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The effect known as ferroelectricity arises when forces between polarizable ions in a solid

produce a spontaneous displacement of these ions which results ig a lattice polarization below

some characteristic (Curie) temperature. Fluctuations in this polarization may be thermally in-

duced as in the case of classical ferroelectrics, or if the Curie temperature is near 0 K, the fluc-

tuations can be due to quantum-mechanical zero-point motion. The term "quantum ferroelec-

tric" is applied to those systems where fluctuations in the P'olarization result from the zero-point

motion. Experimental determinations of variations in the dielectric constant, spontaneous polar-

ization, and elastic compliance as a function of temperature and impurity concentration are re-

ported for K~ „Na„TaO3= and KTa~ „Nb~03, and these results show that the physical properties

of quantum ferroelectrics differ from those of classical ferroelectrics in the following ways:

First, for a quantum ferroelectric, the transition temperature depends on impurity concentration

(i.e. , on an effective order parameter) as 1;~ (x —x,)', as opposed to T, rx. (x —x,) for the

classical case. Second, the inverse dielectric constant varies with temperature as e ~ T for the

quantum-mechanical case, instead of ~ oc T. Finally, the distribution of transition temperatures

in a given macroscopic sample with a Gaussian impurity concentration distribution is

p(T, ) ~ T, exp( —o. I;4) for the quantum ferroelectric, as opposed to a Gaussian for the classical

situation. These results are in agreement with previous theoretical predictions ot some of the

distinguishing characteristics of quantum ferroelectricity.

I. INTROI3UCTION

Quantum-mechanical effects in ferroelectricity have
been observed previously by Sawaguchi et al. ,

' who
found that, at low temperature, the dielectric con-
stant of SrTi03 did not obey the Curie-gneiss law but
rather that it could be described by the following ex-
pression:

e —er „=C[,' T)coth(T)/2T) ——To] '

cipient ferroelectrics with T, =0, as well as with the
behavior predicted by the acoustic-optic mode-
coupling model which is applicable for low, but
nonzero, critical temperatures. The variation of e
with temperature predicted in the more recent
theoretical works is given by

e —er „=8(T—T,) &,

where T~ represents the dividing temperature
between the quantum-mechanical and classical re-
gions. This equation had been derived earlier by Bar-
rett, ' using a model based on a quantum-statistical
ensemble of oscillators. More recently, Eq. (I) has
been used to fit measurements of the dielectric con-
stants of KTa03 under atmospheric as well as ap-
plied isotropic pressure. In spite of its apparent abil-

ity to provide a reasonable fit to this dielectric-
constant data, Eq. (1) is in contradiction with the
limiting behavior of e(T 0) as predicted by the
more recent quantum theoretical treatments' ' of in-

where y = 2 (quantum theory) for T, =0 and

y =1.4 +0.2 (mode-coupling model) for tempera-
tures up to -100 K. The mode-coupling regime has
been found to extend to T = 120 K in the case of
SrTiO3.

In the classical temperature range Eqs. (I) and (2)
become equivalent and y =1 in this region. The
modern, self-consistent theories, therefore, predict
that below a certain temperature, the Curie-gneiss law
assumes the form given in Eq. (2) with y = 1.4 and
that, if T, =0, there is a third regime near T =0 for
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which y =2. In spite of the marked algebraic differ-
ence between Eqs. (1) and (2), we found that on a
log-log plot an appropriate series of three straight
lines in accordance with the three regimes of Eq. (2)
can also approximate Eq. (1) to a surprisingly high
degree of accuracy and that, consequently, it is neces-
sary to obtain very precise data on a system with
T,--0 in order to distinguish between the validity of
the two equations. Accordingly, in order to deter-
mine the validity of the scaling argument in the
quantum theory of ferroelectricity (leading to @=2)
and the mode-coupling theory (leading to y =1.4),
we have grown mixed crystals of K~ „Na„Ta03 and
KTa]—yNby03 with critical temperatures as low as pos-
sible, and have carefully measured the dielectric
response for these systems. These data were fit to
both Eqs. (1) and (2); an evaluation of the fitting
parameters in terms of the respective models, togeth-
er with the quality of the fit, has enabled us to
discriminate in favor of the self-consistent theories
and against the older quantum oscillator theory.

