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The spatially modulated or "sinusoidal" phase which occurs in a three-dimensional spin- —Is-
2

ing model with competing ferromagnetic and antiferromagnetic interactions between adjacent
and next-nearest xy layers is studied by Monte Carlo methods. The equilibrium wave vector,
q(T), changes, possibly with jumps, from q = m/2a at T =0, to its near-critical value: for
—J2/J& =0.6, the change occurs rapidly in the interval O.S T, to 0.9 T, . The magnetization wave

form appears to display distinct, although small, third harmonic components up to T, .

I. INTRODUCTION

In this article we study the low temperature, spa-
tially modulated phase of a three-dimensional simple
cubic-lattice Ising model with competing interactions
between nearest layers and next-nearest layers (per-
pendicular to the z axis). The model was introduced
some years ago' to describe the magnetic properties

, of erbium, which displays a sinusoidally ordered 1ow-

temperature phase. ' The original theoretical analysis
was restricted to mean-field-type calculations leading,
among other conclusions, to a sinusoidally ordered
phase with an essentially temperature-independent
wave vector determined only by the ratio of the two

competing exchange integrals. Higher harmonics
were predicted to appear below approximately one
half of the transition temperature. These theoretical
results have been used to interpret experimental data
on erbium, thulium, and some of their alloys4 with

apparent but, as will become evident below, really
misleading success.

Recently there has been a renewed interest in the
model because it displays a Lifshitz point, ' namely, a
multicritical point separating a uniformly ordered
phase, a modulated or "sinusoidally" ordered phase,
and a disordered phase. The new theoretical treat-
ments, however, have been limited mainly to the
properties close to the phase transition temperatures,
modifying the mean-field results only quantitatively,
specifically: shifting the location of the Lifshitz
point, and giving more precise values for the critical
lines, the critical exponents, and the critical wave
vector as a function of the competing interactions.
No serious attempts seem to have been made to
analyze the sinusoidal phase itself in any detail
although consideration of the discrete, Ising nature of
the spins stimulates a number of questions about the
possible nature of a modulated phase in the model,
particularly as the temperature is lowered towards
zero where, clearly, an incommensurate, near-

sinusoidal state cannot easily be realized. Thus the
variatjon with temperature of the equilibrium wave
vector q(T), and of the harmonic content of the
magnetization modulation are of paramount interest.

The layout of this article is as follows: The model
is defined explicitly and the phase diagram and the
ground state are discussed in Sec. II. Then the
results of some Monte Carlo calculations are present-
ed. The ambiguities, advantages, and drawbacks of
various boundary conditions in the Monte Carlo
study are sketched briefly; furthermore, various
dynamic mechanisms occurring in the sinusoidal
phase, within the stochastic kinetics of the Monte
Carlo process, are displayed in Sec. III. In Sec. IV,
the dramatic dependence of the wave vector on the
temperature (for a fixed value of the ratio of the ex-
change integrals) is demonstrated. In Sec. V the
magnetization waves are Fourier-analyzed and the
role of the higher harmonics is discussed. Finally,
the results are summarized briefly.

II. THE MODEL AND:ITS PHASE DIAGRAM

%e consider a spin- —, Ising model on a simple cu-

bic lattice of L x M x W sites with ferromagnetic in-
teractions (Jo )0) between each spin at site (x,y.z)

(s„y, = +1) and its nearest neighbors in the xy
planes, and competing interactions between the spins
in adjacent layers JI, and in the next-nearest layers
J2', see Fig. 1(a). Explicitly, the Hamiltonian may be
written

1

X (JOSx.y z x + l,y + 1,z
Z,g,g

+ Jtsxyzsx, yz +1 + J2~x,yzsx, y, x +2)

where x, y, and z run over integer values, i.e., we
take a lattice spacing a =—1.
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FIG. 1. (a) Ising model with ferromagnetic interactions of strength Jo in the layers and competing interactions between
1nearest, Jt, and next-nearest layers, Jz. (b) Magnetization per layer, M(z) for the (2,2) antiphase state (T =0,

~ Jz~ )—
~ Jt ~).

(c) Magnetization per layer in a sinusoidal structure of large amplitude.

For reasons of brevity and simplicity we will as-
sume

~
Jt

~

= Jp. We will always presuppose the ther-
modynamic limit (L,M, N ~) unless otherwise stat-
ed. We will disregard the cases (i) Jt, Jz )0 and (ii)
J~ & 0 and J2 )0, since these yield only ferromagnet-
ically or antiferromagnetically (metamagnetically) or-
dered phases, whatever the relative values of J~ and
J2. Indeed, a sinusoidally ordered phase can be
achieved only if (iii) both exchange integrals are of
antiferromagnetic sign, Jt, Jz & 0, or if (iv) Jt is po-
sitive (ferromagnetic) while Jz represents a compet-
ing antiferrornagnetic interaction. In the Appendix
we prove, by means of the transfer matrix method,
that at zero temperature in case (iii) the antifer-
romagnetic state is the stable one only for

( Jz/Jt( & 0.5, while in case (iv) the ferromagnetic
state is stable only for ( Jz~/Jt & 0.5. In both cases
for all other values of the ratios, the ground state of
an infinite system is periodic, with a period of four
lattice spacings, and is represented by a sequence of
two layers of up-spins (s„r,=+I) followed by two
layers of down-spins (s„z, = —I), etc. , i.e., by a confi-
guration sometimes called a (2,2) antiphase state [see
Fig. 1(b)].

