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Early stages of spinodal decomposition in superfluid 3He-4He mixtures
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A generalization of' the linearized analysis of Cahn, Hilliard, and Cook is applied to a simple

model of phase separation dynamics in He- He mixtures at early times. An instability region is

found in which the structure function for concentration fluctuations exhibits maximum growth

at a nonzero wave vector. The coupling of concentration fluctuations to the superfluid second-
sound mode produces an additional "flickering". component in the scattering. Equilibrium exper-
imental data from both sides of the coexistence curve are used to estimate the size of these ef-
fects. The instability region is found to be quite asymmetrically placed inside the two-phase re-
gion.

I. INTRODUCTION

There has been considerable interest recently in the
dynamics of phase separation, particularly in alloys, '

and in binary fluid mixtures. 2 Rapid quenches into
the two-phase region of such substances [Fig. 1(a)]
are followed by a coarsening into two phases. When
the order parameter is conserved by the dynamics, as
is the case for the examples cited above, one expects
unstable order-parameter fluctuations at a preferred
nonzero wave vector. Indeed, light scattering experi-
ments on binary mixtures' reveal a striking ring-
shaped intensity pattern during the initial stage of the
separation. Such behavior is expected within the un-
stable "spinodal" region shown in Fig. 1(a); outside of
this region, separation requires thermal activation and
proceeds via a nucleation mechanism. '

Although a complete description of the separation
into two phases is a formidable problem, ' the initial
coarsening can be qualitatively understood using an
approach due to Cahn, Hilliard, ' and Cook. To
treat binary alloys at a fixed mean concentration, for
example, one first writes down a phenomenological
model of the dynamics of the conserved order param-
eter c(x, t), namely,

and zero mean. Here, c(xt) rep, resents the deviation
of the concentration from its critical value.

Let us suppose the system is quenched from an in-
itial state in the one-phase region to a point in the
two-phase region, represented by a temperature
r & 0, and a concentration c [see Fig. 1(a)]. The
basic approximation made in Refs. 4—6 is to linearize
the diffusion equation (1.1) about the state (r, c) im-

mediately after the quench,

—c(x, r) = zV'(r V'+12ue'—) c(x, r) +g(x, r)
Bt

(1.4)

A straightforward calculation' then shows that the
Fourier transformed equal-time correlation function is

= S(k, 0) ——exp( —2Dk t) +—,(1.5)
D D

where D is a wave-vector-dependent diffusion constant

D =D(k) =X[—vari(1 —3c'/c, ') +k'] —= Xx '(k)

(1.6)

where

F = J) d'x [ ,
' rc'+ —,

' (vc)'+ uc—'] (1.2)

and c,'=

vari/4u

describes the coexistence curve. The
quantity X '(k) is a wave-vector-dependent concen-
tration susceptibility continued into the two-phase re-
gion, and S(k, 0) describes the correlations just be-
fore the quench. It follows from Eq. (1.6) that for

and q( x, t) is a Gaussian noise source with correla-
tions

(q(x, t)q(x', t')) = 2kaTZV'—

c' & —,
' c'=—c' (1.7a)

the correlation function S(k, r) will grow in time over
a range of k with a maximum growth rate at

x 5(x —.x')5(t —t'), (1.3) k = [—,
'

i
r i (I —3c '/c, ')] 'i' (1.7b)
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degrees of freedom will participate in any spinodal
decomposition. The equilibrium properties of mix-
tures along the coexistence curve have already been
studied with light scattering. Experiments analo-
gous to those of Ref. 2, capable of studying He-'He
mixture spinodal instabilities, are also feasible. '

With such experiments in mind, we have applied
the Cahn-Hilliard-Cook analysis to a phenomenologi-
cal model of the dynamics of superfluid mixtures,
studied by Siggia and Nelson. " The mode1 repro-
duces the superfluid hydrodynamics of Khalatnikov'
and Griffin" near equilibrium, and it can be used to
study phase separation dynamics as well. In contrast
to binary alloys, concentration fluctuations in super-
fluid mixtures are coupled to fluctuations in two oth-
er conserved quantities, the superfluid velocity and a

local entropy variable. The magnitude of the order
parameter, on the other hand, is not conserved, and
we have assumed that it relaxes rapidly to a value
determined by the local concentration and tempera-
ture.

As illustrated in Fig. 1(b), we find an asymmetric
spinodal region where concentration fluctuations are
inherently unstable. Instead of Eq. (1.5), concentra-
tion fluctuatioris take the form

2Dpk t —(DO+D2)k r= a~e + a2e cosu2kt

-2D2k r+ a3e cos2u2kt + ap (1.8)

FIG. 1. Schematic temperature-concentration phase di-

agram for a binary mixture or alloy. A quench in tempera-
ture is indicated by the vertical arrow, and concentration
fluctuations are unstable following such a quench in the
shaded ("spinodal") region. Two fuzzy "spinodal" lines
bound the instability region. (b) Temperature-concentration
phase diagram for 3He-4He mixtures. A quench from the
normal phase is indicated by the line segment AB; quenches
from the superfluid phase are also possible. The asymmetric
shaded region of unstable concentration fluctuations is now

bounded by a fuzzy spinodal line c on the left, and a some-
what sharper spinodal line c~ on the right.

