth is completed. The cell has a hole in which a
carbon thermometer is inserted with Apiezon grease.
The sample cell is designed to be used either for
the pulse reflection or the pulse transmission
method. In the present experiment, the reflection
method was used. A 5-MHz X-cut quartz transducer,
gold plated on both faces, and an optically flat fused-
quartz reflecting plate are set inside the cell. Care
was taken in the method to support both of them,
this being important in order to obtain intense and
stable pulse echoes, especially at higher frequencies.
Indium wire washers and stainless-steel ring nuts
were used for that purpose. Bakelite back plates are
used for obtaining intense pulse echoes and also for
electric insulation. The hermetic seals can safely be
used repeatedly at low temperatures and under pres-
sures up to 70 atm. The electric lead from the trans-
ducer is connected to a coaxial cable made of
stainless-steel wire and tube. Parallel setting of the
transducer and the reflecting plate is achieved as fol-
lows. The end faces of the copper block are polished,
and the stainless-steel flanges are fixed to the copper
block. Then the cell is filled with distilled water, and
the ultrasonic echo patterns are observed. This pro-
cedure is repeated until a regular exponential pattern

having the maximum number of ultrasonic pulse
echoes, about thirty, is obtained. The parallelism is
estimated to be better than 1075 radian, as described
later.

The temperature of the cell is lowered by pumping
the liquid helium in the Dewar, and is measured by
mercury and oil manometers within an error of 3 mK
at 1.7 K, and is also monitored by the carbon ther-
mometer connected to a potentiometer and a recor-
der. The temperature is controlled manually by ad-
justing the pumping speed, and can be held constant
within 1 mK. The pressure inside the cell is meas-
ured with a Heise-Bourdon gauge with an accuracy of
0.05 atm.

B. Crystal growth

After being passed through two charcoal traps
cooled with liquid nitrogen, pressurized commerical
grade (99.995%) helium gas is introduced into the
cell and then condensed. At first the round-trip time
of ultrasonic pulses in liquid helium is measured at a
temperature T, (=2.20 K for the applied pressure
P =32.5 atm and 2.70 K for P =60.0 atm). The
acoustic path length between the transducer and the
reflecting plate is determined using the existing
sound velocity data of liquid helium.!° Then the
temperature of the cell is gradually reduced at the
rate of 1—3 mK/min. The liquid helium inside the
cell is not solidified at the temperature on the exist-
ing melting curve Ty (=1.86 and 2.52 K for P =32.5
and 60.0 atm), but is always supercooled to a tem-
perature T¢ (=1.76 and 2.30 K for P =32.5 and 60.0
atm). Solidification is detected by observing an ano-
maly in the temperature-recording chart or by observ-
ing a change in the ultrasonic echo patterns. Then
the inlet tube is blocked by cutting off the electric
current in the heater. Note that the volume of the
specimen, and not the pressure, is kept constant after
the blocking. The temperature of the crystal is slowly
reduced to Tp (=1.70 and 2.25 K for P =32.5 and
60.0 atm) at the rate of 1—2 mK/min. After keeping
the temperature constant at 7p for 30 min, attenua-
tion and velocity measurements are started on the
crystal.

The molar volume of the crystal is determined by
the existing melting curve,!! after regarding the
measured pressure at 7¢ as the melting pressure.
The crystallographic orientation of the grown crystal
is determined from the sound velocity value. The
velocity of sound in hcp crystals depends only on the
angle 0 between the direction of sound propagation
and the crystallographic c axis.® The elastic constants
of hep “He crystal have been determined as functions
of molar volume by several investigators.!>!> Thus
the longitudinal sound velocities can be calculated as
functions of the angle 8 with the molar volume V,, as
a parameter. For example, in crystals with V,, =20.5
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cm?/mole, the velocity is 585 and 509 m/sec at
0=0° and 90°, and has a minimum value of 494
m/sec at 58.5°. The velocity varies slowly with 6 at
9=0° and 90°, and the variation is most rapid at
6==30°. The value of 6 is double valued in the
range 44° < 0 <90°, except at § =59°. The errors
in the orientation angle determined from the velocity
value are 3%—10%, being dependent on the orienta-
tion.

There are three kinds of procedure to grow helium
crystals: growth under constant pressure, at constant
volume, and at constant temperature. The first
method has been considered to be the best in grow-
ing good single crystals, which was verified by an x-
ray method!* and by an optical birefringence
method.'® In the present experiment, about two
hundred crystals have been grown and about one
fourth of them were regarded as good single crystals
after inspecting their ultrasonic pulse echoes. Crys-
tals with a small number of echoes, with irregular’
patterns of echoes (not exponentially decayed or not
equally spaced), and with unreasonable values of
sound velocities were considered to be polycrystals or
inhomogeneous crystals, and were not used in the at-
tenuation measurements.

C. Acoustic measurements

The electronic apparatus used were an ultrasonic
generator and receiver (Matec model 6000 + 750 or
760) and a synchronizer and exponential generator
(model 12044). Also, an attenuator and impedance
matching circuits were used in the usual manner.
The attenuation is measured on an oscilloscope by
adjusting the calibrated exponential curve to coincide
with the envelope of the pulse echoes, and the sound
velocity is determined from the flight time measured
by a calibrated delayed time marker, using the acous-
tic path length already determined. The minimum
readings in the attenuation and the time values are
0.005 dB/usec and 0.2 usec, respectively. The
numbers of echoes observed in usual helium crystal
specimens are 10—20 at 5 MHz and are reduced to
2—3 at 45 MHz.

Possible sources of error in the attenuation meas-
urement will be considered in the following.

(a) Transmission loss. The reflection coefficient for
a plane wave incident normally on a boundary
between medium 1 and medium 2 is

2
P1C1 — P2C2
picy tp2cy

(B

where p; and ¢; are the density and the sound veloci-
ty in the /th medium. For solid helium and quartz,
pi=0.2 g/cm?, ¢;=5x10*cm/sec and p; =2.2
g/cm®, c;=6 x 10° cm/sec. Therefore, in the present
case R is almost 100%, and the loss caused from the

transmission of waves out of the end faces of the
specimen is negligible. ’

(b) Diffraction loss. When an ultrasonic wave with
wavelength A excited by a circular transducer with ra-
dius a propagates distances farther than xo=a?/2\,
spreading of the beams occurs and diffraction loss
arises. For the case of S MHz sound in helium crys-
tals and for @ =0.6 cm, this distance becomes x;=18
cm, which corresponds to the distance for ten pulse
echoes. We used more than ten echoes for the at-
tenuation measurements, so the diffraction loss
should be considered. The apparent attenuation
caused from the loss is roughly estimated as’

Aa=1/(a?/r) =28 x107? dB/cm
=1.4x107% dB/usec . )

This is 7% of the minimum value of the attenuation
measured in our helium crystals, 0.02 dB/usec. The
loss becomes even smaller for the case of sound with
higher frequencies. .

(c) Effect of nonparallelism. When the transducer
and the reflecting plate are not accurately parallel to
each other, an apparent attenuation is observed, the
magnitude of which is estimated to be’

_ 8.68672f2a%s’n

A
« cL

dB/sec , 3)
when the nth echo is observed. Here fand c are the
sound frequency and velocity, L is the acoustic path
length, and & is the angle of inclination. From this
formula, the angle & has been evaluated by measur-
ing the attenuation in distilled water filled in the sam-
ple cell and by comparing the value with those deter-
mined accurately by other authors.!” The result was
8 =107’ radian. Then the value A« is estimated to
be smaller than 1072 dB/ usec for the case of attenua-
tion measurement at 25 MHz in helium crystals. The
parallel setting seems to be not disturbed when the
sample cell is cooled slowly to low temperatures,
since the attenuation shows a reasonable value for
liquid helium condensed in the cell.

(d) Measurement error. In practice, the largest error
in the attenuation measurement may arise from the
fitting of the exponential curve to the echo pattern,
especially when the number of echoes is not so large.
The errors were estimated from repeated fitting of
the curve, and they were typically 3% at S MHz and
20% at 45 MHz.

III. RESULTS AND ANALYSIS

There are two important external variables in
acoustic loss measurements: the frequency and the
amplitude of the vibration. Temperature is another
variable, as in usual solid-state experiments. Crystal-
lographic orientations and, in the case of solid heli-
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TABLE 1. Constant values of hcp “He.

