EPR of Fe^{3+} and Mn^{2+} in single-crystal ZnGa₂O₄ spinel

J. J. Krebs, G. H. Stauss, and J. B. Milstein Naval Research Laboratory, Washington, D. C. 20375 (Received 1 May 1979)

The EPR spectra of Fe³⁺ and Mn²⁺ in the single crystal ZnGa₂O₄ have been measured. The room-temperature spin-Hamiltonian parameters of Fe³⁺, which are related to the magnetocrystalline anisotropy in the spinel ferrites, are $g_{\parallel} = 2.005(2)$, $g_{\perp} = 2.008(3)$, D = -0.2442(2) cm⁻¹, a = +0.0444(8) cm⁻¹, and a - F = 0.0353(4) cm⁻¹. For Mn²⁺ the parameters are g = 2.0011(6) and $A = -76.2(2) \times 10^{-4}$ cm⁻¹. The details of the Mn²⁺ spectra indicate a small degree of A-B disorder in this normal spinel. The Fe³⁺ and Mn²⁺ are located on B and A sites, respectively.

The spin-Hamiltonian parameters of Fe^{3+} in spinel crystals are relevant to the "single-ion" mechanism¹ of cubic anisotropy in the isomorphous ferrites. We have made an EPR examination of well-formed crystals of ZnGa₂O₄ and have identified the spectra of three ions: Cr^{3+} , Fe^{3+} , and Mn^{2+} . The first conforms with the properties reported by Kahan and Macfarlane.² The other two have not been reported and are the subject of this communication.

ZnGa₂O₄ is a normal cubic spinel of space group O_h^7 and lattice parameter³ $a_0 = 8.33$ Å, with Zn in tetrahedral (T_d) A sites and Ga in trigonally distorted octahedral (D_{3d}) B sites. The crystals, which have a faint yellow color, were grown using the method described by Van der Straten *et al.*⁴ No attempt was made to deliberately dope the crystals and the reagents used were nominally 99.99% pure. The EPR signal intensities gave estimates of 100 and 3 ppm for the Fe³⁺ and Mn²⁺ concentrations, respectively.

Spectra were obtained at room temperature and 4.5 K with a Varian E-9 X-band spectrometer with a Helitran refrigeration insert. Data were taken at magnetic field orientations throughout the $(1\overline{10})$ plane of the sample. Field values for resonance for \vec{H} parallel to [001], [110], and [111] were calibrated with an NMR magnetometer and used for computer optimization of the spin-Hamiltonian parameters.

a. Fe^{3+} . The Fe³⁺ spectra can be fit by a spin Hamiltonian suitable to the trigonally distorted B sites. Suppressing constant terms, for $S = \frac{5}{2}$ this takes the form⁵

$$\mathcal{C} = g_{\parallel} \mu_{B} H_{z} S_{z} + g_{1} \mu_{B} (H_{x} S_{x} + H_{y} S_{y})$$
$$+ DS_{z}^{2} + \frac{1}{180} F (35S_{z}^{4} - \frac{475}{2} S_{z}^{2})$$
$$+ \frac{1}{4} a (S_{\ell}^{4} + S_{r}^{4} + S_{\ell}^{4}) ,$$

where ξ , η , ζ refer to cube edge directions and in the set x, y, z the z direction is along the trigonal axis which is one of the $\langle 111 \rangle$ directions. The spin-Hamiltonian parameters of Fe³⁺, derived from 20

well-defined lines observed in the three orientations, are shown in Table I. The rms error of 16 G is much less than a typical linewidth. The sign of D was confirmed by population differences at the two temperatures. Only a slight improvement in fit is achieved using our tabulated g values instead of average isotropic values.

In the "single-ion" explanation¹ of the cubic anisotropy constant K_1 of the spinel ferrites, D, a, and F all play a role. The dominant contribution arises from the *a* term. Because of averaging over equivalent sites, K_1 is less sensitive⁶ to F, while D affects K_1 only via the small second-order Wolf term D^2/H_m in which H_m is the molecular field. In Table II we summarize the room-temperature values of a, F, and D for Fe^{3+} in single-crystal spinel samples. It should be noted that the lattice constant of $ZnGa_2O_4$ is more nearly equal to those of the ferrites than are the lattice constants of the $ZnAl_2O_4$, ⁷ MgAl_2O_4, ⁸ and $Li_{0.5}Al_{2.5}O_4$ hosts⁹ studied earlier by EPR. Since the Fe^{3+} is located on an A site in ordered $Li_{0.5}Al_{2.5}O_4$ rather than on a B site as in the other spinels, direct comparison is not possible but it is given for completeness.

b. Mn^{2+} . For Mn^{2+} in A sites one expects resonance patterns similar to those found by Soulié

TABLE I. Spin-Hamilontian parameters of Fe^{3+} in $ZnGa_2O_4$

	Room Temp.	4.5 K	
	2,005(2)	2,006(2)	
811	2.003(2)	2.000(2)	
81	2.008(3)	2.008(4)	
$D ({\rm cm}^{-1})$	-0.2442(2)	-0.2476(2)	
$a - F (cm^{-1})$	+0.0353(4)	+0.0372(5)	
$a (\rm cm^{-1})$	+0.0444(8)	+0.0465(9)	