It should be mentioned that the existence of a sharp
"spinodal line" e =c, separating unstable and meta-
stable regions, as well as the vanishing of k on this
line, are artifacts of the linearization.

He- He mixtures also phase separate, below a tri-
critical point which terminates a A. line of continuous
superfluid transitions [Fig. 1(b)]. The separation is
now into a "He-rich superfluid phase and a 'He-rich
normal phase, ' and one expects that the superfluid

where ck(t) is the spatial Fourier transform of the
He concentration. The coefficients a; are time in-

dependent, but depend in a complicated way on the
hydrodynamic parameters and the initial conditions.
The diffusion constant Do(k) is negative over a
range of wave vectors, in analogy to Eq. (1.6). How-
ever, u2(k) and Dq(k), which are nonequilibrium
versions of the second-sound velocity and damping
rate, are typically positive, at least near the tricritical
point. Thus, the first term of Eq. (1.8) grows, while
the oscillating third term dies out in time. The
second term, which also oscillates, grows or shrinks
depending on the sign of Dp+D2. Unfortunately, we
find that Dp+D2 is typically positive near the tricriti-
cal point, so the oscillating components of Eq. (1.8)
may be difficult to detect experimentally. We also
find a region at lower temperatures where the
second-sound mode becomes unstable, but the validi-

ty of our model is more questionable there. Esti-
mates of the damping rates and velocity in Eq. (1.8)
can be found in Sec. III B.

Spinodal lines dividing instability and nucleation-
activated phase separation are usually rather fuzzy, '

as indicated in Fig. 1(a). Although this is true of the
"superfluid" spinodal line c in Fig. 1(b), the "nor-
mal" spinodal line c~ is much more precise, at least in



20 EARLY STAGES OF SPINODAL DECOMPOSITION IN. . . 2667

the mean-field approximation. Whereas the inverse
concentration susceptibility (continued into the two-
phase region) passes continuously through zero on
the line c, it turns out to change sign discontinuous-
ly along the line c~.

These results apply only to the early stages of
phase separation in superfluid He-"He mixtures
when linearization of the equations of motion might
be valid. We.have not attempted to study later
stages, nor have we examined in detail critical fluc-
tuation effects which occur in the dynamics as one
approaches the tricritical point. "

In Sec. II, the model is defined, and its equilibrium
properties are discussed. Phase separation dynamics
is treated in Sec. III. A number of detailed computa-
tions are contained in Appendices A —C.

ish in mean-field theory for a uniform system, and
have included a factor (ks T) in the definition of
F(T, 5); we also assume that v and X„' are positive
for stability. The phase diagram follows simply by
first minimizing Eq. (2.2) over c with P fixed, to ob-
tain

r = r +2yhX„

2
Xn'Y

and we have substituted

(2.3b)

(2.3c)

F(T, 5) =min( —'Fly I'+ulyl'i+vlyl') + —'x„g'
ill

n

(2.3a)
where

c =x„(~-ylyl') =c„-yx„lyl' (2.4)

II. MODEL OF 3He-4He MIXTURES

A. Statics

We shall use a version of the model considered by
Siggia and Nelson" in a study of critical dynamics
near equilibrium. The statistical weight associated
with a particular configuration of the fluctuating con-
centration c(x) and the complex superfluid order
parameter P(x) is taken to be proportional to

1

exp —(I/uo) J d'x 5 (p, c)

where eo is the volume per particle, and

~=-,'
I &el'+-,' lrel' +lull' +lvel'

Iv I'-=e,'= lul/», (2.5)

while the associated jump in concentration follows
from inserting this into Eq. (2.4),

into Eq. (2.2). The phase diagram and thermo-
dynamic functions near the tricritical point are now
given by the well-known results of minimizing Eq.
(2.3a) to obtain IPI2(T, 5).'4 For u & 0, there is a
line of second-order transitions at r =—0, i.e., at
r =r, (h) = —2yhx„. For negative u, there is a line of
first-order transitions at r = u /2v, with a tricritical
point at r =0, u =0. The different phases and phase
boundaries in the T —b, plane are shown in Fig. 2.
The value of I/I on the superfluid side of the first-
order line is

+
~ ia I'7cl'+ —,X„'c'+yclyl' —Ac . (2.1)

The quantity c(x) can be thought of as the local 'He
conee'ntration measured from some reference value,
and Io is a length. For simplicity we take r, u, v, y,
and X„ to depend only on the temperature T', the
chemical potential 5 = p,3

—p,4+ Ao enters the last
term only (ho is a constant). In Ref. 11, the term
linear in c was eliminated by shifting the reference
'He concentration, and r, u, y, etc. , were taken to be
unspecified analytic functions of T and A. An addi-
tional fluctuating "entropy" variable was included in 5
because of the role it plays in the dynamics, but we
shall suppress it in this subsection, since it does not
affect the statics in the present model.