Melting pressure Py, (atm) 325 60.0
Melting temperature Ty, (K)? : 1.86 2.52
Molar volume V,, (cm3/mole)? 20.5 19.2
Density p (g/cm?)? . 0.195 0.208
Lattice parameter a (10™° cm)
Burgers vector b (1078 cm) 3.64 3.56
Elastic constants c; (108 dyn/cm?)° e 5.05 7.67
C12 269 424
e 1.35 1.97
3 6.68 9.85
Cas 1.35 1.97
Shear modulus G (108 dyn/cm?)¢ 1.47 <216
Poisson’s ratio v4 0.294 : 0.298
Debye temperature ©p (K)© 25 28

3Reference 11.

bCalculated from the data by V. J. Minkiewicz, T. A. Kitchens, F. P. Lipschultz, R. Nathans, and

G. Shirane, Phys. Rev. 174 267 (1968).
°Deduced from the data in Refs. 12—-15.

dAveraged value by the method of Voigt and Reuss. See O. L. Anderson, in Physical Acoustics,
edited by W. P. Mason (Academic, New York, 1965), Vol. III B, p. 43.
®Estimated from the data by G. Ahlers, Phys. Rev. A 2, 1505 (1970).

um, molar volumes of crystals are also important
parameters. We have conducted experiments which
were intended to show the dependences of ultrasonic
attenuation on these variables and parameters. The
results are analyzed consistently on the basis of the
dislocation damping mechanism. Other possible ori-
gins of the sound attenuation will be discussed later.
Values of various physical constants of helium

maximum are different in different crystals and also
are dependent on temperature. These situations are
often observed in ordinary crystals, and are well ex-
plained by the theory of the overdamped resonance
of vibrating crystal dislocations.!®'® We will adopt
the theory to analyze our experimental results.

crystals used in the present analysis are collected in (a') T (b') LI A
Table I as a reference. wobk Y- 205 cm¥mole | " Vm =205 cm¥mole |
L 1 =170k 1 T =170k i
20k @ = 24° 1 e =59° i
A. Frequency dependence q
o 0~—0~0
. . : : =10 + / N
In the following, the acoustic loss is represented by ‘ /Q\ Q\i o
the decrement or the internal friction A, defined as osp %\ 1”7 4
the energy loss per cycle of vibration divided by twice
the vibrational energy. ‘In the case of small decre- —+ -+ ' ———++HH
ment, it is related to the ultrasonic attenuation as (c) Ve = 20.5 cmYimole (d) Ve = 1.2 cmYmole
A=aclf @) 50r 1 -139k T T -200K ]
’ q - o n o 7
) . . - 30} =59 s 8 =72 n
where « is the attenuation coefficient in nepers/cm, ¢ e 1 ]
is the sound velocity in cm/sec, and f is the frequen- ° /6\ 00\ o
cy in Hz. IOL/ 1 / \0\0\_
The experimental results on the frequency depen- o
dence of decrement are illustrated in Fig. 2. Speci- o5k 47 4
mens are distinguished by their molar volume V,, . L . Lo 1Ll
5 10 20 30 50 5 10 20 30 50

and their orientation angle 8. The error bars indicate
the uncertainty in the measured values estimated as
discussed before. The A-vs-f plot always reveals a
broad peak, and the height and location of the peak

f (MHz) f (MHz)

FIG. 2. Frequency dependence of decrement. The curves
represent the results of parameter fit.
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B. Resonance loss

In the theory of Granato and Liicke,!® dislocation
lines fixed by discrete pinning points and forced into
vibration by an acoustic wave are considered. The
loop cof dislocation is regarded as a string of length L,
the pinning length, vibrating in a viscous medium,
and the equation of motion is

+BM—Cau bo , (5)

6 K ot dy?
where u is the displacement of dislocation, y is the
coordinate along dislocation, 4 (=mpb?) is the effec-
tive mass of dislocation, B is the damping constant,
C [=2Gb*/w(1 —v)] is the line tension, b is the
Burgers vector, o is the stress produced by the
acoustic wave, and p, G, and v are the density, shear
modulus, and Poisson’s ratio of the material. The
acoustic wave impinging on the dislocation loses its
energy through the damping term, and the loss is
dependent on the sound frequency. Sharp resonance
absorption occurs at the angular frequency
wo=(w/L)(C/A)"* when D =woA4 /B is large. When
the value of D is small, namely, for the case of large
damping, the decrement versus frequency shows a
broad peak and the peak maximum is located at a
frequency lower than wg.. In this case of overdamped
resonance, the decrement can be expressed as

AowT

A =——7—;
N

Ao=8n QGbH*ALY wC ,

6)
7=n'BLY7*C

Here A is the dislocation density, (1 is the orienta- -
tion factor for taking into account the fact that a
dislocation can move in a definite direction on a de-
finite slip plane, and n =n'=1o0or n =44, n'=11.9
for the & function or the exponential distribution of
the pinning points on the dislocations. The decre-
ment has a maximum value of A, = %Ao at the fre-
quency f,=1/2n7.

The above-stated formulas were used to analyze
the present experiment on frequency-dependent de-
crement. The values of two quantities A, and f,,
were determined by a least-squares fit of the data to
the theoretical formulas. The curves in Fig. 2
represent the fitted ones, and the fitting is reasonably
good.

C. Orientation dependence

The frequency dependence of decrement was meas-
ured for a number of crystals at 7=1.70 and 2.25 K
for V,, =20.5 and 19.2 cm?/mole specimens, and the
A, and f,, were determined. In Fig. 3(a) and 3(b),
the two quantities f,,A,, and f,;'/? are plotted against
the orientation angle 0 of the crystal. Data for speci-

mens which are double valued in orientations are
shown by small black circles and large circles. The
quantity f,,A, is strongly orientation dependent,
while the quantity £,;;'/2 is not.

From the theory of overdamped resonance of
dislocations, the two quantities are represented as

Sl = 2nGbY/win’) (A/B)Q
)
2= (2n'/7C)VBL

A general method for calculating the orientation fac-
tor € has been developed for the traveling-wave
(MHz measurement) and the standing-wave (kHz
measurement) cases.”’ We assume that the slip plane
in the hcp “He is the basal plane, and calculate the
for a traveling longitudinal wave (see Appendix A).
The orientation factor is zero for §=0° and 90°,
since sound waves propagating normal or perpendicu-
lar to the slip plane do not produce a shear stress
component on the dislocation. A constant multiple
of Q was fitted to the experimental values of f,, A,
and the curve in Fig. 3(a) represents the result,
showing a fairly good fit. The scatter in the data may
be mainly due to the differences of dislocation densi-
ty in different crystals. In this plot we use the quan-
tity fm A, and not A, because the latter contains
both the dislocation density and pinning length, and
the scatter is magnified when it is adopted. It is not-

(a)l T T T T T T T

O Vm=20.5cm¥/mole

L ' 4
60 ® Vp,=19.2cm3/mole % .

50F o \ o 1
~ ° / °\g'
£ 4ot o \ 1
© o o0
= 30r ° o A
<]s d ° -L——o
+ 20} /o - %_{ .

@ — @

10 =
~ 0 +—rt t } t } + t
> 60f(b) 3 E
N
N 4LOF o E
e | 8 N 0.0%_ _ ___
g" 20F %75 —3--ogg—-—e-— B
‘.-E 0 1 1 1 L 1 A 1 1

0 30 60 90
O (degree)

FIG. 3. (a) Orientation dependence of SmAm- The curve

represents the result of fit. (b) Values of f,7!/2. The bro-
ken lines represent the average values.
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ed here that the orientations of crystals which are
double valued can be uniquely determined after ob-
serving the values of f,,A,. The orientation angles
corresponding to the data points represented in the
figure by large circles are considered to be deter-
mined. The value of f,,A,, seems to be very small at
0=0° and 90 °, which shows that the main origin of
the acoustic loss is due to dislocation damping in the
present case.

The orientation independence of f,;'/2 shown in
Fig. 3(b) is as expected from the theory. The scatter
in the data may be due to the differences of pinning
length. However, the scatter is not so large, about
20% above and below the average. The average
values of f;!/2, which are shown by the broken lines
in the figure, are somewhat different for crystals with
different molar volumes. This may be caused by the
differences in values of C and B, and in average
values of L for the two kinds of crystals.