The manner in which the phase boundary ap-
proaches the quantum limit T, =0 has also been
predicted by the self-consistent theories and previous
experiments'0 on the system KTa~ yNby03 have con-
firmed these predictions. In the present work, com-
parisons will be made between the earlier data for
KTa~ ~Nb~03 and the new data presented here for
K~ „Na„Ta03. In spite of the apparent differences
between these two cases (in the perovskite system
ABO3 an A ion is replaced by an isoelectric impurity
in one case, and a B ion is replaced in the other), the
two phase diagrams scale perfectly. These observa-
tions further reinforce the understanding of the ap-
parently dominant role of oxygen polarizability in the
ferroelectric behavior of the perovskite oxides. "

Ferroelectrics with T, in the quantum range (quan-
tum ferroelectrics) are characterized by some addi-
tional peculiar features which are of more practical
interest: When metal contacts are applied, deep
space-charge layers develop' which may be rein-
forced by external bias fields. This feature, together
with high coercive fields of -10 V/m, can prevent
an accurate determination of the spontaneous polari-
zation by conventional techniques. We have there-
fore resorted to cooling the sample through the tran-
sitions using only a moderate bias field (2 x 105

V/m). The polarization is found to relax sufficiently
slowly to permit a measurement of the piezoelectric
coefficient' by the ultrasonic resonance method.
Near the quantum limit, T, is extremely sensitive to
crystal composition and this effect has been used to
measure the distribution of Na (Nb in the previous
experiments) concentration within a given sample.
The impurity distributions are checked against the
impurity profile obtained from x-ray fluorescence
measurements and provide a test for the consistency
of the data.

II. EXPERIMENTAL

In a classical ferroelectric, the spontaneous polari-
zation in the low-temperature phase varies with tem-
perature as

and the dielectric constant is governed by the follow-
ing relation:

Therefore, by plotting I" or e ' vs T, it is generally
quite easy to determine the critical temperature T, .
In quantum ferroelectrics, however, only approximate
and, in part, conflicting expressions exist for P(T)
and a(T); therefore, a determination of T, is not so
straightforward. In addition, measurements of the
ferroelectric characteristics of mixed-crystal quantum
ferroelectrics pose some particular. problems. First,
mixed crystals are generally somewhat inhomogene-
ous and this leads to a distribution of Curie tempera-
tures within the sample. The response of a given fer-
roelectric parameter near T, must be convoluted with
a measured or assumed distribution of Curie points
in order to determine the true phase diagram and the
true critical indices. Other difficulties arise from the
high coercive field at low temperature which slows
down switching of the spontaneous polarization and
accordingly prevents its determination in terms. of
released charge. The formation of strong space-
charge layers is a further detriment in making hys-
teresis measurements. Since an application of the
classical methods to determine T„P„and ~ for
quantum ferroelectrics leads to somewhat incon-
sistent results, we shall specify in detail by what
methods these characteristic quantities have been
measured here as a function of sample composition
and temperature.

A. Sample characterization and
determinition of inhomogeneities

The mixed-crystal specimens investigated here
were grown according to the method described by
Wemple. ' A mixture consisting of Ta205, K2CO3,
Na2CO3, and minute traces of CuO powder was heat-
ed to 1450 C in a Pt crucible and then cooled at rates
from 2 to 20 C/hr. Clear crystals of ——cm3 were

obtained from 300 g„ingots, and the sample composi-
tion was determined by x-ray fluorescence mi-
croprobe analysis. The average Na concentration
corresponded closely to the composition of the start-
ing powder, and the inhomogeneity was typically
several percent of the average concentration near the
surface of a single-crystal ingot. Attempts to grow
identical crystals with different growth runs led to a
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composition which was reproducible to within about
Ax =0.02. A higher Na content generally resulted in

decreased quality.
For the highest concentration of Na (x =0.28), the

inhomogeneity is of the order of 5% absolute Na con-
centration (hx =0.05) and therefore T, spreads over
a range of about 6 K. Lower concentrations are
characterized by lower inhomogeneities, but since the
transition line in the phase diagram becomes steeper
near T, =O, the spread of T, increases as the quan-
tum limit is approached.

8. Elastic response near distributed Curie points

Determination of the Curie point rests on a meas-
urement of some critical response and a fit of the
results to a theoretical expression. Three main diffi-
culties arise in this procedure near the quantum limit:

(i) There are only approximate expressions avail-
able for the dielectric constant and the polarization.

