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Nuclear-spin-lattice relaxation times for H2 in solid nonmagnetic hosts
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We calculate the nuclear-spin relaxation times T~ and T2 for isolated ortho (J =1) H2

molecules in solid nonmagnetic hosts located at sites with various crystal fields. The mechanism

considered for the relaxation of a nuclear spin to lattice equilibrium proceeds via the molecular

angular momentum and is valid in the limit where molecular spin-lattice decay rates are much

greater than molecular-nuclear-spin coupling frequencies. We find that many relaxation prop-

erties, including the value of T~ at the T~ minimum and the product of T& T2 at temperatures

well below the temperature of the T& minimum, depend crucially on the crystal field at the H2

molecular site. Thus measurements of T~ and T2 can yield definite information about the en-

vironment of H2 molecules in a host lattice.

I. INTRODUCTION

Recent observations" of nuclear-spin relaxation
times Tj and T2 for low concentrations of ortho-
Hq (J =1) in solid rare gases and in para-H2 show
several puzzling anomalies. In particular, observed
values of T~ at the T~ minimum are larger by factors
of about 2 or 4 than what one would expect from
theory or from experiments on H2 gas. ' Further, the
transverse (T2) decay can be drastically nonexponen-
tial at low temperatures in contrast to the exponential
behavior at higher temperatures or in the gas. Simi-
lar effects have been observed by others in solid
H2 but either at ortho concentrations that are too
large to unequivocally separate out ortho-H2 pair in-

teractions from the spin-lattice relaxation or at tem-
peratures so low that our results are either not valid
or are only marginally valid.

Motivated by these results, ' we have calculated the
nuclear-spin relaxation times for low concentrations
of isolated ortho (J=1) H2 molecules in nonmagnet-
ic solid hosts. Since the nuclear spins relax via the
molecular angular momentum, T~ and T2 can depend
crucially on the crystal fields experienced by the H2

molecules. e calculate the appropriate molecular-
spin-correlation functions in various limiting cases of
electric-field-gradient configurations in order to ob-
tain the nuclear-spin relaxation times. The results
explain most of the observed anomalies. ' The calcu-
lations are valid only if the spin-lattice decay rates for
the rotational angular momentum of the molecules
are much greater than the coupling frequencies
between the molecular- and nuclear-spin systems.
Since these spin-lattice decay rates decrease rapidly
with decreasing temperature, our results are applica-
ble only at temperatures above a few degrees K.'

In the rest of this section we explain the model
more fully and present a simple physical picture for
the values of T~ at the T~ minimum. Section II con-

tains the details of the calculation. In Sec. III we
display and discuss T~ and T2 for a variety of limiting
cases of electric-field-gradient configurations.

In this paper we are considering only ortho-H2 in
the J = I =1 state. Since the rotational angular
momentum of a single H2 molecule can be described
by a J =1 spin formalism, we shall refer to the
molecular angular momentum as a molecular spin.
This is not only a more convenient wording but it
also emphasizes the fact that the molecule (in the
I = I state) acts like a spin in every way including in-

teractions with the lattice, magnetic fields, electric
field gradients, and other spins. Similarly, the two
protons will be referred to as a single nuclear spin
with I =1. Further, the gyromagnetic ratios for the
molecular- and nuclear-spin systems are y =0.3876
x 10 sec/6 and y„=2.67S ~ 10 sec/6, respectively.

Thus y„ is the same as y for a free proton while y
is several orders of magnitude smaller than y's for '

typical electron-spin systems. The Hamiltonian con-
necting the nuclear- and molecular-spin systems for a
single H2 molecule, H „, can be written'

H~ „=fcudl3(I J)2 —4]+ s( (~g —co,)(I J)—, (1)

+

where I and J are the vector spin operators for the
nuclear and molecular spins, respectively, and

~, =7.15 X10' sec '

362)&105 s

For our purposes, however, it is.more convenient to
write the Hamiltonian as'

prr ~+2
m +1

Hm-. =&~a $ JI2, ~2, —'It~ $ 8—
f5~ 2 ~~ I
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where the A~, and 8~ are the irreducible multipole
operators for the molecular and nuclear spins, respec-
tively. It will be our approximation that the effects
of the lattice (phonons) on the molecular spins are
much greater than are the effects of nuclear spins.
This approximation is valid if typical molecular-spin-
phonon decay rates are much larger than co, and ~d
and, in this limit, the calculation is quite straightfor-
ward. Using Eq. (2) the nuclear relaxation times can
be expressed in terms of the molecular-spin-
correlation functions. Further, the necessary molec-
ular-spin-correlation functions can be calculated as a
function of the molecular-spin —phonon interaction
and the electric field gradients V& at the molecular
site. Although our formalism is valid for electric
field gradients of any magnitude, detailed calculations
will be limited to cases where each V& is either very
large or very small.