It can be concluded here, from the frequency
dependence and the orientation dependence experi-
ments, that (i) the overdamped resonance of disloca-
tions is the main origin of the attenuation, (ii) the
slip plane of dislocations is the basal plane, and (iii)

the specimens used are considered to be single crystals.

D. Pinning points

To develop the present study further, consideration
of pinning points on dislocation lines is desired. Im-
purity atoms are able to pin down a dislocation, and
the concentration of impurities on a dislocation is

¢ =coexp(E;/kgT) , ' (8)

where c¢g is the impurity concentration in the crystal,
kg is the Boltzmann constant, and E; is the interac-
tion energy between the impurity and the dislocation.
The elastic interaction energy can be calculated as?!

E=[GU+v)/3x(1-v)]4mb’e |

where € is the misfit parameter for the solute and the
solvent atoms. In the case of “He crystals, the only
possible impurities are *He atoms. Their concentra-
tion cq is usually considered to be 1 ppm or less, and
€ can be calculated from the molar volumes of the
3He and *He crystals with the same melting pressure.
It turns out that e=% and E;=3.8 x 1076 erg for

Ve =20.5 cm?/mole, and then ¢ =5.0 x 107¢ for
co=1 ppm and T =1.70 K. The value of cis very
small and therefore *He impurities are not effective
pinning points. Vacancies are other point defects
which interact with dislocations, but they are ex-
tremely movable in solid “He and cannot be stable
pinning points. Kinks on dislocations are easy to
move since they are on the slip plane, and are also
excluded from consideration. Crystal dislocations
form a three-dimensional network and their nodal

points can be very stable pinning points.

Other possible pinning agencies considered were
jogs on dislocations. A number of jogs can exist on
dislocation lines in thermal equilibrium,?? and the
motion of jogs should be hindered because of the
high Peierls stress, so that the jogs are able to pin
down dislocations.?® In a hcp “He crystal as shown. in
Fig. 4, we consider the (IOTO) edge dislocation with
-;—(1710) Burgers vector, and further consider the
(1011) jogs which are shortest in length. Jogs with
short length and small self-energy will be most
favored to form. The increase of the configurational
entropy due to jog formation is shown to be
kg In[2"2N1/n'(N — n)'l, where N and n are the
numbers of atoms and jogs on the unit length of
dislocation. The number of jogs in thermal equilibri-
um can be calculated from the condition of minimum
free-energy. The vibrational entropy is omitted, since
it is small compared with the configurational entropy.
The pinning length L (=1/n) is then given as

L =~/6b exp(Ejoe/ksgT) . )
The self-energy of a jog Ej, is shown to be?*
Eig=0%0'G[4m(1 —v) , (10)

and here b' is the length of the jog. In crystals with
Vi =20.5 ca®/mole, b' = b and the jog energy is

Ejos =8.0 X 1076 erg. Then the pinning length is

L =27x10"%cm at T=1.70 K. The value of L is
smaller than the network length of dislocations Ly
which is usually considered to be 1075—~10~* cm (see
Fig. 4). The concentration of jogs on dislocation

¢ =n/Nis about 1072, which is very large. This large
concentration or small pinning length originates from
the small value of G and therefore of Ej,, in helium
crystals. Thus it is considered that the jogs are effec-
tive in pinning the dislocations. It should be remem-
bered that the values of f,;'/? in Fig. 3(b), which is

b

Dislocation

Jog
|

Dislocation ﬁ

FIG. 4. Jog-pinning model
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proportional to the pinning length L, are not so dif-
ferent among crystals with the same molar volume.
This fact is favorable to the present idea of disloca-
tion pinning by thermal equilibrium jogs.

It is noted here that the pinning jogs are actually
distributed randomly on the dislocation lines. The
length L in Eq. (9) represents the mean pinning
length. As the case of the impurity pinning,'® the
number of dislocation loops with lengths between /
and [/ +dlis

Ndl = (A/LY) exp(—I/L) dl , an

where A is the dislocation density in the crystal.
E. Time dependence

The following experiment has been made to obtain
information concerning the pinning points. After the
temperature of a crystal was held constant for a suffi-
ciently long time, it was suddenly changed at a rate of
several mK/min to another temperature and then
kept constant. The frequency dependence of the at-
tenuation was then measured at adequate time inter-
vals. The quantity f,;‘/z determined from the
attenuation-versus-frequency curve is illustrated in
Fig. § as a function of elasped time for the case of
sudden decrease Figs. 5(a) and 5(b) and sudden in-
crease Fig. 5(c) of temperature. The value of f,;'/72,
which is proportional to the pinning length L, gradu-
ally increases or decreases to a new equilibrium
value. This result is favorable to the jog-pinning
model, since the equilibrium value of L is smaller at
high temperatures, as can be seen from Eq. (9). In
the case of impurity pinning, the behavior should be
in the opposite direction [see Eq. (8)]. It is also diffi-
cult to imagine that the network length of disloca-
tions changes systematically when temperature is

T T T i T
(a) R .
0:=42° 175K —> 169K
30t o3 ° o o :
- ]'O- 3 4 'S i ]
3 Lo j
- P 8=36° 173K > 170K
v 30} 1
o /Q,o——o o o) o
e 1o <
~ 7
o 10' N ) L I ]
: ; t + }
L (C
- () o 37° 170Kk > 175K
3.0:\0\§ oo o o
"Ob " A " " 1
0 50 100 150

t (min)

FIG. 5. Changes of f,,,'”2 with time after temperature is
suddenly decreased (a), (b) and increased (c).

changed. The predominance of jog pinning thus ap-
pears to be probable in helium crystals in the present
case.

F. Amplitude dependence

It is often observed that the decrement in crystals
is enhanced markedly when the amplitude of vibra-
tion becomes sufficiently large, and this phenomenon
can be successfully explained by considering the hys-
teresis loss arising from the depinning of dislocations
from the pinning points.!®* From the experiment on
the amplitude dependence of decrement, one can ob-
tain much knowledge about the pinning points. Such
measurements are usually made at kHz range fre-
quencies. The MHz sound waves can be used for
soft materials,? since the amplitude of ultrasonic
waves is large in them.

The attenuation of S MHz sound has been meas-
ured at 1.70 K in helium crystals with V,, =20.5
cm’/mole, and the amplitude of the wave was varied
by changing the voltage applied to the ultrasonic
transducer. Results for two different crystals are
shown in Fig. 6, where decrement A is shown as a
function of S, which is the relative value of the ap-
plied transducer voltage read by an attenuator in the
electric circuit. Large amplitude dependence can be
seen, and the A-vs-S is reversible, namely, A is the
same when S is increased and again decreased. No
meaningful temperature variation in the specimen
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FIG. 6. Amplitude dependence of decrement. The
abscissas are the relative values of the amplitude. Inserted
figures show the frequency dependence of the decrement.
Curves in these figures represent the theoretical ones.
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was observed when S was changed. Inserted figures
show the frequency dependence of decrement for the
specimens measured at the lowest amplitude. Note
that the lowest amplitude is always used in experi-
ments other than the amplitude dependence experi-
ments.

The amplitude dependence of decrement in crystals
of ordinary materials often orginates from the break-
away of dislocations from impurity atoms.!® In heli-
um crystals, however, the number of impurity pin-
ning points is too small. It is difficult to assume that
the network length of dislocations is altered by the
stress of sound waves and that the observed ampli-
tude dependence is produced, since the network pin-
ning is very stable. The reversible amplitude depen-
dence also excludes the possibility of temperature ef-
fect which might be produced by the input energy of
sound waves. In the next paragraph, the present ex-
perimental results will be analyzed by the "jog-
depinning" mechanism.

G. Hysteresis loss

A theory of hysteresis loss is proposed as follows.
When an external stress is applied, dislocations at-
tempt to move the pinning jogs. The jog is able to
move in the (1710) direction conservatively, but the
motion is opposed by the Peierls force for the jog.
When the stress becomes large enough, irreversible
motion of the jog or jog depinning occurs. For large
alternating stress, a hysteresis-type loss of vibrational
energy arises.