(ii) The Curie point is distributed in a sample that
is not completely homogeneous, and the associated
distributions of x, e, p, and s are approximately
known. (The distribution in the composition may be
determined by microprobe analysis, however. )

(iii) In general, there is no way of uniquely predict-
ing how the responses superimpose in a system with
distributed critical temperatures. Fortunately, for the
purpose of determining T, the problem of a superpo-
sition of responses in inhomogeneous samples has
been solved for the particular case of the elastic com-
pliance. A microscopic"' mean-field theory predicts
that the elastic compliance is described by a step
function

study of the influence of inhomogeneity on elastic
behavior.

A sample with a sharply-defined T, has an elastic
compliance which, according to the tlleory based on
the SrTi03 model, ' depends on temperature as
shown in Fig. 1. If a single-crystal sample is driven
into a length-extensional vibration, its resonance fre-
quency occurs at

S =T s, +Ji p(T)dT(s, —s)

The effective elastic compliance thus becomes

s, t
——s, + Jt p(T, )(s, —s,) dT, (8)

/

)(COMPLIANCE (a)

f„,= (2I) '(p s)

where p is the mass density, I is the sample length,
and s is the elastic compliance. The resonance fre-
quency is characterized by an impedance minimum
which may be determined using a conventional bridge
method. Now consider a sample with T, varying
along an axis of vibration labeled X. The strain will
be S = s, T for those parts of the crystal with
T, ) g, and S = s, T for those parts with T, ( T.
Here s, and s, are as defined for Eqs. (5) and (6),
and T is the stress provided by the transverse elec-
trostrictive effect. If p(T, ) denotes the probability
that a given T, will occur, then the total strain is
given by

s=s, for T& T,

s = s, for T ~ T,

(5)

(6)

where s, and s, are the elastic compliances in the axi-
al and cubic phases, respectively. This discontinuous
change is attributed to the abrupt change of sym-
metry at T, , Below T, the symmetry is sufficiently
low to allo~ linear coupling between some strain
waves and soft modes, while above T, the symmetry
is high enough to prevent such interactions. This
model was initially formulated for the case of SrTi03
which is characterized by an elastic step function" '

smeared out by a few degrees and superimposed on a
weak divergence. While the actual limiting width in
this case may be -0.5 K," in many samples the true
width is much greater and may be attributed to some
type of sample imperfection.

In KTa~ ~Nb&03, the elastic step width varies from
sample to sample but is consistent with the sample
inhomogeneity as determined by electron microprobe
analysis. This observation' prompted a systematic
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FIG. l. (a) Elastic compliance as a function of
temperature. The solid line shows the variation expected
for a sharp, homogeneous phase transition. The broken line
indicates the variation at a diffuse transition. (b) Vibrational
mode used to determine s~j.
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This convolution of the elastic step function by a dis-
tribution of critical temperatures is particularly simple
[much more so than the convolution of a Curie-
Weiss expression,

~
T —T,~, or of a polarization

function, (T, —T)'~2]. This simplicity provided the
motive for studying inhomogeneity by acoustic reso-
nance rather than by dielectric constant or spontane-
ous polarization measurements. It can now be as-
sumed that the Na concentration x (or Nb concentra-
tion y) is distributed log normally, '0 i.e., that the pro-
bability p that some concentration is present locally in
the sample is given by

p(x) = (a/n)'~ exp[ —a(x —xo)']

S11
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xo being the mean concentration.
In the classical limit where T, depends linearly on

x, ' identical distributions result for T, and for x,
in which case the elastic compliance was shown' to
depend on temperature as

stt(T) = —,(s, +s,)1

FIG. 2. Elastic compliance (solid lines) and the fit to
computed curves (broken lines) for eight samples of
K& „Na„Ta03. The curves are labeled by the sodium con-
centration x in percent. The broken curves were computed
assuming that the transition was broadened by cornpositional
inhomogeneity.

+-,'(s, -s,) erf[a(T- T,) j . (10)

p(T, ) dT, = (const) T, exp —[aaT2+ a (x, —xo)]2

This expression reduces to

p(T) dT, ~ T, exp —n a2T, (12)

for x, -xo. The convolution of a step function with
distributions of this type cannot be given in a closed
form, so the data were fit by numerical methods.
The result is shown in Fig. 2 for K~ „Na„'Ta03. As
can be seen in this figure, for some samples the as-
sumed distribution fits the data very well, while for
others there are slight deviations on the wings of the
curves.