Part of our results can be anticipated by regarding
Eq. (2) as describing the coupling of the eight non-
trivial molecular-spin modes to the nuclear-spin sys-
tem. In the multipole language these modes
correspond to the At with (I =1, m =0, +1) and
(/=2, m =0, +I, +2). Further, the coupling
strengths for these modes are roughly equal since

3
GJ to within 30'/o. First consider the effect of

a strong axial electronic field gradient. This will push
the resonant frequencies of four of the molecular
modes (those with m =+I) to very high values.
These modes are now ineffective in relaxing the nu-
clear spins because they have little spectral weight at
nuclear resonance frequencies. Thus we expect Tj to
be increased by roughly a factor of 2. Finally, con-
sider the effect of many strong electric-field-gradient
components. Now, in general, the splittings between
all pairs of molecular states arc large and only two of
thc eight molecular modes have appreciable spectral
weight at nuclear resonance frequencies. Thus we
expect T~ to be increased by a factor of 4. There is
no way to increase T~ further because 2J modes of a
spin J system describe relative level populations and
thus have their spectral weight centered about zero
(like M, ). Thus T~ (and T~) depend on the magni-
tudes of the components of the electric field gra-
dients at the H2 sites. However, as will be seen, T~

and T2 measurements cannot determine values for
the electric field gradients but can only determine
whether the gradients are large or small with respect
to certain other parameters to be discussed.

II. CALCULATIONS

Since we have assumed that the nuclear spins have
a negligible effect on the molecular spins, the effects
of H „on the nuclear spins can easily be obtained.

I

In our notation T~ and T2 are given by the equations

m ~+2
(T() ' = —', ~d $ m'F, (m ~p)

m ~ 2

m +1

+ —, o),' $ m'F) (m«pp)
m -1

(Tp) ' = —', ~d[2Fg t( —«p) +3Fp p(0)

+3F»(~p) +2Fg p(2(op)]

+ —', ~'(F,p(0) + Fi, i(~p)],

where ~p = ylHp, yl is the gyromagnetic ratio of the
Hq (1 = I) nuclear spin, and Hp is the magnitude of
an external magnetic field Hp that defines the z axis,
In these equations Ft (cu) is the normalized spectral
function for the molecular-spin operators AI

(4)

where O(t) is the step function, the brackets (x)
denote the thermai average of x, and Re(f) denotes
the real part of f Formulas like. these have been
derived by numerous authors9 and their derivation
will not be repeated here.

Thc next step is to calculate the molecular-spin-
correlation functions Ft («&) Since we w. ill ultimately
be dealing with H2 molecules in highly anisotropic
crystal fields, this becomes rather messy. First it is
convenient to find the transformation between the
AI and Al where unbarred quantities refer to the
laboratory coordinates and barred quantities refer to
the crystal coordinates. %c consider the crystal to
have a definite z axis and the laboratory z axis, de-
fined by an external magnetic field Hp, lies in the x-z
plane of the crystal making an angle —8 with respect
to the crystal z axis. The y axes of the two systems
coincide and the transformation is

m' +l
= X a(t, m, m')J&

where

a(l, m, m') =(—1) + a(f, m', I)
a (1,0, 0) = cos 8

a (1, +1, +I) =
&

(1+cos8)

a (1,0, +1) = + sin 8/2'

a (I, 1, —I) = —,
'

(1 —cos8)

a(2, 2, 2) =-,' (cos8+1)'

a (2, +1, +1) = —, (cos'8 —sin'8+cos8)
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a(2, 0, +2) =(—')' sin 8

a (2, 0, +I) = +(—,)' ' sin8cos8

a (2, 2, —2) =
4 (cos8 —1)

a(2, 2, +I) =
2

sin8(+cos8 —1)
1

a(2, —2, +1) =
2

sin8(+cos8+1)

a (2, I, —I) =
2

(sin28 —cos'8+cos8)

a(2, 0, 0) = —,
' (3cos'8 —I)

These transformation coefficients are rotation ma-
trices that are easy (but tedious) to derive using the
representation of the AI 's in terms of the vector
spin operators. s'p The correlation functions F( ((u)
in the laboratory coordinates can be expressed in
terms of the crystal coordinates as

F, ((u) = g a(l, m, m')a(l, m, m")F, »((u)
m', m"

where

Ft. ,„(()= (A,.(()A,„ t(O)) 0(() .