The jogs are randomly distributed on dislocations.
Let us consider a part of the dislocations which has
three jogs on it, namely, a jog on each of its ends and
a jog in the middle of the two jogs. We call it a dislo-
cation "segment”. As can be seen later, jog depinning
occurs at the middle jog when the length of the seg-
ment is fairly large. Therefore we take only long seg-
ments into account. Then the end jogs can be justifi-
ably regarded as being fixed, because the probability
of a long segment adjoining another long segment is

"not large. Let the distances between the end jogs and
the middle jog be /; and /,. When the middle jog
moves the distance x from its equilibrium position,
the increase of the potential energy of the dislocation
segment is

Ux)=C{l(} +xH2—1]
+[(13 +xDV2 -1}
+(af/2m)[1 —cosQnx/a)l , (12)

where C is the dislocation line tension, a is the lattice
parameter, and fis the jog Peierls force. Here a
sinuscidal Peierls potential is assumed. The first
term of U(x) is approximated by %sz(lr‘ +1;1),
since /1, /; >> x. The force required to move the jog

‘by distance x is then
F(x)=Cx({'+15Y) + fsinQwx/a) . (13)

The shapes of U(x) and F(x) are drawn in Fig. 7(a).
When the second terms in U(x) and F(x) are large
compared with the first terms, the maxima and mini-
ma in U are located at x = na and -;—na, and those in
Fatx =(n +71‘—)a and (n —-;—)a, where 7 is an in-
teger. The extrema, however, appear when a value

of x which satisfies dF/dx =0 exists. The condition
is

@CReHUTN+IH) <=1, (14)

namely, only long segments need be considered in
the following discussion. When an external stress is
applied to a dislocation, the force F(x) is balanced by
the force acting on the jog

F*=20b(+1) (15)

where o is the resolved shear stress exerted on the
dislocation line. Now an alternating stress is con- .
sidered. When the stress is increased, F(x), and ac-
cordingly x, increase. The value of x jumps when F
reaches a maximum [see Fig. 7(a)]. The nth jump
occurs (e.g., B — C) when the following condition is
satisfied:

F((n=3a)=F* . (16)

In the case of decreasing stress, the nth reverse jump

(a)

(b)

FIG. 7. Jog depinning and hysteresis loss.
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(e.g., E — F) occurs when
F(tn=9a)=F* . an

The strain produced by the dislocation movement is
E=bx([1+lz) . (18)

The stress o versus strain € thus shows hysteresis as
drawn in Fig. 7(b). The movement of the dislocation
segment is illustrated in Fig. 7(c). The letters 4 to G
in these figures correspondingly represent typical
states in the hysteresis. The energy loss arising from
the hysteresis is approximated as

AE=2 3 (Ad),(Ad), , (19)

n>0

where Ae and Ao are the quantities as shown in Fig.
7(b) and the suffix n refers to the nth jump. The
values of Ae and Ao can be calculated using Egs.
(16)—(18). The rounded shoulders of the hysteresis
loops shown in the figure originate from the
sinusoidal Peierls potential. The error in AF arising
from this effect is estimated to be less than 10%.
The quantity AE is really a function of /, and /,, and
the total loss is obtained as

AE = f f AEN(iy,1,) dhdl, , 20)

and here N (I,1,) dl, dl, is the number of the seg-
ments with the lengths between /; and /, +dl; /; and
I, +dl,. The detailed calculation of AE, is shown in
Appendix B. The decrement is then represented as

A=QAE/2E, E=7Y2G , 21

where () is the orientation factor and £ is the vibra-
tional energy. The stress 7 is that applied to the
specimen, and is related to the resolved shear stress
o as o= Rr, where R is the resolved shear stress
factor. In the present experiment, the absolute
values of the stresses are not known, and they are
proportional to the voltage applied to the ultrasonic

transducer. We here put o =kS, where k is an un-
known constant and S is the relative amplitude meas-
ured in the experiment. The final expression for the
decrement from hysteresis loss is

Ap= (18 + ;8 exp(—ceS™)
(22)
c=[QO)"?/L1k1

c1=14aGC) 2 R*Q/LY(K A) k=12
¢r= (4aGR2Q/L) (K A) (fL —aC)k™2 .

Here K is a constant which appears in the procedure
of calculating AE,, (see Appendix B). In the above
formulas, L can be calculated from Egs. (9) and
(10), Q is calculated as shown in Appendix A. The
resolved shear stress factor is represented as

R =cosfsinfcos¢, where 0 is the angle between the
¢ axis and the sound propagation direction, and ¢ is
the angle between the slip direction and the projec-
tion on the slip plane of the sound propagation direc-
tion. After assuming uniform distribution of disloca-
tions in three slip systems, the average value (R?)
can be calculated. The unknown quantities in Eq.
(22) are thus k, f, and KA. The total decrement of
the specimen is

A=A, +A, , (23)

where A, is the decrement from resonance loss which
is independent of amplitude.

By fitting the experimental data of the amplitude
dependence to Egs. (22) and (23), the constants A,,
cg, €1, and c; have been determined. The curves in
Fig. 6 have been fitted, and the fitting is excellent.

In Table II the determined values of the constants

~ are shown for four specimens together with the cal-

culated values of (R?) and Q. Using these values
one can determine two unknowns k and f. The con-
stant K is calculated when the k and f are known
(see Appendix B), and finally the values of A can be
obtained. The results are shown also in Table II.

TABLE II. Constants and quantities determined from the amplitude dependence of decrement

for four specimens.

0 (degree) 36
10%A, 4.47
o 19.5
o 41.3
C2 ‘—'778
(R%) 0.038
Q 0.094
k (10% dyn/cm?) 1.3
£ (10710 dyn) 5.0
A (10° cm™?) 6.3

Afreq (10° cm™?) 3.1

38 39 45
4.05 3.68 6.20

12.9 17.3 15.3
3.68 21.2 29.6

—0.745 -3.21 —6.43
0.039 0.040 0.042
0.10 0.11 0.13
2.9 1.6 2.1
6.3 6.5 5.5
3.2 33 6.4
3.1 6.1 6.8
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The Ageq in the last line of the table represents the
dislocation density independently determined from
the frequency dependent decrement of the speci-
mens. Specifically, Eq. (6) has been fitted to the data
as shown in the inserted figures of Fig. 6, and the
values of Agq were determined from the peak height
by using the calculated value of L after assuming an
exponential distribution of pinning points.

The obtained results will be considered in the fol-
lowing. The scatter of the values of f among speci-
mens is not large, which is reasonable because the
jog Peierls force should be the same. The average of
fis 5.8 x107'% dyn. The jog Peierls stress is calculat-
ed as oy=/f/bb' = f/b?, and the ratio o;/G is
3.0 x 1073, For dislocations on the slip plane in usual
close-packed crystals, the ratio is considered to be
107 or less.2* It is reasonable that the ratio is larger
for the jog Peierls stress, since jogs are dislocations
which are hard to move. There is a satisfactory
agreement between the dislocation densities indepen-
dently derived from the amplitude dependence and
the frequency dependence. This fact shows that the
present method of analysis is reliable. A dislocation
density of the order of 10° cm™ is not unreasonable,
because helium crystals are very soft and may be
easily strained during the crystal growth. Finally,
from the values of k the stresses in the specimens
can be calculated. The resolved shear stress o is
2 %X 102-2 x 10% dyn/cm? for S =1-10. Then the
stress and strain along the sound propagation direc-
tion are 10°—10* dyn/cm? and 2 X 1076—2 x 1073,
respectively. Moreover, in usual MHz pulse ultra-
sonic experiments the displacement amplitude pro-
duced in the specimen by a quartz transducer is
shown to be 1078—10~7 cm when a voltage of
100—1000 V is applied.?® The strain amplitude is es-
timated after dividing the displacement by half of the
wave length of the sound, and the amplitude is
1076—107° in the case of helium crystals. This value
is in agreement with the above result. It is noted
that the strain amplitude is large in soft crystals and
amplitude dependence experiments can successfully
be made.

It can be concluded here, from the time depen-
dence and the amplitude dependence experiments,
that (i) the dominant pinning points on dislocations
are jogs, and (ii) the pinning length can be calculated

from the concentration of jogs in thermal equilibrium.

