EPR of Fe^{3+} and Mn^{2+} in single-crystal $ZnGa_2O_4$ spine

J. J. Krebs, G. H. Stauss, and J. B. Milstein Naval Research Laboratory, Washington, D. C. 20375 (Received ¹ May 1979)

The EPR spectra of Fe³⁺ and Mn²⁺ in the single crystal ZnGa₂O₄ have been measured. The room-temperature spin-Hamiltonian parameters of $Fe³⁺$, which are related to the magnetocrystalline anisotropy in the spinel ferrites, are $g_{\parallel} = 2.005(2)$, $g_1 = 2.008(3)$, $D = -0.2442(2)$ cm⁻¹, $a = +0.0444(8)$ cm⁻¹, and $a - F = 0.0353(4)$ cm⁻¹. For Mn²⁺ the parameters are $g = 2.0011(6)$ and $A = -76.2(2) \times 10^{-4}$ cm⁻¹. The details of the Mn²⁺ spectra indicate a small degree of A-B disorder in this normal spinel. The Fe³⁺ and Mn²⁺ are located on B and A sites, respectively.

The spin-Hamiltonian parameters of $Fe³⁺$ in spinel crystals are relevant to the "single-ion" mechanism' of cubic anisotropy in the isomorphous ferrites. We have made an EPR examination of well-formed crystals of $ZnGa₂O₄$ and have identified the spectra of three ions: Cr^{3+} , Fe^{3+} , and Mn^{2+} . The first conforms with the properties reported by Kahan and Macfarlane.² The other two have not been reported and are the subject of this communication.

 $ZnGa₂O₄$ is a normal cubic spinel of space group O_h^7 and lattice parameter³ $a_0 = 8.33$ Å, with Zn in tetrahedral (T_d) A sites and Ga in trigonally distorted octahedral (D_{3d}) B sites. The crystals, which have a faint yellow color, were grown using the method described by Van der Straten et al.⁴ No attempt was made to deliberately dope the crystals and the reagents used were nominally 99.99% pure. The EPR signal intensities gave estimates of 100 and 3 ppm for the Fe³⁺ and Mn²⁺ concentrations, respectively

Spectra were obtained at room temperature and 4.5 K with a Varian E-9 X-band spectrometer with a Helitran refrigeration insert. Data were taken at magnetic field orientations throughout the $(1\bar{1}0)$ plane of the sample. Field values for resonance for \overline{H} parallel to $[001]$, $[110]$, and $[111]$ were calibrated with an NMR magnetometer and used for computer optimization of the spin-Hamiltonian parameters.

a. Fe^{3+} . The Fe³⁺ spectra can be fit by a spin Hamiltonian suitable to the trigonally distorted B sites. Suppressing constant terms, for $S = \frac{5}{2}$ this takes the form

$$
\mathcal{K} = g_{\parallel} \mu_{\text{B}} H_{z} S_{z} + g_{\perp} \mu_{\text{B}} (H_{x} S_{x} + H_{y} S_{y})
$$

+
$$
DS_{z}^{2} + \frac{1}{180} F (35 S_{z}^{4} - \frac{475}{2} S_{z}^{2})
$$

+
$$
\frac{1}{6} a (S_{\xi}^{4} + S_{\eta}^{4} + S_{\xi}^{4}) ,
$$

where ξ , η , ζ refer to cube edge directions and in the set x, y, z the z direction is along the trigonal axis which is one of the (111) directions. The spin-Hamiltonian parameters of $Fe³⁺$, derived from 20

well-defined lines observed in the three orientations, are shown in Table I. The rms error of 16 G is much less than a typical linewidth. The sign of D was confirmed by population differences at the two temperatures. Only a slight improvement in fit is achieved using our tabulated g values instead of average isotropic values.

In the "single-ion" explanation¹ of the cubic anisotropy constant K_1 of the spinel ferrites, D, a, and F all play a role. The dominant contribution arises from the a term. Because of averaging over equivalent sites, K_1 is less sensitive to F, while D affects K_1 only via the small second-order Wolf term D^2/H_m in which H_m is the molecular field. In Table II we summarize the room-temperature values of a , F, and D for $Fe³⁺$ in single-crystal spinel samples. It should be noted that the lattice constant of $ZnGa₂O₄$ is more nearly equal to those of the ferrites than are the lattice constants of the $ZnA1_2O_4$, 7 MgA 1_2O_4 , 8 and $Li_{0.5}Al_{2.5}O_4$ hosts⁹ studied earlier by EPR. Since the $Fe³⁺$ is located on an A site in ordered Li_{0.5}A₁₂₅O₄ rather than on a B site as in the other spinels, direct comparison is not possible but it is given for completeness.

b. Mn^{2+} . For Mn^{2+} in A sites one expects resonance patterns similar to those found by Soulie