<u>20</u>

2586

©1979 The American Physical Society

Host	$a ({\rm cm}^{-1})$	$F(cm^{-1})$	$D ({\rm cm}^{-1})$	a ₀ (Å)	Ref.
	v		t and the second se		
ZnGa ₂ O ₄	0.0444	0.0091	-0.2442	8.33	this work
ZnAl ₂ O ₄	0.0575	0.0104	-0.3402	8.086	7
MgAl ₂ O ₄	0.0475	0.0017	-0.2467	8.089	8
Li _{0.5} Al _{2.5} O ₄	≃0.01ª	$\sim \pm 0.0067^{a}$	±0.104 ^a	7.92	9

TABLE II. Room-temperature zero-field splitting parameters for Fe³⁺ in spinel single crystals.

^aFe³⁺ is on an A site in ordered Li_{0.5}Al_{2.5}O₄ rather than a B site. The a value is preliminary.

et al.¹⁰ for Mn^{2+} in $ZnAl_2O_4$, in which the members of the characteristic hyperfine-split sextet of Mn²⁺ have an orientation-dependent splitting and variable widths due to combined effects of a small cubic field term and second-order hyperfine terms. Instead we observe a situation more like that found^{11,12} for Mn²⁺ in MgAl₂O₄, in which the components are all of constant width (18 G here) and show additional broadening or structure only near $\vec{H} \parallel [001]$. It appears that there is sufficient lattice disorder to introduce ill-defined lower-symmetry crystal fields which broaden and eliminate from observability all but the $M = \frac{1}{2} \leftrightarrow -\frac{1}{2}$ transitions. The collapse of trigonal field contributions at the [001] orientation apparently allows some additional transitions to become distinguishable. We observe no "forbidden" doublets between sextet lines. From this we conclude that the

magnitude of the lower-symmetry terms is less than 0.01 cm⁻¹. If crystal-field contributions are assumed to average away, evaluation of the parameters in the simple Hamiltonian $\Im C = g \mu_B \overline{H} \cdot \overline{S} + A \overline{1} \cdot \overline{S}$ leads to the room-temperature [4.5 K] values g = 2.0011(6) [2.0012(6)] and $A = -76.2(2) \times 10^{-4}$ [-76.9(2) × 10⁻⁴] cm⁻¹, assumed negative. The g and A values are quite compatible with those for Mn²⁺ in ZnAl₂O₄ and MgAl₂O₄.¹¹

From the identified spectra, which essentially exhaust the features observed, we conclude that Fe^{3+} is substitutional for Ga in $ZnGa_2O_4$ and Mn^{2+} replaces Zn. The difficulties with the Mn^{2+} spectra, which also are reflected in moderately broad asymmetric line shapes for Fe^{3+} , indicate that the ordering of Zn and Ga on the A and B sites, respectively, is imperfect.

- ¹G. T. Rado and V. J. Folen, Bull. Am. Phys. Soc. <u>1</u>, 132 (1956); K. Yoshida and M. Tachiki, Prog. Theor. Phys. (Kyoto) <u>17</u>, 331 (1957); W. Wolf, Phys. Rev. <u>108</u>, 1152 (1957); V. J. Folen and G. T. Rado, J. Appl. Phys. <u>29</u>, 438 (1958).
- ²H. M. Kahan and R. M. Macfarlane, J. Chem. Phys. <u>54</u>, 5197 (1971).
- ³F. Buschendorf, Z. Phys. Chem. (Frankfurt am Main) B <u>14</u>, 297 (1931); T. Moeller and G. L. King, J. Am. Chem. Soc. <u>75</u>, 6060 (1953).
- ⁴P. J. M. Van der Straten, R. Metselaar, and H. D. Jonker, J. Crystal Growth <u>43</u>, 270 (1978).
- ⁵A. Abragam and B. Bleaney, *Electron Paramagnetic*

Resonance of Transition Ions (Oxford University, New York, 1970), p. 437.

- ⁶V. J. Folen, J. Appl. Phys. <u>31</u>, 1665 (1960).
- ⁷P. Gerber and F. Waldner, Helv. Phys. Acta <u>44</u>, 401 (1971).
- ⁸E. Brun, H. Loeliger, and F. Waldner, C. R. Colloque Ampere <u>10</u>, 167 (1961).
- ⁹V. J. Folen, in *Paramagnetic Resonance, Vol. 1*, edited by W. Low (Academic, New York, 1963), p. 68.
- ¹⁰E. Soulié, M. Drifford, and P. Rigny, Solid State Commun. <u>12</u>, 345 (1973).
- ¹¹F. Waldner, Helv. Phys. Acta <u>35</u>, 756 (1962).
- ¹²J. S. Shaffer, H. A. Farach, and C. P. Poole, Jr., Phys. Rev. B <u>13</u>, 1869 (1976).