Further, the molecular Zeeman Hamiltonian in the
crystal coordinate system is

0, = —it(uJ( J, cos8 —J„sin8)

J = PmHO

(6)

where (ug( is a (real) frequency proportional to the
axial electric field gradient V„and the electronic quad-
rupole moment of the H2 molecule. Equations of
motion can be written down for the AI using the
prescription

(12)

Since the set of equations are linear in the Al they
can easily be diagonalized to obtain the F(„((u). In
this paper, however, we are primarily interested in
the limit of large field, gradients, coo~ & & coo G)J II.
In this case correlation functions with m or m' = +1
vanish as I (/(ug2( and

F(, , (~) =
[(u —m(uj(8)]2+ I'('

(13)

field gradients on the molecular-spin-correlation
functions. In general there are five independent
components of the electric-field-gradient tensor V& at
a given H2 site. However, it is neither practical nor
especially desirable to consider an arbitrary set of
such field gradients. Instead we shall consider some
likely limiting cases. First consider the case where
the only nonzero component is V

(V = V~, V~= V~= V =0). The "single-particle"
part of the H2 molecular-spin Hamiltonian (the Ham-
iltonian excluding molecular-spin —phonon interac-
tions) is

Hp = —%uJ( J, cos8 —J„sin8)+ l&g(A2 p, (11)

3r, /r, = —, (10)

where y is the gyromagnetic ratio of the molecular
spins.

The other two elements left to consider are the
molecular-spin —phonon interaction and the possibility
of static electric field gradients interacting with the
molecular spins via their quadrupole moments. We
shall characterize the effects of the molecular-spin-
phonon interaction on the molecular spins by two de-
cay rates (inverse correlation times). These decay
rates are I ~ which is the decay rate appropriate for
the dipole (i = 1) correlation functions F( ((u) and I'2

which is the decay rate appropriate for the quadrupole,
(1=2) correlation functions F2 ((u) For a wide.
variety of spin-phonon regimes one obtains exponen-
tial decay independent of magnetic field and the con-
dition

for /=2, m =m'=0, +2 and t =1, m =m'=0,
where

(uJ (8) = (uj COSH (14)

Jip ™J(8)Js + (I((ug2A2, 2 +(ug2 A 2, —2) (15)

where cog2 is complex frequency whose real part is
proportional to V Vyy and whose imaginary part is
proportional to V~. By using Eq. (12) with Eq. (15)
and ignoring the AI +~, we obtain the following equa-
tions of motion'.

Finally consider the additional electric field gra-
dients in the x-y plane of the crystal. Since the mul-
tipole operators with m =+1 have been eliminated in
the preceding paragraph, we simply ignore them here.
Thus the effective single-particle Hamiltonian for the
Al with m A+1 is

if the spin-phonon interaction is spherically sym-
metric. ' " Although this condition of spherical sym-
metry will not obtain exactly in most crystal lattices,
most spin-phonon decay rates are only weakly angu-
lar dependent indicating that spherical symmetry is
not too bad an approximation.

Finally we consider the effects of static electric

+/r() A(, p= J6( Q2A2, 2+ g2A2 2)

((u+iI'2) A2 p=0

[~-2~,(8) + ir, ] A, , = ~6„g,A„
[(u+2&uj(8) + iI'2] A2 2= —Jg(ug2A, p

(16)
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Again we are primarily interested in the limit of
strong electric field gradients,

~ cpo2~ & & cp, c«J(e), I', .
In this limit the only finite correlation functions are

which to compare other cases. The results are con-
veniently written

T~ =3cpcc[4F2(2cpp —2c«J) +F2(c«p c«J)]

F2 p p (cp) = F2 (cp) = I 2/( + I',)

F, +z +,(cp) = —,
'

Fz(c0)