The mean-field approximation to the free-energy
density F(T, LL) is obtained by minimizing Eq. (2.1)
over c and P, for fixed T and 5,

c„—c, =yX„lul/2v (2.6)

AL
0)

=Q /2v
U &0

F(T, a) =min(-,' r Ipl'+u III'+&ltl'
lel, c

+ —,
' x„-'c'+yclyl' —~c) . (2.2)

We have omitted the gradient terms since they van-

FIG. 2. Temperature —chemical-potential phase diagram
for He- He mixtures. The A, line defined by the condition
I. =0, u )0 terminates at the tricritical point (T, , b,). The
heavy line of first-order transitions below T, has an equation
r =u /2e, u (0.
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Q2F

Q+2

u+3viq i'
"

u+3viq /'

when I&I &O, and

(2.7a)

(2.7b)

otherwise, On the superfluid side of the coexistence
curve, Eqs. (2.7a) and (2.5) reduce to

u+ittfX=—X, = X„ I +2
/u/

(2.8)

Note that X, diverges like ~u
~

as the tricritical point
is approached, but that the susceptibility remains fin-
ite ( and equal to X„) on the normal branch of the
existence curve. This artifact of the mean-field ap-
proximation will be discussed further in Sec. III.

It is tedious but straightforward to verify that the
concentration susceptibility obtained from Eq. (2.3) is

and all other crossworrelations equal to zero. The
variable q represents the "entropy", which couples to
the superfluid order parameter in pure He to make
second sound. " Note that we have not inserted a
term y2q ~p~' in the free energy W, so that our model
corresponds to the "symmetric" model of superfluid
helium, "with no singularity in the specific heat C at
the phase transition. Since the specific heat does not
diverge at the tricritical point, this should be an ade-
quate approximation. The constants, I, g~, g2, E, L,
and A, are dynamic parameters of the model, whose
physical significance will be discussed below.

If we linearize the equations about same point in
either the one-phase or two-phase regions, we find
that

~ Q~ at long wavelengths relaxes rapidly to a value
given by minimizing Eq. (2.2) with fixed concentra-
tion. Near equilibrium in the superfluid phase, the
Fourier transformed variables q, c, and the phase 0
of

(2.12)

now satisfy the hydrodynamic equations

8. Dynamics
———=—I k Hg+g)C 'qt, +g2X 'cg+7tg, (2.13a)

The dynamics of p(x, t) and c(x, t) is defined by
the equations"

BQ(x t) 2r 5W . 5W

~ a = —
gt~lQ~ k Ht,

—Kk C 'qt, —Lk X 'c„+q

(2.13b)

—tg2y — + q~(x, t)
58'
Sc

1

Bc (x,t),5 W 2 5 W

Bt 5$" 5q

(2.9a)
g21

PI�'k'&&

Lk'C 'q& —Xk'X 'c„+q—,6]

(2.13c)

+ Xri' + ~, (x,t),
Sc

(2.9b) (~,(k) ~,"(k')) =2rk'5(k —k-') . (2.13d)

B(q,x)t21y5WKt125W

+L'7 2 +v)q(x, t)
5c

(2.9c)

Equations (2.13) lead to a diffusion mode and two
coupled second-sound modes ri In. the normal phase,

~ P~ vanishes, and one is left with two coupled diffu-
sion modes for q and c. First-sound excitations,
which occur at much higher frequencies, are neglect-
ed in this model.

W—=—
J d'x($+ —, C 'q')

Vp
(2.10) III. SPINODAI. DECOMPOSITION

(gg(1) 71~'(1')) =4ReI 5(1 —1')

(q, (1)q, (1')) = 2 XV'5(I —I'),
(g~(1)g~(1')) = —2K "7~5(1 —1')

(g, (1)v), (l')) = 2L %25(I —I')—
(2.11a)

(2.11b)

(2.11c)

(2.11d)

and the q; are Gaussian white noise sources with
zero mean and correlations

Consider a 3He- He mixture, initially in equilibri-
um in the normal or superfluid one-phase regions,
which is suddenly quenched into the two-phase re-
gion by lowering the temperature. Figure 1(b) shows
such a quench, from the normal phase. Slow thermal
diffusion times may make rapid temperature
quenches difficult in practice; one alternative is to
enter the two-phase region by abruptly changing the
pressure. 'p Although it is easier conceptually to think
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He 3H

of a temperature quench, our results should apply to
pressure quenches as well.