Some deviatio'ns may also be attributed to a dip of
the elastic constants near T, superimposed on the

In the quantum limit, the phase diagram is nonlinear;
therefore, a two-step procedure was devised in order
to determine both the homogeneity and the effective
Curie point of the sample. In the first step, the
measured elastic compliances were fit to the best er-
ror function in order to determine T, approximately.
Then a plot of T, (approximate) vs x was fit to
(x —x,)' e. The critical concentration was deter-
mined by recognizing that, at the quantum limit, ex-
actly one-half of the sample is ferroelectric at 0 K
and therefore the elastic step is reduced to one-half
of its value in the classical limit. The fit of T, (ap-

1/40
proximate) to (x —x,) 0 yielded 40 =2 for both
K~ „Na„TaO3 and KTa~ yNby03. With this value of
40, a better than log-normal approximation for the
distribution of T, was found, by inserting
T, = a ' '(x —x,) ' ' into Eq. (9),

step function. Such dips are presumably indicative of
the breakdown of mean-field theory. This suggestion
is based on the predictions of a theory of critical elas-
tic response in SrTi03. Since experimental evidence
for a dip in KTa03 compounds is scarce, no attempt
of its analysis was made.

C. Determination of the phase diagram
from elastic and dielectric data

When the transition temperatures obtained from a
fit with the distributions discussed above (i.e. , T,
from the second iteration) were again fit to
(x —x,)' ~, the result &0 =2.1 +0.2 was well within
the error associated with 40 from the first iteration;
and therefore, it was pointless to iterate the value of
the distribution any further. The phase diagram for
the quantum-ferroelectric region of the solid solution
K~ „Na„Ta03 is shown in Fig. 3, where it is apparent
that T, ~ (x —x,)'~2 t, fits the data consistently and
that the crossover between quantum (4=2) and
classical (4 = 1) ferroelectricity occurs in a tempera-
ture range between 15 and 50 K. Figure 3 also in-
cludes two data points of Davis" which were ob-
tained from dielectric susceptibility measurements.

The data for the system KTa~ yNby03 are analo-
gous to those for K~ „Na„Ta03 and yielded a value of
4 =1.8 +0.3. In KTa~ yNby03 a comparison was
made between the homogeneity determined by elec-
tron microprobe analysis, and that determined
acoustically. The results are shown in Table I, where
it is seen that the standard deviation of y is the same
whether it is determined acoustically or by mi-
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TABLE I. Electromechanical properties of KTa& yNby03 for y & 0.05. Method of determination: a—electron probe, b-
elastic step, c—hysteresis P vs E at 2.5 mHz, d—capacitance vs temperature at 10 kHz.

Mean

Nb concentration

Standard deviation

Polarization'

at0 K

Inverse

dielectric

constant

atOK
d

Mean

Standard

deviation

Transition Temperature

Percent

0

0.25

0.8
1.4
1.7
2.8

3.0
4.6

percent

(0.3
(0.2
(0.2
0.3
0.4
1.5

percent

0.3
0.2
0.3
0.4
0.3
-1

10 3 C/m2

2

13

31

42

42

55

10-4

2.3

1.3

0.5
1.0
1.4

3.5
5.9

7.9

20

23

33

47

60

0

21.2
27.5

36.4
45.6

56

13

4.4

4.6

3.6
3.8
12

'Reference 10.

croprobing, and that it increases continuously with
the mean concentration. Table I also lists the values
of P, and e ' at 0 K which were used to determine P
and y [defined by P„—(x —x,)a and e ' —(x —x,)~,
respectively] and provides the data necessary for a

comparison between the transition temperatures as
obtained from acoustic measurements and from the
maximum of the dielectric constant, If it is assumed
that the uncertainty of T, (acoustic) is one-fifth of
the standard deviation due to sample inhomogeneity,
then most of the "dielectric" critical temperatures are
at variance with the critical temperatures as deter-
mined acoustically. From this we conclude that the
convolution of e(T) with a non-Gaussian distribution
does not have its maximum at T, as predicted by the
Curie-gneiss law. The determination of a nonlinear
phase diagram from dielectric measurements appears
to. pose stricter requirements on sample homogeneity
than does an evaluation by the acoustic method,

The system K~ „Na„Ta03 is presently less suitable
for such a comparison: The sample quality is some-
what inferior to that of KTa~ «Nb~03, (probably be-
cause of the large Na concentration) and the resolu-
tion of the Na fluorescence appears to be poorer than
that for Nb. The dielectric constant shows no notable
dispersion. After the samples are cooled to 4 K, it
drifts'3 considerably, especially in samples with a low

critical temperature.
In K087Nao ~303, the dielectric constant drops from

51 000 to 44 000 in the first hour after cool-down
(aging). After this time period, the drift becomes
much smaller. Since the aging time of one hour is