F2 +z +z(cp) = —, F2(cp)r
1

where

r = [Re(cpg2/(cpg, ()]'
= [(V~ —

Vyy)
—V~]/[(V~ —

Vyy) + V~]

(i7)
+

3 (dc Fi (cpp QJJ)

T2 =
2

cpd [2F2(2cpp —2c«J)

(19a)

where

+ 5F2(ca&p cp~) + 3Fg(0)]

+ —cp, [Fi(cpp —cpj) +Fi(0)], (19b)

In this section we have ignored the possibility that
the molecular-spin decay rates may be altered by the
presence of the large electric field gradients. Except
for relaxation by the direct spin-phonon process, the
molecular decay rates should not depend on the ~g's
unless %og becomes comparable to kT. Thus we
shall now explicitly assume that both (cp~&) and ~cpo2~

are much less than kT/ f, which eliminates any possi-
bility of Pake doublet effects. ' Finally, it would
seem impossible that direct molecular-spin-lattice re-
laxation could dominate within the assumed limit

c

Fc(cp) = I'c/(«)'+ rcz) (20)

and ~p = y„Hp is the resonant frequency of the nu-

clear spins. For numerical evaluations we shall use
r, =0.6I ~, o), =1.97')g, and o)J =0.1450)p. By
evaluating these equations over a range of frequen-
cies we find that (T~), the value of T, at the T~

minimum, is given by

(T&)~ =0.138(cpp/cp j) (21a)

and that (T2), the value of T2 at the T~ minimum,
is given by

T2 =0.0785(cpp/cpg) (2ib)

III. RESULTS

In this section we will discuss T~ and T2 in detail
for several limiting cases of large crystal fields. Since
most experiments are done on polycrystalline sam-
ples, the results will be averaged over all angles
where appropriate.

(T~ Tz)p =0.00826(cpp/cpg) (21c)

8. Axial symmetry

The value of (T~ T2)p, the asymptotic value of T~ T2

for I"I (& ~p, is given by

A. Cubic symmetry

First we consider an H2 molecule at a site possess-
ing cubic symmetry. In this case there are no electric
field gradients and thus no angular dependence. The
results in this case are the same as those obtained by
Hardy and are useful primarily as a standard with

We next consider a crystal site with only an axial
electric field gradient, V, along the crystal z axis.
As discussed in Sec. II, we assume that the frequency
characterizing the magnitude of this field gradient is
much greater than cpp or I'c. By combining Eqs. (3),
(6), (7), and (13), we obtain T~ and Tz as a function
of 8, the angle between Hp and the crystal z axis.

T&(8) =
2

[cp&3(1 —z ) Fz(2cpp) +
z (z +1) Fz(2cpp —2c«JZ) +

z (z —1) Fz(2cpp+2c«JZ)

+3z (1 —z )F2(c«p) +
2

(1 —z )(1+z) Fz(cup 2cpqz) +
2

(1 ——z )(1 z) Fz(cpp+2cpjz) —]
+

3 caic(1 z )Fi(cpp)

Tz (8) =
& cput[3(1 —z ) F (2 zp) +cpz (z + 1) Fz(2cpp —2cpJz) +

z (z —1) Fz(2cpp +2cpjz)

+30z (1 —z )F2(cpp) +5(1 —z )(1+z) Fz(2cpp —2cpqz)

+5(1 —z )(1 —z) Fz(cpp+2c«JZ) +3(3z —1) F2(0) +9(l —z ) Fz( 2cpJZ)]-
+ —,'cp,'[2ZZF~(0)+(1 —z')F)(cpp c«Jz)]

where z =cos8 and Fj(cp) is given by Eq. (20).

(22a)

(22b)
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If Eqs. (22a) and (22b) are averaged over all solid angles one obtains the angular averages

T (e)sinede, (23)

where i =1 or 2.

Ti,' =(—) d I4Fp(2 )[1+32 0 Jjg(2 )/91 ]+F ( )[1+8 F ( )/91' ]]+(—),F, ( )

Tp,' = (—, )»ig (6Fz(2 coo) [I + 32»io»i Fg (20io) /91'g] + 15'�(Dip) [I + Sauooi Fp (0ip) /91'g]

+3'(0) +(45/41'z) [——, a —a +a(1+a ) tan '(a ')]]

+ (—', )~,'[Fi(0) + Fi(0')]

(24a)

(24b)

where

a='r, /2~, . (25)

( Ti, ) =0.297 (»ip/»ig)

(T„) =0.177 (r»o/cog)

(Ti» Tp»)0 =0.102(»io/&j)

(26a)

(26b)

(26c)

These equations should be compared with Eqs. (21)
for the case of cubic symmetry. As argued in Sec. I,
T~, and T~, are increased by roughly a factor of 2.