Figure 3(a) shows the thr'ee-dimensional coex-
istence volume necessary to describe phase separating
mixtures. A quench produces an initial unstable or
metastable state within this volume, and one then
wants to follow the dynamics as the system separates
into the two coexisting equilibria indicated by the
heavy lines.

A first step toward understanding this decomposi-
tion is to determine spinodal lines in the T —c plane
within which the nonequilibrium concentration sus-
ceptibility is negative. This is done in Sec. III A. As
we shall see, a negative susceptibility is associated
with anomalous concentration fluctuations, just as for
the simple example discussed in the Introduction,

A. Constrained superfluid order parameter
and concentration susceptibility

According to Eq. (2.9a), the superfiuid order
parameter is not conserved, and obeys instead an
equation of the form

(jg 582I + ' ' ' + 'gtIt
t)r 8$ ' (3.1)

where the dots represent mode-coupling terms. The
fields c and q, on the other hand, are conserved, and
they couple to the phase of tit. Because of the ab-
sence of 'v" in Eq. (3.1), we shall assume that im-

mediately after the quench, the magnitude 1tit~ of the
order parameter relaxes rapidly to a constrained value
tTt, determined by the initial values of the conserved
quantity c and the temperature. It follows that after
the quench we may consider the considerably simpler
problem of dynamics on a surface within the coex-
istence volume of Fig. 3(a).

The subsequent phase separation then proceeds
more slowly since it is limited by hydrodynamic
processes. The initial stages can be discussed using
the linearized equations of motion, with ~tits adjusted
to its constrained value tTt. Since by Eq. (2.7a) the
concentration susceptibility. X depends on

~ tits, it will

also assume a constrained value X = X, which deter-
mines the dynamics of concentration fluctuations.

Neglecting the gradient terms in Eq. (2.1), and ig-

noring thermal fluctuations, one finds from Eq. (3.1)
that the relaxation of the magnitude of tit is deter-
mined by

Br=-r = —2r&y)&(c -c(iy/)1, (3.2a)

where

" + "lel'+ -"-IVI"
27 ~ 7

(3.2b)

0
CS Cg cn

= C

FIG. 3. (a) Squared supertluid order parameter ~P(~ as a

function of temperature and concentration. At equilibrium,
a three-dimensional coexistence volume describes a 4He-rich

phase with ~ty~
= p, (T), c =c,(T), coexisting with a 3He-

rich phase with ~P~~ =0, c =c„(T). A system quenched into
this coexistence volume will ultimately decay to a two-phase
equilibrium of phases given by the two heavy lines. (b)
Cross section of the coexistence volume at fixed tempera-
ture. Contours of the thermodynamic potential F(~g~, c)
continued into the two-phase region are shown. Degenerate
minima occur at (P, , c,) and (O, c„),with a saddle point in

between. Because (g~ is not conserved, it relaxes rapidly to
the heavy line connecting the minima, while the concentra-
tion remains fixed. Two such rapid relaxations, representing
quenches from the normal and superfluid phases, are indicat-
ed by vertical arrows.

c =c(Ttt) (3.3)

%e assume that the conserved concentration variable
remains fixed during this initial relaxation. It follows
from Eq. (3.2) that the solution ~tit~ =0 is stable only
for

Ct (C (C„
where

ct = r/2'y—
and the solution (3.3) is stable for

cg(c (ci

(3.4a)

(3.4b)

(3.4c)

Figure 3(b) shows a cross section of the coexistence
volume at fixed temperature. Contours of constant
free-energy density $(tit, c) are also shown. Immedi-
ately after a quench,

~ tit~ is rapidly driven by Eq. (3.2)
either to zero or to the solution tit of
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The locus of stable constrained values to which
~ P~

relaxes is shown by the heavy line in Fig. 3(b). We
shall relate c~ to measurable quantities belo~.

Let us illustrate the foregoing discussion with an
example. Consider the quench corresponding to the
segment AB of Fig. 1(b). 1mmediately after the
quench, one has ~P~ =0 and c =c;, which we

represent as the point Bt in the (~Q~, c) plane [Fig.
3(b)]. Noise fluctuations neglected in the equation
of' motion (3.2a) will force ~P~ off this unstable ex-
trernum, and allow the rapid relaxation represented
by the arrow B]82 to the point B2 on the line

~P~ =P(c). In the (T,c) plane of Fig. 1(b), the sys-
tem has remained at 8, since the concentration and

- temperature have not changed.
Associated with the locus P(c) is a "constrained

susceptibility" X, which we obtain by inserting f(c)
into Eq. (2.7),

X(c) =X„, ct & c & c„ (3.5a)
1 '1

u +3vlpX(c) =X„~,c, & c & ci . (3.5b)—u +3up

It is this quantity which turns out to enter the none-
quilibrium versions of the equations of motion
(2.13). Note that X„ is nor the limit of Eq (3.5b.) as

0. This is to be expected, since Eq. (3.5a)
corresponds to a different branch of the free energy
than Eq. (3.5b). From Eq. (3.5b), one is immediate-
ly led to define a spinodal point c at which

~u( =3v~p~' and X ' =0. Note that X ' is negative
for c & c & c~, and that the above analysis can be
repeated at every temperature in the coexistence
volume.