Tc

(K)

40—

20

10

I

10 15 20

Na CONCENTRATION x ( /o)

25

FIG. 3. Phase diagram of K& „Na„Ta03 near the
quantum limit. This experimental curve is to be compared
with the theoretical result given in Fig. 1 of Ref. 6.

comparable to the discharge time of pure KTa03 after
the application of an electric field, ' it is tempting
to attribute aging to the spontaneous formation of
space charge following rapid cool-down. With in-
creasing dielectric constants, the Debye length
lo = (eeoc/ne)', Vs being the barrier height, and
thus the region of charge depletion can become com-
parable to the same dimensions. The associated Pois-
son field acts as a bias to reduce the effective capaci-
tance. To test this hypothesis, the capacitance was
measured simultaneously using the acoustic flexure-
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resonance technique' in several samples after cool-
down. From the flexure resonance, the space-charge
density and the mechanical quality factor of the sam-
ple can be deduced; the results are shown in Table II.
The evidence is against spontaneous dielectric satura-
tion for the following reasons:

(i) The Poisson field I E I
= 2 kV/m as measured by

flexure resonance accounts for a change Aa/a in the
order of +10 . This is different in sign and magni-
tude from the measured Aa/a ——10 '.

(ii) The Poisson field does not increase in time.
The fact that no flexure resonance is observed im-

mediately after cool-down should be attributed to the
initial low mechanical quality factor.

(iii) The mechanical quality factor increases gradu-
ally with time. This leads to an alternate suggestion,
namely, that dielectric aging is due to a mechanical
stress release which occurs after cool-down. The
average stress which would have to be released to ac-
count for the observed Aeie is of the order' of
4 x 10 N/m . This corresponds to a strain of
-2 & 10 . These values are quite reasonable, but a
quantitative means of supporting the stress-release
hypothesis has not been found, . and we are unable to
explain why ha/a is always negative while e depends
linearly on stress. Since aging has no influence on
the Poisson field, all data have been reported for the
case of thermodynamic equilibrium. The results for
the dielectric constants are illustrated in Fig. 4. The
solid lines through the data of Fig. 4 result from at-
tempts to theoretically describe the behavior of the
susceptibility near the quantum limit. They are dis-
cussed in Sec. III.

TABLE II. Dielectric constant ~, space-charge density p,

and mechanical quality factor Q, as a function of time after

rapid cool-down to 4 K.

1000

8

100—
4J

CQ

Na ~ ~ ~

o 0 oo

I

5 . 10
I I I I

20 50 100 200
TEMPERATURE 'K

D. Spontaneous poLarization and piezoelectric effect

The spontaneous polarization is customarily meas-
ured from hysteresis loops. At low temperatures,
ho~ever, the coercive field necessary to switch the
polarization exceeds 1 MV/m. Such fields induce
large amounts of space charge which obscure the
charge stored by lattice polarization. %e have there-
fore determined P, from the piezoelectric effect. "

The piezoelectric constant 131 which couples the
strain in the x direction to the polarization in the z
direction can be written

d31 2g 31ps

FIG. 4, The critical part of the inverse dielectric constant
in KTa0.992Nao. oos03 (open ci«les) and K0.88Na012Ta03
(solid circles). 8/[~(T) —~(~)] is shown along with the fit
to (T —T,) ~ in the three temperature ranges: 15 to 35 K,
35 to 80 K, and above 80 K.

TIME

minutes

0

5

12

15

25

45

60

513 50

490 20

472 50

46980
465 70

46030
447 80

P
C/m3

0.83
- 1.25

1.04

0.98

1.14

100

180

200

540

520

d3) = k(st I/aap)'I',

g3i =k/(amp) Ifp' Eb;„

(14)

~here k is the piezoelectric coupling factor obtained
from the characteristics of the impedance cycle

where g31 is the electrostrictive constant valid for
both phases at temperatures sufficiently close to T, .
The piezoelectric constant was determined by acoustic
resonance of a polarized sample in the ferroelectric
phase, while the electrostrictive constant required a
resonance measurement in the dielectric phase under
suitable dc bias. The appropriate formulas' ""are
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[see Fig. 5(a)],

k = [1+16m '(G,„—G;,) '

(16)

kL being the piezoelectric coupling factor for the
length-extensional resonance. Measurements for I',
as summarized in Table I have an uncertainty of the
order of AP —1 mC/m2 arising from field-induced
space charge.