In obtaining Eqs. (24a) and (24b) we have neglected
terms of order (aiJ/20~0)' with respect to one. These
terms contribute less than 1% to T~ and T~ for any
value of I ~.

Equations (24) are quite complex but the resulting
behavior is relatively simple. T~, still is a monotonic
function of I q and T~, has a simple minimum as a
function of I q. Using the same notation as in Eqs.
(21), we obtain values at the Ti minimum and as
r, -o of

In addition to the increase in T] and T~, the decay
signals in pulsed experiments on powdered samples
will exhibit some nonexponential character. This will

occur because the signal S(t) observed is not
exp( —t/T„) but rather

S(t) = —JI sinH d8exp[ t/T, (8)] . — (27)

Thus Eqs. (24) are only useful for the short-time part
of a decay. This nonexponential decay is more pro-
nounced for T~ than for T~ and is more pronounced
for I~ (& coo than for Ig)) No.

C. No symmetry

Finally we consider crystal sites with large electric
field gradients V —V~ and V~ in addition to the
large axial field gradient V . As discussed in Sec. II,
the magnitude of the frequency associated these addi-
tional field gradients must be much greater than coo

or I'i. By combining Eqs. (3), (6), (7), and (17) we
obtain T~ and T~ as a function of 8.

T, ' (e) = —', »ig [[6z'(1 —z') +z'(I —'z') (1+r) + (1 —z') (1 —r)]Fz(ruo)

+ [6(1—z ) +(zz+I) (1+r) +4z (1 —r)]Fz(2»i»)] (28a)

Tz ' (8) = —, r»q {[6z + (z + I) (1+r) +4z (1 —r)]Fz(2»io)

+ [60z'(I —z') +10z'(1 —z') (1+r) +10(1—z') (1 —r)]F ( o)

+ [6(3zz —1)z+9(1—z ) (I +r)]Fq(0)) (28b)

where z =cos8, r is given by Eq. (18), and Fj(»i) is given by Eq. (20). When Eqs. (28) are averaged over all an-
gles as described by Eq. (23), we obtain

Ti,' =
5

c»z[(3 —r) Fz(»io) + (12 +r) Fz(2»io)]

Tq,' = io»iq[ (12+r) Fz(2f»0) + (30 —10r)Fz(0io)+ (1S +9r) Fq(0)l

(29a)

(29b)

The quantity r, —1 ~ r ~ 1, is a measure of the strength of V —V» vs V», r =1 when
~

V —V» ~
&& V» and
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r =—1 when ) V ) )) ( V —V~ [. By numerical
evaluation of Eqs. (29) we obtain,

(Ti,) i, i =0.612(coo/s) j)
(T~.) I.--i =o 5s7(~0/~~),

(30a)

peratures when r =—1, the 12 decay will be drastical-

ly nonexponential.

D. Conclusion

l.-i =0 367(~0/~„'),
T 2

(30b)
—1 0.370(mo/~d)

(T)T2)0=100(coo/mu) /(24 —3r)(18+9r) . (30c)

As expected from the discussion in Sec. I, (T~) for
the case of no symmetry is roughly twice as large as
in the case of axial symmetry and roughly four times
as large as in the case of cubic symmetry. The quan-
tities (T~,) and (T2,) depend only weakly on r and

as functions of r are well approximated by lines of
constant slope. (T~ T2)p, on the other hand, depends
strongly on r. The nonexponential character of T~

and T2 in pulsed experiments on powders is more
pronounced in this case than in the case of axial sym-

metry. This is especially true of T2 when coo &) I 2.

In fact, an examination of Eq. (28a) shows that T2(to
is infinite when cos8=

3 if r = —1; Thus at low tem-

Although we have explicitly calculated T~ and T2
for only a few specific configurations of electric field
gradients, our results can be used to at least semi-
quantitatively describe any relevant experiment on
powders. For example, a single strong electric field
gradient V& with i &jwill produce effects very close
to the effects described in Sec. III B. Further, if V
dominates all other electric field gradients, V and
V~ will have essentially no effect.
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