As shown in Appendix A, it is possible to express
the constrained quantities Q and X entirely in terms
of the measurable equilibrium values of Q, (T),
X,(T), X„(T), c,(T), and c„(T),via the parameter

X simplify in the limit of large p, where we find

X'/X,' = (c„—c)/(c„—c,)

X,/X = [3(c„—c)/(c„—c,)] —2

c„—c t
——(1/4 p) (c„—c,),

2c„—c = —, (c„—c,)

(3.10)

(3.11)

(3.12)

(3.13)

The function X is plotted in Fig. 4.
Our results thus far can be summarized as follows:

The two-phase region of the (T,c) phase diagram is

divided into three wedges. ' an inner portion, for
which X

' & 0 (c &c & ct), and two outer portions
(c, & c & c and ct & c & c„) where X

' & 0. Note
from Eqs. (3.9), (3.12), and (3.13), that these three
wedges should be quite asymmetrically placed.
Indeed, were we to take mean-field theory literally
and assume X„=const near the tricritical point, Eqs.
(3.9) and (3.14) would predict (using
c„c,~

~
T ——T, ~) that

c„—c, i
T T i', —

in contrast to Eq. (3.15),

c„—c ~ )lT —T,]

(3.14a)

(3.14b)

=x '[1+(x/x, )k'g,'], (3.15)

where

%e feel, however, that a more realistic estimate of
the lines c, and c of Fig. 1(b) can be obtained from
Eqs. (3.12) and (3.13), using the measured value of p
at any temperature.

To conclude this discussion of the constrained sus-
ceptibility X, note that the above calculation can be
repeated for finite wave-vector disturbances. The
result, using Eq. (2.1), is

x '(k) =x '+I k'

p -=—,(x, —x„)/x„.1 (3.6) g,'=lo X, (3.16)

The concentrations c~ and c defined above are then
also expressible entirely in terms of c„, c„and p. In
mean-field theory X„ is a constant, and Eqs. (2.7b)
and (2.8) imply that

Xn

p = x„y'/~ u )
~ r,

' && 1

where

(3.7)

(3.8)

X$

C] cn

Experimentally, however, X„diverges at T, in 'He-
4He mixtures [see Eq. (CS)], and the parameter p is
essentially constant near T„with

p =4.5 (3.9)

which is also rather large. The expressions for P and

FIG, 4. Constrained susceptibility X as a function of con-
centration at fixed temperature, as given by Eq, (3.11). For
clarity of the figure we have chosen X, =4X„. The spinodal

region c & e (c~ has X &0, with X =0 at co- and a

jump at c&. In the present approximation we have

X = X„=const, for c & e&,
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is the square of the concentration correlation length
in the superfluid.

e & c ( c~. The wave vector of maximum growth
can be estimated in the way discussed in the Intro-
duction and turns out to be

B. Spinodal dynamics
k = (, '(—,

'
l x, /xl)' ' (3.25)

The foregoing analysis of the two-phase region
focused entirely on the static quantities Q and X. To
draw further eonelusions we now describe the
response of the system following the rapid relaxation
of lPl to its constrained value. We shall use the
remaining hydrodynamic equations, (2.13), for the
conserved variables c(x, t), q(x, t), and 8(x, t), linear-

ized, say, about the point 82 of Fig. 3(b).
This linearization is carried out in Appendix B.

Just as in the equilibrium superfluid, there are three
2 0

hydrodynamic modes whenever P is nonzero, a dif-

fusiori mode'

The corresponding frequency is

l~p l
= —,

'
Dp, k„'l x, /xl

= —,'D„g (x,'/x') . (3.26)

Dp, =2.5 x10 4t, cm'/sec

(, =1.3t, ' A

(3.27)

(3.28)

The quantities Dp, and f, have been measured by

light scattering in the superfluid phase, and the
results near T;are [Eqs. (C10) and (Cll)]

~p = D,k'+ 0 (k4),

and two second-sound modes

cu+ = +Iu2k + , D2k'+0—(k )

(3.17)

(3.18)

leading to

l~p~l =1.8 x 10"t,'(x, /x)' see-'

k„=0.54t, lX, /Xl'I' A '

(3.29)

(3.30)

The full expressions for Dp, D2, and u2 in terms of
the model parameters are given in Eqs.
(B4)—(B13). It is convenient at this point to note
that Dp and u2 may be written

Dp Keffg2 /gl X(1 + q )

» =p gt'(I+4)/C,
(3.19)

(3.20)

—2D2k t2

+ a3e cos2u2kt+ap (3.21)

The analysis of Appendix C shows that near the tri-

critical point we may write

Dp(k) =Dp, (X,/X+k (,)

u2 =u22, (y /y2)

D2 =D2,

(3.22)

(3.23)

(3.24)

where Dp„u2„$„and D2, are the corresponding
equilibrium quantities on the superfluid side of the
phase-separation curve at the given quench tempera-
ture.