H. Temperature dependence

The frequency dependence of attenuation in crys-
tals has been measured at successively higher tem-
peratures between 1.38 and 2.25 K. Each
attenuation-versus-frequency measurement was made
after keeping the temperature constant within 1 mK
for 30 min. Between successive measurements the
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FIG. 8. Temperature dependence of dislocation density
(a) and damping constant (b) for different crystals with
molar volume of 20.5 cm3/mole. The curve in (b)
represents the result of parameter fit.

temperature was increased slowly (less than 1
mK/min), because the attenuation was unreasonably
increased when the temperature was changed rapidly.
The data at each temperature were fitted to the over-
damped resonance formulas Eq. (6). Two quantities
fm and A,, were found to be dependent on tempera-
ture. The dislocation density A and the damping
constant B were determined as functions of tempera-
ture, where an exponential distribution of pinning
points was adopted and the pinning lengths were cal-
culated from Eqgs. (9) and (10). Experiments were
made for three 20.5 cm®/mole crystals and three 19.2
cm®/mole crystals, and the results were as shown in
Figs. 8 and 9.

The dislocation density A increases with tempera-
ture, but the temperature dependence is different in
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FIG. 9. Temperature dependence of dislocation density
and damping constant for crystals with molar volume of 19.2
cm3/mole.
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TABLE III. Constants and quantities concerning damping
constant for two molar volumes.

Vyy (cm®/mole) 20.5 19.2
By (cgs) 0.235 0.0709
Ep (K) 12.0 : 14.1
Op/Eg 2.1 2.0
N, (102 cm™3) 2.9 3.1

¢ (10* cm/sec) 2.46 2.89
0 (10° dyn/cm?) 5.2 4.9
0/G 35 23

every specimen. This may be explained as follows.
The helium crystal is in a specimen cell and has no
free surfaces, and the temperature of the crystal is
changed under the condition of constant volume.
Then thermal stresses are produced and dislocation
sources are activated in the specimen. The disloca-
tion density is thus increased, and its change depends
on the details of the thermal stresses and the disloca-
tion sources.

The damping constant B increases with tempera-
ture. It is important that the data for different speci-
mens fall on a common curve when the molar
volume of the specimens is the same. This result is
reasonable, because the damping constant for disloca-
tion movement in pure materials is considered to be
an intrinsic quantity of the crystal. It was found that
the temperature dependence of the damping constant
was well expressed by the relation

B =Bgexp(—Eg/T) . (24)

The curves in Figs. 8(b) and 9(b) have been fitted,
and the determined values of the constant By and Ep
are in Table III. Interpretation of the results will be
made in the next paragraph.

I. Damping constant _

There are many theories on the damping constant
for dislocation motion in insulating crystals.2!-2773!1
The magnitude and also the temperature dependence
of the damping constant determined in the present
experiment cannot be explained by these theories.
For example, anharmonicity theory® gives the tem-
perature dependence B « T3 and the magnitude
B=1x10""cgs at 1.7 K for a hcp *He crystal with
molar volume of 20.5 cm®/mole, and fluttering
theory®! gives the dependence B « T° and the magni-
tude B =6 x 1077 cgs. The present authors propose a
new mechanism of dislocation damping in the follow-
ing.

In the vicinity of a lattice defect, the atomic confi-
guration and the interatomic force constants are very
different from those in a perfect lattice, and the state

of atomic vibration may also be different. We as-
sume that there exists a lattice vibrational state spa-
tially localized near the dislocation core, and the state
has a vibrational frequency wy which is lower than
the Debye frequency of the lattice. Let the state be
called the quasilocal mode of phonons. The mode is
regarded as a standing wave enclosed in a limited re-
gion around the dislocation line, and the wave is
composed of two waves with propagation vectors nor-
mal to the dislocation line and opposite to each other
in direction. For a uniformly moving dislocation, the
frequency of the quasilocal phonons should split into
two because of the Doppler effect: namely, the fre-
quency wg changes to wy + Aw = w * wy(v/c), where
v is the velocity of the dislocation movement and c is
the sound velocity. This state is realized for quasilo-
cal phonons by absorbing and emitting thermal pho-
nons in the crystal through the three-phonon
processes. The processes are

(wp) +(Aw) = (wo+Aw) ,
, 25)
(wg) — (Aw) + (wy— Aw)

where Aw represents the frequency of the thermal
phonons. Let the numbers of the first and the
second processes occurring in unit time per unit
length of dislocation be Py and P,. The energy
transferred from the quasilocal phonon system to the
crystal in unit time is

W=rkAw(P,—P) . (26)

The values of P and P, can be obtained using a
quantum-mechanical method.’? The energy W is re-
quired to move the dislocation with the quasilocal
phonons. The force acting per unit length of moving
dislocation is by definition equal to F =Bv. Then
the energy dissipated in unit time is Fv = Bv?, which
should be equal to W. Accordingly, the damping
constant B can be calculated as:

B=W/?" . 27)

The wave vectors of quasilocal phonons are, howev-
er, not necessarily parallel to the direction of the dis-
location movement, and the above value for B should
be multiplied by an averaging factor 2/#. The final.
expression for the damping constant is shown to be

_ BfN,r?0?

Gmpicl exp(—fwg/kgT) , - Q29

B

where p is the material density, c is the sound vgloci-
ty, N, is the number of atoms per unit volume of the
crystal, r is the radius of a cylindrical region in which
the quasilocal phonons exist, and Q is a constant
representing the crystal anharmonicity. In the contin-
uum approximation, Q is expressed as a combination
of second- and third-order elastic constants.’> The
derivation of Eq. (28) is shown in Appendix C.
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The above theoretical formula, Eq. (28), shows the
~ same temperature dependence as the experimental
relation, Eq. (24). As shown in Table III, it can be
seen that the experimental value of Ep is just half of
the Debye temperature, ®,. This means that the
frequency of the quasilocal phonons is half that of
the Debye frequency, and the wavelength is four
times the lattice parameter a. Accordingly, the quasi-
local phonons are considered to exist in a cylindrical
region of radius 2a around the dislocation line. This
conclusion seems to be reasonable since the atomic
configuration is much distorted in the dislocation
core and the diameter of the core is usually con-
sidered to be several times the lattice parameter. By
comparing the experimental value of By with pre-
exponential factor in Eq. (28), one can determine the
value of the anharmonicity constant Q. Here we use
the relation r =2a and wo = kg Eg/ %, and also other
constant values tabulated in Table III or Table I. We
adopted the sound velocity ¢ for the slow transverse
sound propagating in the basal plane of the crystal
(see Appendix C). The thus-determined values of Q
are listed in Table III. The last line shows the ratio
of Q to the shear modulus G. These results are very
reasonable, because Q is a combination of the
second- and the third-order elastic constants and is
expected to be an order of magnitude larger than the
second-order elastic constants.’ The quantity Q/G is
considered to be representative of the crystal anhar-
monicity. It is understandable that the value is small-
er for crystals with smaller molar volume, because
the lattice anharmonicity is reduced in more closely
packed crystals. Finally, it is noted that the damping
mechanism considered here is important for materials
with small sound velocities.

The experimental results on the damping constant
are consistently explained by the mechanism of
quasilocal phonon damping. The actual existence of
the quasilocal phonons; however, is the problem.
The present authors used the same idea to analyze
their experiments on the low-temperature thermal
conductivity and specific heat in crystals with disloca-
tions,>* and obtained reasonable success in the
analysis. Further experimental studies to verify the
reality of quasilocal phonons are now being
scheduled. There are several theoretical studies on
the phonon modes in dislocated crystals.’> These
theories, however, are not directly concerned with
our quasilocal phonon model. Much more experimen-
tal and theoretical investigations are required to justify
the present proposition for the damping mechanism.

IV. DISCUSSION

In this section, three subjects will be taken up.
First, experimental studies on the attenuation of
acoustic phonons, ultrasound, and mechanical oscilla-

tion in solid helium made by other investigators are
briefly mentioned. This review is closely related to
the following discussion. Second, the possible
sources of sound attenuation in solid helium other
than dislocation damping are fully discussed. The
purpose is to consider whether the present experi-
mental results are explained by other mechanisms.
Third, experimental and theoretical studies concern-
ing dislocations in helium crystals are described and
compared with the present study.

A. Attenuation experiments

The attenuation of GHz phonons has been meas-
ured as a function of temperature in hcp “He by
Dransfeld, Hunklinger, and co-workers,*%37 where
the lifetime of longitudinal phonons generated by the
stimulated Brillouin scattering was determined by an
optical method. The attenuation showed approxi-
mately a T* temperature dependence, and was attri-
buted to three-phonon processes between acoustic
and thermal phonons. A comparison with the
Landau-Rumer theory gave satisfactory agreement
with the data. They also found that the third-order
elastic constants of the helium crystal were an order of
magnitude larger than the second-order elastic constants.