A fair description near the critical line may be ob-
tained by a mean-field calculation. In both cases,
(iii) and (iv), one finds for T T„a "sinusoidal"
spin configuration [Fig. 1(c)] in 'the ordered phase

for
~
Jz/Jt

~
)0.25, and a ferromagnetic, or antifer-

romagnetic, configuration, respectively, for smaller
values of ~Jz/Jt~. The mean-field transition tempera-
ture is given by'

ktr T, "=4i Jt i +2Jt cos qP" +2Jz cos 2qP" (2)

near T, and is given explicitly by

q "=cos '(—Jt/4Jz) (4)

for
~ Jz/Jt~ )0.25, and qP" =—0 (ferromagnetic case)

or qp ——rr (antiferromagnetic case) for smaller ratios.
In Eq. (3) the phase $, is arbitrary.

In case (iv) these results have been essentially con-
firmed by the high-temperature series expansion and
previous Monte Carlo calculations with only a com-
paratively small shift in the value separating the
sinusoidal and the ferromagnetic phase, to
) Jz/Jt) =0.27, and reductions in (T/Jz)Jotf about
30—40%. (For a more detailed comparison, see Ref.
6.) The results for T, (Jz/Jt) and for the ground
state are summarized in the phase diagram in Fig. 2.

In the following, we restrict our analysis mainly to

where qo ". is the wave vector describing the magneti-
zation per spin in a layer as

M(z) = X (s & ) = Mp(T) cos (qP"z +@), (3)
1

x,y



20 SPATIALLY MODULATED ISING-MODEL PHASE 259

ksT/~ J& I

6'

-0. 5 0 0.5 0.6

the fixed ratio J2/J, = —0.6, so that the sinusoidal
phase should be realized for all temperatures below
T,. Our analysis utilizes the Monte Carlo method for
a finite system of size L x M && N; N corresponds to
the z direction, so specifying the number of layers.

III. THE MONTE CARLO METHOD

A. Boundary conditions

In this section, we discuss the role of the boundary
conditions for the Monte Carlo calculations.

'
Usually,

one has to choose between periodic boundary condi-
tions (pbc) or "free surface" conditions (i.e., putting
interactions across the surface of the finite system
equal to zero), antiperiodic boundary conditions, or
the "self-consistent effective field"-boundary condi-
tion. In our study, we have not used the last two

possibilities. Antiperiodic boundary conditions have
been shown to be useful mainly for problems involv-

ing an interface, although they are not actually incon-
sistent with a (2,2) antiphase ground state. The
self-consistent field boundary conditions have so far
been defined only for systems with a simple order
parameter. ' Although they might be valuable in the
present problem, we have not seen how to define
them with sufficient generality.

Since the expected sinusoidal magnetization pattern
has a modulation only in the z direction, the boun-

dary conditions for the ferromagnetically coupled xy
layers are not crucial. Accordingly, in order to simu-
late an infinite system most closely, periodic boun-

dary conditions across the layers are appropriate and
have been adopted.

FIG. 2. Phase diagram showing the transition lines

between the sinusoidal (S), ferromagnetic (F), antiferromag-
netic (AF), and paramagnetic (P) phases. The dot-dash
lines represent the results of mean-field theory; the thin

solid line is taken from the high-temperature series expan-
sion; the location of the first-order transitions, denoted by

thick lines, is schematic and, indeed, the precise nature of
the S/F and S/AF phase boundaries has not yet been esta-
blished convincingly.

To allow for a freely variable wavelength of the
magnetization pattern in the z direction, one is led to
considering seriously free boundary conditions at the
planes z =1 and z = N, However, we find that taking
free surfaces in the z direction leads to a pinning ef-
fect, i.e., a tendency to have a broad maximum or
minimum in the magnetization M(z), at the surface.
%e have observed this pinning effect in all our runs,
using systems of the sizes 6 x 6 x 40 and 10 && 10 && 40.
In fact, the pinning effect can be explained for the
Hamiltonian (l) quite easily. First, for the two sur-
face layers the ferromagnetic interactions in the
layers are enhanced relative to the interactions in the
z direction, since antiferromagnetic couplings are
missing. Second, the energy for the surface layers,
having unsaturated interactions, is smaller for a se-
quence of (at least two) layers with spins having the
same sign than for one with spins with alternating
signs. &This explains the broadness of the minima or
maxima. For a system of sufficient length, N, in the
z direction, relative to the wavelength of the magneti-
zation pattern, the pinning effect should not spoil the
"bulk" behavior significantly. However, we encounter
wavelengths of from four to seven lattice spacings,
for which the computationally feasible values of N

are not very large. Accordingly, we have preferred to
use for most of our calculations simple periodic
boundary conditions also in the z direction.