Equation (3.21) predicts unstable growth of con-
centration fluctuations whenever Dp (0, which ac-
cording to Eq. (3.22) occurs when X ' & 0, i.e., for

I

where X and g are the constrained quantities dis-

cussed in Sec. III A. The parameters, K,ff, g~, g2, and
e remain positive and finite near the trieritical point
in the mean-field approximation, while 4 vanishes as
T T, , and will be neglected here.

The calculation of the nonequilibrium correlation
functions outlined in Appendix B leads to the result
quoted in Eq. (1.8), namely,

2Dpk f (Dp+D2) k
S(k, t) =ate p +a2e 2 cosu2kt

~2m uzs4s (Xgp /21 xllg) (3.31)

Equation (3.21) predicts that in addition to the insta-
bility represented by the first term, there will be an
oscillating component, proportional to a2, which is a
"flickering" of the instability, caused by coupling of
diffusion and second sound. This feature can only be
seen if the exponential factor leads to growth, i.e. , if
Dp + D2 & 0. Inserting the estimates (3.22) and
(3.24) we need

Dp, &2D2, , (3.32)

since lX, /Xl & 2. The second-sound damping D2, has
been measured, but from scaling arguments' it is ex-
pected to diverge near T&, so that in view of Eq.
(3.27) the inequality (3.32) is not expected to hold in

the critical region. It appears doubtful, but not im-

possible, that a region of temperatures can be found
below T, where Eq. (3.32) will hold, and where the
"flickering" might be observable.

Let us discuss briefly the effect of the coefficient

4 =—g22C/gt' X, (3.33)

which we neglected in Eqs. (3.19) and (3.20), since
4 vanishes at T, . According to the numerical esti-
mates of Appendix B, however, the quantity 1 +4 is
predicted to become negative in a region of the phase

In the metastable regions of Fig. 1(b) (i.e.,
c~ &c &c„ore, &c &c, X ')0), the linear
analysis predicts a stable correlation function, i.e.,
~p & 0. Phase separation presumably proceeds via a
nucleation mechanism in this case.

According to Eq. (3.23) the second-sound frequency
u2k remains real, its magnitude at k = k being of order
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where this collaboration was initiated. Work at Har-
vard was supported in part by the NSF under Grant
No. DMR 77-10210.

APPENDIX A: CONSTRAINED SUPERFLUID
ORDER PARAMETER ihtI AND CONCENTRATION

SUSCEPTIBILITY X

FIG. 5. Two-phase region in He- He mixtures with ac-
count taken of the term 4 of Eqs. (B7)—(B9). In the cross-
hatched region c2 ( c ( c~ appearing below T2, the second-
sound mode becomes unstable.

diagram appearing below some temperature T2, which
we estimate to be 0.55'K [see Fig. 5]. In this region,
Eqs. (3.19) and (3.20) imply that second sound be-
comes unstable, while the diffusion mode is stabil-
ized. Needless to say, the relevance of our model to
experiment becomes more questionable as one goes
further below T„but it would be interesting to see if
any of the anomalies associated with this effect can
be detected experimentally. Further discussion of
these points is included in Appendix B,

Another anomaly, which is in principle possible at
lower temperatures, is associated with a change of
sign of the coefficient u, which is positive near T, .
For u & 0 our model predicts different values of 1'
depending on whether the quench is initiated in the
superfluid or normal one-phase regions. From Eq.
(2.8) we see that u (0 for X, ~3X„,which we esti-
mate to happen below T =0.6 K.

Note addedin proof: It has recently come to our
attention that spinodal decomposition in alloy systems
has been treated by S. M. Allen and J. W. Cahn,
Acta Metall. 23, 1017 (1975); 27, 1085 (1979); and
to be published.
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(A3)

This yields

3vy = —u + [u' +y3(vc„—c) ——,
' tt']'t', (A4)

where we have used Eqs. (2.3b) and (2.4) and the re-
lation u =2Fe valid in the two-phase region, to elim-

2

inate r and F. The constrained susceptibility X is then
obtained by inserting Eq. (A4) into Eq. (2.7a), as in
Eq. (3.5). We may now express Q and X in terms of
measurable quantities by using Eqs. (A4), (2.5),
(2.6), (2.8), and (3.6), to write

i/2
& = —(,-I) I+t 3p

3 (p —1)2 c, —c 4p

(AS)

—* =(I +2p)—Xs 3

Q
2

I

Equation (A5) implies
tion c = c~ such that

t

I —+ +p —If2 (A6)

that P vanishes at a concentra-

(c„—ct)/(c„—c,) = I/4p, (A7)

which can be shown to agree with Eq. (3.4b). The
spinodal line c at which X ' vanishes is obtained in
terms of c„, c„and p from Eqs. (A5) and (A6). In
the limit of large p one easily finds the expressions in
Eqs. (3.10)—(3.13).