For large 0, Eq. (17) approached the form given in
the piezoelectric standards.

Since it is not necessary for the polarization to be
switched in these experiments, only low E fields are
required and the sample may be cooled through the
transition while biased. This ensures that the space-
charge fields induced by the bias are relatively low

and that the induced polarization is rather homogene-
ous.

A measure of the homogeneity of the polarization
is obtained from the characteristics of the flexure
resonance. For an approximately homogeneous
space-charge distribution, the difference in polariza-
tion from surface to surface is described" by

AP = (3s/ceo) ' 'kp/g

~here kF is the piezoelectric coupling factor of the
flexure resonance. This gives a measure of the relia-
bility for the determination of P, by means of the
piezoelectric effect. After removal of the domain
structure by a transient biasing field, the polarization
is given by

P, = (s/ceo) 'i'kt, /2g (19)

QJC
)

(Q ) (Q )

(b)

fp

fp

where f~ and f2 are the frequencies at which

G = —,(G,„+G;„). The impedance cycle [Fig.

5(b)] may cross the abscissa at frequencies f„and f„
called the resonance and antiresonance frequencies,
respectively. These frequencies are determined by
balancing the sample with the bridge with C set at
zero. In this case

k + t ~2[(y y)2/y2 + 0-2]1/2

III. MICROSCOPIC MODELS OF INCIPIENT
FERROELECTRICS

The earliest available data for an incipient fer-
roelectric are based on capacitance measurements as
a function of temperature. From such measurements
it was usually found that e ' ~

~
T —T, l both above

and below the phase transition. Such a result can be
explained by a Devonshire-like expansion of the
free energy in powers of the free (homogeneous) po-
larization and temperature. Barrett' was the first to
recognize the influence of quantum effects on the
dielectric constant, and he developed an expression
for the susceptibility of an ensemble of anharmonic
oscillators coupled only by the requirement that they
obey Bose statistics. The result was Eq. (1), which
for T » T~ coincides with the Curie-gneiss law. His
predictions were confirmed in SrTi03 and the param-
eters T~ and To were determined by an experimental
fit. Barrett's expression approximately fits the exper-
imental curves for KTa03 under pressure, as well as
the data for the mixed crystals in the present paper.
His model, which neglects all explicit interactions
among oscillating Ta dipoles and between Ta dipoles
and the lattice, was not capable of explaining the sig-
nificance of the parameters T~, however. By taking
the interaction between dipoles into account, Pytte'
was able to predict the occurrence of a step discon-
tinuity in the elastic constants, to reproduce Barrett' s
result, and to explain T~ in terms of the interaction
parameters introduced in his model. He also pointed
out that the Barrett expression is only correct if the
soft optic-mode frequency is large compared with the
acoustic frequencies. Obviously, this assumption
breaks down if the optic mode becomes soft in the
quantum region, e.g. , sufficiently close to the quan-
tum limit of a ferroelectric. For this limit, a predic-
tion has recently been made by Schneider et al. and
Morf et ul. ' These authors consider the influence of
quantum fluctuations on the phase diagram and on
the expectation value of the order parameter, and
they adopt a Hamiltonian of the form

O Gmin

G(Q )

Gmax :a
Gmin

'r.:.
Gmax

G(Q ) p2
+ —,A XX).

2M 2
Le

FIG. 5. Real vs imaginary parts of dielectric constant near
an acoustic resonance. Weak resonances are handled ac-
cording to Ref. 13. For strong resonances with an inductive
region (shaded), the piezoelectric constant is determined as
indicated in the text.

1

+ g XXL2 —C X Xr2 Xr2 . (20)

Here L denotes lattice sites and n =1, . . . , n denotes
spatial directions. %hen applied to the system
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S =2CZ„-A (21)

is defined, where Z„ is the number of nearest neigh-
bors, and it is shown that the transition line separat-
ing the cubic from the ferroelectric phase is governed
by

T, (s —s)'», (22)

S, being defined as the interaction parameter for
which T, vanishes. Similarly, the polarization at
T =0 is given by

p~(s —s,)«2 . (23)

Additionally, the inverse dielectric constant at T =0
is given by

~ '~S —S, (24)

and, at S =S, with T variable,

e '~T' (25)