The measurement of ultrasonic attenuation by the
pulse echo method has presented great experimental
difficulties, and only qualitative studies have been
made at the early stage.’® Recently two papers ap-
peared, which were presented by Calder and Franck®
and Iwasa er al.** Both of them measured the at-
tenuation of MHz longitudinal ultrasonic waves of
three frequencies as a function of temperature in hcp
“He crystals, and their experimental results have
many common features. Iwasa et al. considered that
the origin of the attenuation was the crystal disloca-
tions. Franck er al. tended to interpret their results
as being due to phonon interactions, but had no de-
finite conclusion.

Two relaxation maxima have been observed by
Andronikashvili et al.*! in the temperature depen-
dence of low-frequency damping for transverse oscil-
lation of solid helium in a capillary. They 'suggested
that the origin of the relaxation was the movement of
defectons in helium crystals, but a detailed discussion
was not presented. Tsymbalenko has measured the
damping of oscillation of a kHz quartz resonator
frozen into solid helium in a cell.*> The temperature
dependence of the logarithmic decrement and its
dependence on the strain amplitude of the resonator
were studied. Dislocation damping was considered in
order to interpret the experimental results.

B. Sources of attenuation

When specimen crystals are polycrystalline, sound
attenuation arises from the scattering of the wave by
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grain boundaries. There are two cases for the scatter-
ing, namely, Rayleigh scattering for R < A/27 and
stochastic scattering for R > \/2w, where R is the di-
mension of the grains and X is the wavelength of
sound. The attenuation is respectively proportional
to R3f*and Rf %, where fis the sound frequency.
For the case of f=5 MHz and the sound velocity

¢ =500 m/sec in helium crystals, A\/27=1.6 x 107
cm. The solid helium grown under constant pressure
crystallizes into a single crystal or a few large crystals,
and in the latter case the grains are as large as several
mm.® Thus stochastic scattering may occur in poly-
crystalline helium. The attenuation is then expressed
a5t :

1672 R[Z
= 2
o 1575 pzc6F , (29)

where p is the density and F is a function of elastic
constants of crystal. For f=5 MHz, R =107! cm,
and p=0.20 g/cm® for molar volume of 20.5
mole/cm’, the decrement in the helium crystal
should be A=0.74. This value is very large com-
pared with the experimental values of

A=(5-15) x 10~ in the specimens we used. Ex-

- tremely large attenuation was observed in some of
the crystals grown, and they were considered to be
polycrystals. We have not used such crystals in the
attenuation measurements.

One origin of ultrasonic attenuation is the ther-
moelastic effect, which arises from a production of
entropy and a dissipation of energy accompanied by
heat flow between the compressed and expanded re-
gions in a wave-propagating solid.® The loss is of the
relaxation-type and its expression for a hexagonal
crystal is

T [ciy +C1’2)Bl+cllsﬁi|]2 T
G, c11 1 + w?7r?

A= , (30)

where T is the temperature, C, is the isobaric specific
heat, c,-} is the elastic constant when the sound propa-
gation direction is chosen as a coordinate axis,
BL =B, cosf + Bysind, By=Bycosh + B, sind, and here
B and By are the thermal-expansion coefficients per-
pendicular and parallel to the c axis, and 0 is the
orientation angle. The relaxation time for the
present case is 7=D/c*=k/pC,c?, where D is the
thermal diffusivity, « is the thermal conductivity, and
C, is the specific heat under constant volume. By
using the values C, = C, =3.86 x 10° erg/K cm? cal-.
culated from the Debye temperature and
"k=5.0x10"% W/Kcm,* it is shown that the decre-
ment has its maximum value at a frequency of
6.1 x 108 Hz. Accordingly, the peak in the decrement
versus frequency in the present experiment is not
due to the thermoelastic effect. The decrement at
f=5MHz and T =1.7 K is estimated by using
BL=~pB;=1.43 x1072 K7!, and the value is

" A=3.4x10"* This may be an overestimated value,

since we calculated the thermal-expansion coefficient
from the thermodynamical quantities on the melting
curve.*® We consider that the contribution of the
thermoelastic effect is not so large in the present at-
tenuation measurements.

Ultrasound is attenuated through the interactions
with thermal phonons, and the interactions are
caused by the anharmonicity of the crystal lattice.’
There are two kinds of theoretical approach, namely,
the Landau-Rumer-type and the Akhieser-type.
They are respectively adopted when wr is larger or
smaller than unity, where 7 is the lifetime of thermal

phonons and w is the sound frequency. Landau-

Rumer attenuation has been actually observed in
solid helium in GHz range. In the present MHz ex-
periment at temperatures above 1 K, it turns out that
w1 << 1 by using the value of 7 =6 X 10710 sec es-
timated from the thermal conductivity in the um-
klapp region.** The expression for the Akhieser-type
loss derived, for example, by Guyer is*’

2,2
A=_2£_u:_jl , 31
3pc

where vy is the Griineisen parameter, and other sym-
bols have the same meanings as before. The value
of vy in solid helium has been determined by several
investigators using various methods, and the value
was in the range of 2—3.' When y=2.5 is adopted,
then A=14x107at f=5 MHz and T=1.7 K.
After considering the frequency dependence and the
magnitude of the decrement, it is concluded that
phonon damping is not the main origin of the at-
tenuation in the present case. Also shown by Guyer
was that a resonant enhancement of attenuation
would appear in the second-sound region

7~ << w~! << 7, where 7y and 7 are the relaxa-
tion times for the normal and the umklapp processes.
However, the second-sound criterion is not realized
under the present experimental conditions (see Fig. 1
in Ref. 47).

Extensive arguments are now being made on the
delocalized point defects or defectons in quantum
crystals.* The energy dissipation arising from the
movement of defectons*®*? and bidefectons® has
been precisely discussed by Meierovich. He
described the sound absorption due to diffusion flow
of defectons in momentum space in the absence of
particle flux in coordinate space. The expression for
the decrement is*
¥

-2, (32)

where / is a quantity independent of temperature,
and ¢ is the energy gap in the energy spectrum for
defectons. The relaxation time 7 is determined from
the defecton-phonon interactions and is shown to be
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proportional to T°. Meierovich cited our experiment®
and noted that our data were in agreement with his
theory. We must say, however, that our result on
the temperature dependence of the decrement cannot
be explained by his theory. For example, note the
data in Figs. 2(b) and 2(c) and note the height A,,
and the location f,, of each peak. Changes of these
quantities with temperature are A, (1.70 K)/

A,(1.39 K) =0.64 and f,,(1.70 K)/f,,(1.39 K) =1.13,
while they should be 3.0 and 0.16 from the theory
when € =10 K is used. We feel that the theory is
rather suited to interpret the experimental result by
Andronikashvili et al.*! .

C. Dislocations in helium crystals

An unusual temperature dependence of specific
heat was sometimes suggested in hcp *He. The ano-
maly was represented by a term proportional to tem-
perature in addition to the usual Debye T term.
Franck®! observed that the anomaly was reduced by
the factor % for annealed samples, and mentioned

that the vibration of pinned dislocations might contri-
bute to the linear term at low temperatures.”> The
linear term was also detected in bee *He crystals.>
These anomalies were, however, not observed by
other authors.>* 3 Our feeling is that the densities of
dislocations are very different among specimens
grown by different authors. In the case of thermal
conductivity of solid helium, the effect of annealing
has also been found.** Detection of dislocations in
helium crystals through their thermal properties is an
interesting subject, and crystals containing relatively
high density of dislocations may be required for that
purpose.

The mechanical properties of solid helium were
first investigated by Andreev et al.>® They froze a
small steel ball into solid helium and observed its
motion in a magnetic field. They intended to find
superfluidity of the crystal originating from the mo-
tion of zero-point defectons. Suzuki studied the plas-
tic deformation of polycrystalline hcp *He by measur-
ing the force to move a ball or a rod in solid heli-
um,®’ and concluded that the plastic flow was pri-
marily due to motion of dislocations. He observed
that the force-displacement curve revealed a marked
yield drop followed by a steady-state flow. His argu-
ment was that the sharp yield was similar to that seen
in covalent crystals, and that the Peierls stress for
nonbasal slip of dislocations might be very large. He
-also analyzed steady plastic flow and estimated the
damping constant for the dislocation motion. The
value was at least B =4.0 x 1073 cgs at 2.1 K for crys-
tals under the pressure of 29—51 atm. Tsymbalenko
measured the yield stress of hcp “He contained in an
ampoule by applying pressure on the wall.’® He stat-
ed that the plasticity of solid helium was similar to

that of ordinary materials, especially of solidified in-
ert gases. The plastic deformation of freestanding
unconstrained single crystals of hcp and bce “He was
studied by Sanders et al.® The method was such
that a crystal of solid helium surrounded by fluid
helium on its side faces was prepared by controlling
the temperature gradient in the specimen. They ob-
served very small constant flow stress. If the value
corresponded to the Peierls stress op as they ima-
gined, then the value of op/G was 107 or less. They
also monitored the deformation of the crystal by ob-
serving the ultrasonic attenuation in the specimen.