APPENDIX B: SOLUTION OF THE LINEARIZED
LANGEVIN EQUATIONS

In this Appendix we treat the spinodal decomposi-
tion which occurs after the initial rapid relaxation of

In this Appendix we calculate p and X and relate
them to measurable quantities. The initial relaxation
of the magnitude of P is determined by the first term
on the right-hand side of Eq. (2.9a), since the other
terms couple to the phase of P, as does the term in
q' in Eq. (2.10). We may thus write

= —r
' = —2r

I pl [c —c(l pl)] (AI)

c(lyl) —= —[(r/2y) +(2 /u )ylyl' +(3v/y)l+l"1

(A2)
as in Eq. (3.2). It follows that lPl relaxes rapidly to a
value P obtained from the initial concentration c and
temperature r & 0 by inverting the relation

c =c(Q)
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~Q~ to P and X to X. ~e use the hydrodynamic
model (2.9) in its linearized form shown in Eq.
(2.13), but with g and X written in place of p and X.

Let us rewrite Eqs. (2.13) as

TABLE I. Comparison of parameters of Ref. 11 with
those of Refs, 12 and 13.

Ik
II= g(Qk

—g, C-' —g2x-'

KC-'k' L x-'k'

LC 'k XX 'k

Bu = —0 u+q
Bt

in terms of the vectors u(t) = (H, q, c) and

q = (gq, rt~, q, ) (we are suppressing the variables k
and t) The m.atrix 0 is given by

Khala tnikov-Griffin

kg T~/&
kg Tc/f

(TR )-'()Z/ac
R Cp ta

K/P'

. kT
D

h p, /p„mkgT
cs4

Present paper and Ref. 11

x-'
C

L2/

xL/z
x/x
Q

2

r

and has eigenvalues co satisfying the equation

(fp —I k')(fp D~—k')(fp —D k') +cpu, k'

—Dpu2k =0, (83)
with

'Griffin (see Ref, 13) uses K for the quantity denoted K by
Khalatnikov (Ref. 12). R is the gas constant.

propriate 2 & 2 matrix yields the modes'

D++g) =ax-'+KC-'

D,D = X(tC L'/X)/XC ——= XK/XC,

(84)

(85)

Nt = D+k 2

o)2=D k2

(814)

(815)

~g) +Kg2 —2Lg)g2

g~ X+g2C

=g22 K,ff/g((1+ e)X,

Keff = K + X(gf/g2 L /X)

d =g2C/gt X

uz =tif gt'C '(1+4&)

(86)

(87)

(88)

(89)

(810)

In the case of a rapid quench, we can calculate the
correlation functions

S tf(t) = (u (t)utt(t)) (816)

(UQ U ') tt=tp 5 a

If we define

(817)

solving the matrix Langevin equation (81). Let Ube
the matrix which diagonalizes 0

The solutions of Eq. (83) to lowest order in k are'6 v=U u, (818)

fop =Dpk +0(k )

fp+ =+iu2k + , D2k'+ 0(k3)—
(811)

(812)
then

(=U (819)

D=D +D +I —D (813)
Va fPaua + La (820)

When the system is in equilibrium in the one-phase
region, Eqs. (Bl) may be used to calculate the time-
dependent correlation or response functions, in the
usual way. " The modes (Bl 1)—(815) appear as
poles, with X, p, and tt2 replaced by the usual equili-
brium values X„p„u2,. Equations (811)—(813) for
the diffusion and second-sound modes in the super-
fluid phase correspond with those of Griffin' and
Khalatnikoy'2 (with the transcription of notation de-
fined in Table I). Equation (812) also reduces to the
usual second-sound mode for pure 4He (gz =0).'5 In
the normal phase (P =0), Eq. (2.13a) does not hold,
since it was obtained from Eq. (2.9a) by dividing by

The hydrodynamics then involves the two cou-
pled modes q and c, and diagonalization of the ap-

(v (t)ua(t)) =e & (v (0)utf(0))—
oi~ + QJp

t t

where

+ 2r.,
QJ~ + GJp

(821)

(g.(I)gP(I')) -=el.,s(I —I')

= U „(zt„(1)qs(1'))Ustf

=—25(1 —1') U „I„sUstt

where the pp are given by Eqs. (Bll) and (812).
The solution of Eq. (820) is analogous to Eq. (1.5),
and we find
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The physical correlation functions are given by