Ki „Na„Ta03, in the spirit of the Slater ' model of
ferroelectrics, the terms are identified as the kinetic
energy of the Ta atoms (being the displacement of
the Ta ion), their harmonic and anharmonic binding
to the rigid oxygen atoms, and their nearest-neighbor
Ta-Ta interaction, respectively. An interaction
parameter given by

are now checked against the set of Eqs. (22) —(25)
and Eq. (2). The inverse dielectric constant has his-
torically been fit to Eq. (1), which is at variance
with Eq. (2) at the quantum limit. Figure 4, howev-
er, shows data for e ' at the quantum limit, along
with a fit to Eq. (2) in the three temperature regimes.
The fit to Eq. (1) is not shown here, since it is hardly
distinguishable from the fit to Eq. (2) on this plot.
Only a careful evaluation of the parameters resulting
from least-squares fits allows one to exclude the fit to
Eq. (1) as "unphysical. "26 A fit of e ' to Eq. (2) yields

y =2.1 for the lowest temperature regime only for
the two samples at the quantum limit. This is in ac-
cordance with the predictions of Eq. (25). Between
the quantum-limit regime and about 120 K, and at all
temperatures up to 120 K for the near-quantum-limit
samples, the data fit the equation e ' ~ (T —T,)r with

y =1.4. (Such behavior was previously observed"
and attributed " to coupling between acoustic and
soft modes. ) Above 120 K, the Curie-Weiss law

holds and y=1.
The fits of dielectric constants to power laws are

only slightly better than those of Eq. (1). Their main
merit is the one-to-one correspondence of critical ex-
ponents with phenomena governing the dielectric
susceptibility, as summarized in Table III.

The Curie point T, as determined from elastic
measurements (Fig. 3) was fit to Eq. (22); data from
Abel4 are included in this figure. The fit is as good
as that obtained' for KTa~ „Nby03 and serves to
confirm the predictions of the quantum-limit theory.

The interaction parameter in this case has a partic-
ularly simple form since the Hamiltonian contains
only one nearest-neighbor interaction term. Morf
et al. have also shown that the critical dimensionali-
ty which limits the mean-field behavior is raised by
one in the presence of zero-point motion, and also if
long-range forces are included. Classical critical in-
dices such as those given by Eqs. (22) —(25) should
therefore apply to quantum ferroelectrics down to
two dimensions, although at d = 2 (and only there)
logarithmic corrections are expected.

We may now assume that: (i) both the harmonic
binding and the dipolar interaction change linearly
with the lattice distance, and (ii) that the lattice dis-
tance is a linear function of the Na content (at least
between 15 and 30% Na). Then S is proportional to
the Na content x and Eqs. (22) —(24) are valid if S
and S, are replaced by x and x„respectively. The
identification of S with x in Ki „Na„Ta03 is straight-
forward, whereas in KTa~ yNby'03 the Nb content not
only changes the average but also the local interac-
tion parameters of the crucial 8 site. The lack of ex-
perimental evidence for randomness is attributed to
the long range of the dipolar forces which average
out local variations of dipolar occupancy. The data

Phenomenon Exponent y
in e '= (T—T)&

~theor +exp
'

Each Ta atom responds to

&..t+ &XE.~&

(mean-field theory)

Ta couples to acoustic

modes of same frequency

(up to 60 cm ')
1.4 1.4

Each Ta atom responds

to fields of other Ta atoms

self-consistently

2.1

TABLE III. Critical exponents for the susceptibility.
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IV. COMPOSITIONAL INHOMOGENEITY OF MIXED
CRYSTALS AND THE QUANTUM LIMIT

A realization of quantum-limit conditions required
the preparation of mixed crystals. The composition.
of mixed crystals inevitably varies within a given
sample, since it is extremely difficult to maintain a
constant composition of the feed liquid during crystal
growth. The inhomogeneities as determined in this
work are on the order of several percent of the nomi-
nal concentration over a 1 cm sample length. These
inhomogeneities prevented us from improving on the
precision of the critical indices for P, and e [Eqs. (23)
and (24)]. Data for e(x, T) are shown in Fig. 6. The
data for K~ „Na„TaO3 are inferior to those for
KTa) yNbyO3 in this respect; the Na concentration of
x =0.12 at the quantum limit entails a large standard
deviation of x. An improvement in the sample
homogeneity would substantially contribute to
quantum-limit investigations.