In the case of hcp *He crystals, the attenuation in the
undeformed specimens had values comparable to
those measured by the present authors. The attenua-
tion increased rapidly when the crystal was deformed,
and they considered that dislocations were multiplied
by the deformation. In the meanwhile, they argued
that the plastic deformation of bcc “He might not ori-
ginate from motion of dislocations. After all it is
concluded that, at least in the case of hcp *He crys-
tals, there exist dislocations which move rather easily
and produce plastic deformation.

Wanner et al.%® and Iwasa et a observed an
anomalous temperature dependence of sound velocity
in hcp He below 1 K. The anomaly is very small
above 1 K, and is overwhelmed by the phonon part
of the veldcity change. They analyzed their data by
the Granato-Liicke theory and obtained typical values
of the dislocation density A =10° cm™2, the pinning
length L =5 x 107 cm, and the damping constant
B =3x1077T3% cgs. They concluded that the pinning
is due to network pinning, and the damping is mainly
due to the fluttering mechanism.’! We here present
interesting curves in Fig. 10. The damping constant
from the quasilocal phonon mechanism B, and the
damping constant from the fluttering mechanisms Br
are shown as functions of temperature in Fig. 10(a),
and the jog pinning length L; and the network pin-
ning length Ly are shown in Fig. 10(b). Here B, and
L, are values for V,, =20.5 cm*/mole and Br and Ly
are those given by Iwasa et al.*’ It is seen that
B, >> Br and L; << Ly above 1 K, and the situation
is reversed below about 0.7 K. It is considered that
our model of the dislocation damping can be applied
above 1 K, while another model might be taken for
lower temperatures. The densities of dislocations
determined in our study and in their study are also
different. This is not so critical, because dislocation
densities in specimens grown by different methods
may be widely different. Iwasa er al.* also presented
data on the temperature dependence of attenuation,
which seem, however, to be preliminary. Tsymbalen-
ko*? observed a peak in the decrement-versus-
temperature curve for hcp “He, and analyzed the
results by the Granato-Liicke theory. As can be seen
from the overdamped formula, such a peak should
appear at a certain temperature when the damping

l 40,61
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FIG. 10. Calculated values of damping constant (a) and
pinning length (b).

constant changes with temperature. Further, we
must mention that he finds no strain amplitude
dependence of the decrement. However, the values
of the strain amplitude estimated by the author seem
to be those in the quartz resonator, and the strain
really produced in solid helium is considered to be
small in his experiment.

Existing theories of dislocations in a quantum crys-
tal will be mentioned briefly. Andreev®? considered
the case of a dislocation positioned in the slip plane
at a certain angle to the crystallographic directions.
There are a certain number of kinks on the disloca-
tion, and in a quantum crystal each kink is regarded
as a quasiparticle with one-dimensional quasimomen-
tum. Just as in the case of defectons in the crystal,
the quantum-mechanical delocalization of kinks oc-
curs, which leads to delocalization of the dislocation
in the slip plane. This is, however, not the case of a
dislocation line which is in a Peierls potential valley
and anchored by pinning points, and only such dislo-
cations can be the origin of the overdamped loss ob-
served in the present experiments. Petukhov and
Pokrovskii®® proposed a theory of the tunneling mo-
tion of a dislocation situated in the Peierls potential
valley. The motion of dislocation results from crea-
tion of kink pairs, and at that time the part of the
dislocation line between the kinks migrates to the ad-
jacent valley through the potential barrier by
quantum-mechanical tunneling. The tunneling oc-
curs under the action of an external stress, and the
transition probability is not so large when the stress is

small. In the attenuation experiments, the stress pro-
duced by sound may not be so large as to cause the
tunneling motion of dislocations.

V. CONCLUSION

Ultrasonic attenuation in solid helium has been
measured by the pulse reflection method, where
pulse echo patterns of good quality were obtained ow-
ing to a carefully prepared sample cell. The values of
attenuation are considered to represent true mechani-
cal energy dissipation in the specimen since other
losses of acoustic origin are estimated to be small. A
number of specimens have been grown under con-
stant pressure, and specimens used for the attenua-
tion measurements are considered to be single crys-
tals. The overdamped resonance of crystal disloca-
tions is the main origin of the attenuation, and the
slip plane of the dislocations is the basal plane. Other
sources of sound attenuation are shown not to ac-
count for the experimental results. Under the
present experimental condition, the dominant pinning
points for dislocations are jogs, and the pinning
length is determined from their thermal equilibrium
concentration. A mechanism of damping of disloca-
tion motion has been proposed, namely, the energy
loss due to three-phonon processes between thermal
phonons and quasilocal phonons around dislocations.
The high concentration of jogs and the enhancement
of the quasilocal phonon damping both result from
the smallness of sound velocities or elastic constants
in helium crystals, which is a reflection of the quan-
tum nature of the crystal. Aside from these points,
the analysis of the experiments has been made on the
basis of the classical theory of dislocation damping.
However, the possibility of finding a quantum charac-
ter of the dislocations in solid helium is not denied,
which is a problem to be studied in the future.
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APPENDIX A: ORIENTATION FACTOR

Orientation factor for dislocations on the kth slip
system Q is defined as

A=ZQkAk N (Al)
k



20 ULTRASONIC ATTENUATION AND DISLOCATION DAMPING IN . . . 2117

where Ay is the decrement due to the dislocations on
the kth slip system, and A is the total decrement of
the specimen. The decrements are defined by

A=AE2E, Ay=AE/2E; , (A2)

where E and Ej are the vibrational energies and AE
and AE; are the energy losses per cycle. The relation

A (A3)

2
AE=2AE,‘=2[%‘—
k k k

holds since Ey = 7%/2Gy, where 7, and G are the
shear stress and the shear modulus along the kth slip
direction. From these relations one obtains

Qk=T/%/2GkE ) (A4)

and the orientation factor of the specimen is

. 1
Q==
[ k
when dislocations are uniformly distributed on all slip
systems. ;
For a traveling plane wave propagating along the

(I, m,n) direction with the polarization direction
(a, B, y), the displacement components are

S0, (A5)
k

si=ay, =8¢, Ss3=vy¢ ;

(A6)
y=Agexpilwt —q(lx +my +nz)] .
Then the kth orientation factor is given as
Q= (70)Y2GE* (A7)
where 7, and E*are defined as
Te=iquTi | E=—q"’E* . (A8B)

For a hexagonal crystal with the (0001) slip plane
and the [1120], [1210], [2110] slip directions,
T = (%) Ty +(%\/§) o, etc. Here the a;’s are the
stress components for the [1010], [1210], [0001]
Cartesian coordinate axes. These components can be
represented by the elastic constants and the strains ¢
or displacement gradients, and finally it turns out that

¥ ’—‘[(%) (Bn +ym)+(-;-\/§)(an +vyDleas

etc. It is also shown that the shear moduli are

G, =G,=G3=c4. From these relations, the orienta-
tion factor of the specimen is obtained as

Q = (caya/4EM (B +ym)? + (an +yD?] ; (A9)

and by using the relation E = —;-o-,',e,-/, it can be shown

that ‘
*=2lenla?? +B2m? + 5 (am + 817
- %clz(am —BD*+2ci3yn(al +Bm)
+caal(Bn +ym)? + (an +yDH +c33yn?} .

(A10)

The polarization direction (o, 8, y) of the wave can
be calculated by the usual method,® and Q can be
evaluated for any propagation direction.