S tt(t) = (u (t) u p(t) )

mode, '

tp+ = +
i
tt 2 i

k + D2—k2 (831)

Thus each correlation function is made up of terms
proportional to exp( —2cupt), Re exp[ —(cop+ co+) t],
and Reexp( —2~+t), with complicated coefficients
depending on the elements of the matrix U. This is
the result indicated in Eq. (3.21). The frequencies ppp

and ~+ can be related to the corresponding diffusion
and second-sound modes zoo„co+, at the same tem-
peratures in the equilibrium superfluid phase. Since
the quantity 4 in Eqs. (87) and (810) vanishes near
the tricritical point, we shall first neglect its contribu-
tion. Then Do and uz are given by

Dp ——(x,/x) Dp,

u,
' = (x'/x, ') u22, .

(824)

(825)

At finite k we replace X '
by X '+tpk' [Eq. (3.15)l,

and we have

~.(k) =x,/(x-'+Qk')D„

=Dp, (X,/X+/, k )

tp, (k) = u2g(x'/x, ') k

(826)

(827)

Let us now discuss briefly the effect of 4 in Eqs.
(87) and (810). According to the estimates of Ap-
pendix C, Eq. (CS), we have

4, =—g22C/gt2 x, = I 2t, . (828)

= [2+(p-I)- 1-;x(ci) -1 —1.
x, (ci)

(829)

then there is an interval cz & c & c1, in which
1+4 &0, with cz defined by

d, = —x(c,)/x, (c,) . (830)

and since ~X,/X~ (2+(p —1) =2.3, it is legitimate
to set I +4 =1 near the tricritical point (t, 0). It
is nevertheless interesting to explore the regions of T
and c where the factor 1+4 can vanish, since the
dynamical equations are then drastically modified.
Indeed, suppose that for some temperature we have

Moreover, Eq. (813) implies that the second-sound
damping coefficient D2 becomes negative for c & cz,
since Do is large and positive. The behavior of the
correlation functions in the region cz & c & c1 shown
in Fig. 5, will be quite anomalous, although as men-
tioned earlier it is not clear how far below T, our
model can be trusted. From Eqs. (829) and (830)
and the estimates given in Appendix C we find that
c2 first appears at t, = 0.36, i.e., below T =0.55 (see
Fig. 5). A more accurate estimate of 4 may be ob-
tained by using Eqs. (89), (AS), and (A6). In this
way the frequencies in Eqs. (811) and (812) may be
expressed throughout the two-phase region in terms
of measurable equilibrium properties.

APPENDIX C: EXPERIMENTAL ESTIMATES
OF PARAMETERS

c =c, =0.67

o- =0.52 (C2)

In the model defined in Eq. (3.1) we have chosen
units such that 5 and c are dimensionless, i.e., 5
represents the free energy per particle divided by
ks T. It follows that x„ is dimensionless and

~
p~' has

units of (length) . For the dynamic model, Eqs.
(2.9)—(2.11), we also take W, q, and C to be dimen-
sionless, g1 and gz to have dimensions of frequency,
and L, K, A. , I, with dimensions of a diffusion con-
stant (I2/t) With these. conventions, we then estab-
lish the correspondence with the parameters of
Khalatnikov 'z shown in Table I. The quantity
o = a —ciao./I)c in the left-hand column is dimen-
sionless, with o —= S/8 equal to the entropy per parti-
cle, in units of ks. The susceptibility BZ/Bc is in
joules/mole, and the specific heat C~, is in
joules/mole K, thus making X and C dimensionless.

The parameters entering Eqs. (3.22) and (3.24) are
related to quantities which are in principle measur-
able, in either the superfluid or the normal phase, for
arbitrary temperatures. Many of these, however, are
only known approximately, and typically only near
the tricritical point. We have often approximated
regular quantities by their value at T„and we have
estimated from various sources those quantities
which were not explicitly published. Clearly, more
accurate determinations of parameters in the one-
phase regions would help to refine our estimates for
the two-phase properties.

The important quantities we need are

In that case the model predicts that Do is positive for
cz & c & c„, dl&e1'ges at c = cz, and 1s negative for
c & c & cz. The velocity uz is imaginary for
cz & c & c1, i.e., second sound is also an unstable

and"

c t..
g

-6.0t, joules/mole (C3)
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This implies If the measured thermal conductivity is K,ff we have'

x, ' =0.83t, (c4) Keff Keff/pR = 1.9 x 10 cm'/sec

so that9

(c9)

x„-' =8.3t, ,

C = C~, /R =0.92

(CS)

(c6)
Keffg 2

gj'x, (1+4,)
2.5 & 10 4tr' cm'/sec

1 +1.2tr

(C10)
gl/g2 0'/C = O.s (C7)

Finally, the measured correlation length near t, is'

+, =-g2c/gi' ~, =1.2~i (cs) $, =1.3t, ' A (C11)
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