TABLE I. Spin-Hamilontian parameters of $Fe³⁺$ in $ZnGa₂O₄$

	Room Temp.	4.5 K	
$g_{\rm II}$	2.005(2)	2.006(2)	
81	2.008(3)	2.008(4)	
D (cm ⁻¹)	$-0.2442(2)$	$-0.2476(2)$	
$a - F$ (cm ⁻¹)	$+0.0353(4)$	$+0.0372(5)$	
a (cm ⁻¹)	$+0.0444(8)$	$+0.0465(9)$	

20 2586 [©]1979 The American Physical Society

Host	a (cm ⁻¹)	F (cm ⁻¹)	D (cm ⁻¹)	$a_0(\text{\AA})$	Ref.
	÷				
ZnGa ₂ O ₄	0.0444	0.0091	-0.2442	8.33	this work
ZnAl ₂ O ₄	0.0575	0.0104	-0.3402	8.086	
MgAl ₂ O ₄	0.0475	0.0017	-0.2467	8.089	8
Li_0 s A I_2 s O_4	≈ 0.01 ^a	-10.0067 ^a	±0.104 ^a	7.92	Q

TABLE II. Room-temperature zero-field splitting parameters for $Fe³⁺$ in spinel single crystals.

 $^{4}Fe^{3+}$ is on an A site in ordered Li_{0.5}A₁₂₅O₄ rather than a B site. The a value is preliminary.

et al.¹⁰ for Mn^{2+} in $ZnAl_2O_4$, in which the member of the characteristic hyperfine-split sextet of Mn^{2+} have an orientation-dependent splitting and variable widths due to combined effects of a small cubic field term and second-order hyperfine terms. Instead we observe a situation more like that found^{11,12} for Mn^{2+} in $MgA1_2O_4$, in which the components are all of constant width (18 G here) and show additional broadening or structure only near \vec{H} || [001]. It appears that there is sufficient lattice disorder to introduce ill-defined lower-symmetry crystal fields which broaden and eliminate from observability all but the $M = \frac{1}{2} \leftrightarrow -\frac{1}{2}$ transitions. The collapse of trigonal field contributions at the [001] orientation apparently allows some additional transitions to become distinguishable. We observe no "forbidden" doublets between sextet lines. From this we conclude that the

magnitude of the lower-symmetry terms is less than 0.01 cm⁻¹. If crystal-field contributions are assumed to average away, evaluation of the parameters in the simple Hamiltonian $\mathfrak{X} = g \mu_B \vec{H} \cdot \vec{S} + A \vec{I} \cdot \vec{S}$ leads to the room-temperature [4.5 K] values $g = 2.0011(6)$ [2.0012(6)] and $A = -76.2(2) \times 10^{-4}$ $[-76.9(2) \times 10^{-4}]$ cm⁻¹, assumed negative. The g and A values are quite compatible with those for and A values are quite compatible
Mn²⁺ in ZnAl₂O₄ and MgAl₂O₄.¹¹

From the identified spectra, which essentially exhaust the features observed, we conclude that $Fe³⁺$ is substitutional for Ga in $ZnGa₂O₄$ and $Mn²⁺$ replaces Zn. The difficulties with the Mn^{2+} spectra, which also are reflected in moderately broad asymmetric line shapes for $Fe³⁺$, indicate that the ordering of Zn and Ga on the A and B sites, respectively, is imperfect.

- 'G. T. Rado and V. J. Folen, Bull. Am. Phys. Soc. 1, 132 (1956); K. Yoshida and M. Tachiki, Prog. Theor. Phys. (Kyoto) 17, 331 (1957); W, Wolf, Phys. Rev. 108, 1152 (1957); V. J. Folen and G. T. Rado, J. Appl. Phys. 29, 438 (1958). .
- 2H. M. Kahan and R. M. Macfarlane, J. Chem. Phys. 54, 5197 (1971).
- ³F. Buschendorf, Z. Phys. Chem. (Frankfurt am Main) B 14, 297 (1931);T. Moeller and G. L. King, J. Am. Chem. Soc. 75, 6060 (1953).
- 4P. J. M. Van der Straten, R. Metselaar, and H. D. Jonker, J. Crystal Growth 43, 270 (1978).
- 5A. Abragam and B. Bleaney, Electron Paramagnetic

Resonance of Transition lons (Oxford University, New York, 1970), p. 437.

- $V. J.$ Folen, J. Appl. Phys. $31, 1665$ (1960).
- ⁷P. Gerber and F. Waldner, Helv. Phys. Acta 44 , $401(1971)$.
- SE. Brun, H. Loeliger, and F. Waldner, C. R. Colloque Ampere 10, 167 (1961).
- ⁹V. J. Folen, in Paramagnetic Resonance, Vol. 1, edited by W. Low (Academic, New York, 1963), p. 68,
- ¹⁰E. Soulié, M. Drifford, and P. Rigny, Solid State Commun. 12, 345 (1973).
- ¹¹F. Waldner, Helv. Phys. Acta 35, 756 (1962).
- ¹²J. S. Shaffer, H. A. Farach, and C. P. Poole, Jr., Phys. Rev. B 13, 1869 (1976).