APPENDIX B: CALCULATION OF
AMPLITUDE DEPENDENCE

The factors in Eq. (19) are obtained from Egs. (13)
and (15)—(18) as

A, =b(+1)[(n +%)a —(n -—%)al

=2ab(l;+1,) =Ae , (B1)
F((n—%)a)—F((n——i—)a)
(Ao), = N
T +1)
-2 _1 -1 -1} =
= b([l+[2) [2f 2aC(ll +12 )] Ao )

(B2)
and are both independent of n. Thus Eq. (19) is re-
duced to

E=2nAeAo , (B3)

where n is determined from Eq (16) as an integer
satisfying the relation

1

—b(11+12)0'—f

<2 7 73 B4
"ETcUr v i) T a B4

The distribution function of the dislocation segments
ist?
Nyl =(A/L¥ expl—(; + 1) /L] . (BS)

The total loss AE\, is calculated using these expres-
sions.

The straightforward calculation is complicated, and
at first the simple case of /; =/, (=/) is considered.
The total loss is

oo 1
AE= 3 n fl(:')‘“’er(I, =l=10)
n=1
xAo(ly=0L=DN)dl

=3 nAEq . ' (B6)

n=l
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Here AE(,) is the contribution from the segments

which jump » times in a quarter cycle of the alternat-
ing stress, /(,) is half the length of the segment, and
N (1) is the distribution function of the segment with
length 2/. With substitution of /; =/,=1in Eq. (B4),

I =(1/20b) {f + /2 +8abC (n — ) 172} . (B7)

Expression for the distribution function N (/) is
derived as follows. The number of segments for
which /;=1,=1is N(/). The total number of N (/)
when the / is varied from 0 to I is

21 215—1
Nald =, an [ N an . ®8)

Here N (/1) is the distribution function of Eq. (BS),
and it turns out that

=21y/L =21y/L

Nl =(A/L)[1 —e —(Qly/L)e 1.

(B9)

By definition N (Iy) = (d/dlp) N,,,(ly), and finally one
obtains

N({)=@A/L)Iexp(=21/L) . (B10)

Now it is assumed that () f/6°G ~1073, i.e.,
f—~2x1071% dyn, and (ii) o ~10° dyn/cm?. These
assumptions are not indispensable ones, but they
reduce the complexity of the calculation. The above
assumptions are shown to be reasonable, as described
in the text. Then the /(,) of Eq. (B7) is approximat-
ed as

l(n)=[(2C/0)(n-—%)]”2 ) (B11)

By using this expression, AE(,) and AE, of Eq. (B6)

_L:M [a(l—a) +%] {2f/a)2C )2 ~[4a(l — )]} da

are ca‘lculated as
A =1(X = YDe MG
AE101= i [YW(m + %)1/2 _X] €—2 W(m+1/4)1/2/L ,
m=0 3

X=(4aA/LH)(aC—/fL) ,
Y=8aAf/L:, W=QC/o)'* . (B12)

When the above mentioned assumptions (i) and (ii)
are adopted, the first term (m =0) of the series
representing AE,,, is shown to be extremely large
compared to the successive terms. Then one obtains,
with sufficient accuracy, the following expression:

AE = @aA/LY)[fQC/a)'\ 2+ (fL —aC)]
xexp[—QC/a)'?/L] . (B13)

Actually, the case of /| =/, =11is not realized. The
above AE,, is then corrected by multiplying by the
constant K defined as

f n@2e@ao@ da
K= , . (B14)
(DA Ac(3)

where a=1,/(l; +1,). This is a kind of simplified
averaging process. The final expression for AE,, is
thus obtained.

The value of K is determined as follows. By using
relations

a=1/(L1+0L)=0/2lg , lgy=(Cl20)'7? |

n(a) = Qly/aC)a(l —a) (ablyy — )+,
n(y)=1, (B15)
Ae() =Ae(3) =ablg, |

Ao(a) =(1/blyy) 2f —aClalga(l — )]}

Eq. (B14) can be written

Qf/a)QCa)™ V2 -1

The integrand in the above expression is positive
when a,, =< a =< ayy, and in this range of a hysteresis
loss arises. Note that this condition is the same as
the condition Ao =0. The a,, and a,, are deter-
mined as the two roots of the equation

Qf/a)QCa) 2~ [4a(l —a)]™' =0 . (B17)

By using typical experimental values of =103
dyn/cm? and f =6 x 107'° dyn, one obtains a,, =0.17
and ay, =0.83. Finally, from Eq. (B16) the value

K =0.39 is obtained by numerical integration.

(B16)

APPENDIX C: CALCULATION OF DAMPING

CONSTANT
Two kinds of three-phonon process v
(0,39 + (02,7 = (03,7 (@Y
(01, T = (02, ) + (03, T?) (C2)

are considered, where w; and Ef’" are the frequency
and the wave vector of the ith phonon. From per-
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turbation theory, the transition probability is given as
P=(21r/h’) (Hif)sz » (C3)

where P represents the number of occurrences per
second, Hj is the matrix element of the perturbing
Hamiltonian between the final and initial states, and
the density of final state Dy is

Df = (wg)z V/2 ffﬁz(C3)3 . : (C4)

Here c; is the phase velocity of the phonon in state
3, and Vs the interaction volume of the process. By

using the creation and annihilation operators, the ma-

trix element Hj; can conveniently be calculated as
Hi=[21*20q' ¢’ ¢*(wyw03) 21N N2, (C5)

Hif= [(2fi)3/2Qq‘q2q3(w|wzwg)"/zl [Nl(Nz + 1)]1/2 .
(C6)

Equations (C5) and (C6) correspond to the processes
represented in Egs. (C1) and (C2), respectively.
Here N, is the number of phonons in the ith state, g’
is the magnitude of the vector @‘, and the factor Q
represents the strength of the interactions between
phonons. In the continuum approximation, after ex-
panding the elastic potential energy density of the
material to the cubic terms in strains, Q is expressed
as

Q=" 3, 2eeen (P57 4 e 7 + P bi Bl Gnde 4y
efghl
+De BB dn de Gf)
+GD™ 3, 6Counn B B Pods Gudu - (&)
rstuvw

In the above expression, (i,' is the jth component of
the wave vector and 13,1 is the kth component of the
polarization vector for the ith phonon, and c.z, and
C,snuuw are the second- and the third-order elastic con-
stants. In this case of long-wavelength limit, the re-
lation ¢'= w;/c; can be used in Egs. (C5) and (C6),
where ¢; is the phase velocity of the ith phonon.

For the case of the processes represented by Eq.
(25), the frequencies of phonons are w; = wy,
wy;=Aw, and w3 =wo + Aw in Eq. (C5) and w; = wy,
w; =Aw, and w3 =wy— Aw in Eq. (C6). In both cases

the approximation w3 = w( can be adopted, since
Aw/wg=v/c << 1. Then it can be shown that the
difference of the probabilities of two processes is
_hQ*
8mp’

PZ—P1= legAw(C1C2)—2d3_S . (Cs)

When the quasilocal phonons are assumed to exist in
a cylindrical region or radius r around dislocation
line, their number is )

N, =%'rrer.,(e'mO/kBT—1)'1 (C9)

per unit length of dislocation. ‘Here N, is the
number of atoms per unit volume, and the factor -i—
means that the vibrational modes normal to the dislo-
cation line are taken into account. The damping con-
stant can be obtained by using Egs. (26), (27), (C8),
and (C9). The result is

PN, AQ?

6mpictcics

ﬁ(l)()

kg T

B , (C10)

where the condition Zwo/kgT >> 1 is adopted. This
condition holds in the present case, since wy=12—
14 Kand T=1.3-2.3 K.

Finally, the modes of the interacting phonons are
considered. From the momentum conservation con-
dition, the three-phonon processes L + 7 — L and
T + T — L are usually considered to be most frequent
(L: longitudinal phonons, T: transverse phonons).
However, when the energy uncertainty of the thermal
phonons is taken into consideration, other processes,
for example T + T — T, are also possible.” This in-
teraction may easily occur in the present case of a
collinear process where the frequency of the absorb-
ing or emitting phonon wy is very small. We consider
here that the three kinds of interacting phonons are
all slow transverse phonons, because such a reaction
has the largest contribution to the dislocation damp-
ing, as can be seen from Eq. (C10). Then with sub-
stitution of ¢; =c,=c3=cin Eq. (C10), where c is
the velocity of the slow transverse sound propagating
in the basal plane of the crystal, one finally obtains
Eq. (28) in the text. It must be remembered that the
velocities of sound propagating in the basal plane are
all the same.
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