The chance of finding a cubic single crystal closer
to the quantum limit than SrTi03 and KTa03 appears
to be quite small. If we assume that the interaction
parameters are randomly distributed in nature, then
in the classical limit the Curie temperatures are even-
ly distributed and the probability of finding a Curie
point between T, and T, + dT, is given by

p(S) dS =p(T, ) dT,

= const =0.6/deg K (see Ref. 28) . (26)

In the quantum limit

t

[The constant 0.012 was determined by equating
p(T, ) of Eqs. (26) and (28) at the crossover from
quantum to classical behavior near 50 K.] The proba-
bility of finding a single crystal at the quantum limit
vanishes because, at that limit, the sensitivity of T,
to the interaction parameter diverges. Its sensitivity
to composition also diverges and this enhances the
requirements on the homogeneity for a given max-
imum spread of the transition. As an example, the
quantum -limit of K~ „Na„Ta03 is at x =0.12. Above
this concentration, T, =17(x —x,)' '. Attempts to
reproduce crystals identically with a set concentration
generally leads to differences of about 2'/o. At the
quantum limit this corresponds to about 25 K on the
phase diagram. With present-day crystal-growth tech-
niques, the production of crystals which are homo-
geneous on the T, scale exactly at the quantum limit
is very difficult.

Inhomogeneous samples still give rise to acoustic
resonances with reasonably high quality factors
(about 1000 at 0 K), and their elastic compliance can
be used to determine both T, and its distribution
p(T, ) which may vary from Gaussian in the classical
region to a distribution

in the quantum limit. This distribution has a secon-
dary maximum at a temperature T = a which should
not be interpreted as a transition temperature of the
bulk material.

S 0(. Tc ~ d& 2Tc dTc

and the distribution of Curie points becomes

(27) V. CONCLUSION

p(T, ) dT, ='0.012T,/deg K

10

x ('/o) = B 12 16 20 24 2B
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FIG. 6. Dielectric constants of K& „Na„Ta03 as a func-
tion of temperature for several values of x. The curves are
labeled by the value of x in percent.

We have shown experimentally that, under a cer-
tain condition, quantum fluctuations can suppress the
ferroelectric phase as has been suggested on theoreti-
cal grounds. The condition is that the interaction
parameter, which is a weighted difference between
the dipolar interaction and the harmonic binding of
the dipole to the oxygen lattice, falls into a narrow
range between the values given by the classical and
the quantum-mechanical displacive limits. Of the two

ternary single crystals which come under this
category, i.e., SrTi03 and KTa03, the latter is the
only example devoid of complications arising from a
structural phase transition to D4 symmetry while
remaining in the paraelectric phase. The results
presented here show that substituting Na for K re-
moves the suppression of ferroelectricity and that
above the critical c'oncentration of 12% Na
(x =0.12), Kt „Na„Ta03 is ferroelectric at 0 K. At
this critical concentration, the transition line T, (x)
terminates with a vertical tangent, and critical indices
have been found which correspond to a Gaussian
fixed point for a four-dimensional isotropic system.
That this should be the case has been sho~n for a
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The inverse dielectric constant depends on S as

a, 'a:(S —S) ', y, =l (30)

and on Tas

one-, for a two- and for an (unphysical) ~-dimen-
sional order parameter. While no rigorous proof
seems to be available for n =3, we have shown here
on experimental grounds, that the three-dimensional
order-parameter "polarization" in KTa03-type com-
pounds. qualifies for a Gaussian fixed point at the
quantum limit. The transition line is described by

T, cc (S —S,)'~~, @=2

even though they reside at different sites. This indi-
cates that the influence of Na and Nb on KTa03 is
not restricted to a particular site but must be of
longer range. This view is in agreement with that put
forward recently on the basis of Raman-scattering
data: the large polarizability and eventual condensa-
tion in perovskites is due to the (anisotropic) polari-
zability of the oxygen shell which depends parametri-
cally on the surrounding ions. " Incipient ferroelec-
trics are not restricted to the perovskite structure:
KH2PO4 shows a phase diagram 9 under pressure
which in all likelihood is due to the presence of a
quantum limit.

Ey' ~ T pz' 2&T (31)

as deduced from the scaling equation' yr/ys = $.
This last exponent is compatible with the experimen-
tal data for e ' near T =0.

The findings are qualitatively the same for
K] &Na&Ta03 and KTa]—yNby03 Both Na and Nb
enhance the interaction parameter linearly with con-
centration. It is interesting to note that there is no
qualitative difference between the nature of the ef-
fects associated with these two impurities in KTa03
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