Certainly the use of periodic boundary conditions
avoids any pinning effects, On the other hand, the
wavelength of any equilibrium pattern found will

necessarily be commensurate with the length W (even
though the wavelength may, and, in fact, does
change during approach to statistical equilibrium).
On the other hand, there is some computational ad-

vantage in having only a well-defined series of possi-
ble wave vectors. The series can be refined by

choosing different lengths of the system, as will be
seen in Sec. IV. Despite this, there does seem to be
a need for some new type of boundary conditions for
dealing with periodic structures. (Although we have
some ideas to offer in this connection, we have not
investigated or tested them. )

8. Kinetic processes

During the course of the Monte Carlo calculations
one approaches and simulates the equilibrium by a

kinetic process described by a master equation.
Thereby the method can give information about
dynamic phenomena occurring in the system studied,
although one has to be aware that the stochastic
kinetics may be quite unrealistic for many physical
systems. By taking the ground state, i.e., the (2,2)
antiphase state, as the initial configuration of a
Monte Carlo run one may simulate a heating process.
On the other hand, starting with the ferromagnetic,
or fully aligned ground state, we may observe effects
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associated with the turning off of a strong magnetic
field.

The most interesting effect we have observed by

heating the system is a "squeezing" phenomenon. In
this, two neighboring maxima or minima move to-
gether and merge so that the overall wavelength is

changed. A sequence of graphs picturing this effect
(for parameters: 6 x 6 x 40; pbc; kaT =3.025J~,
—Jz/Jt =0.6) are displayed in Fig. 3. The intermedi-
ate steps of the squeezing can best be detected by

taking a small number (&30) of Monte Carlo steps
per spin (MCS/S) in calculating the average M(z):
in Fig. 3 averages were computed over 20 MCS/S.
Actually, the squeezing effect occurred three times in

the full approach to equilibrium in the run sampled
in Fig. 3, thereby changing the wavelength from 4 to
40/7 = 5.71, at equilibrium. By looking at instan-
taneous configurations in equilibrium one finds fairly
harmonic sine waves, the distortions becoming even
smaller for a larger number of spins, say 10 && 10 xy
layers instead of 6 x 6 layers. This suggests that the
sine waves are effectively present at all times and are
not just a result of a very long time averaging pro-
cedure. Considering the discrete Ising character of
the spins, this is quite surprising.

The squeezing effect also occurs when using free
surface conditions. However, in that case a "free ex-
pansion" mechanism can also be observed, i.e., an in-

crease of the wavelength due to the wave's "moving
out of the surface". The free expansion can be un-
derstood by calculating the energies necessary to
overturn various layers of spins. In Fig. 4 we show
the sequence of spin Aips associated with the energet-
ically most favorable steps near a surface. In fact,
the free expansion effect was found to be the dom-
inant mechanism in the later stages of the Monte
Carlo runs as equilibrium was approached.

The kinetics involved in turning off a strong mag-

netic field seem to be quite different. Indeed, for the

t t t t

t t t

0

I
t

FIG. 4. Sequence of spin configurations near the surface
(at z =0) associated with the energetically most favorable
spin flips, showing an expansion of the wavelength.

heating process it takes about 300—350 MCS/S to
destroy three waves and establish equilibrium (for
parameters 6 x 6 x40; k&T/J& ——3.025; pbc). Howev-
er, on starting from the fully magnetized state with
the sage parameters, sine waves of close-to-
equilibrium wavelength evolve almost simultaneously
in the first 30—50 MCS/S; final equilibrium, howev-
er, still required a further 200 to 300 MCS/S.

In equilibrium we observe a drift of the sine waves
in the case of pbc, This drift may be described quan-
titatively by the change of the phase at the surface
per MCS/S. For —J2/Jt ——0.6 we find an increase of
the drift in going from ka T/J~ = 3.025 (6 x 6 x 40) to
ka T/J~ =-3.402, by a factor of about 4, i.e. , the sine
waves fluctuate more rapidly closer to T,. This drift
or fluctuation has to be taken into account in defin-
ing a reasonable averaging procedure to determine .

the amplitude of the magnetization modulation.

, 0 2 4 6 58 40
IV. TEMPERATURE DEPENDENCE OF

THE %AVE VECTOR

FIG. 3. Sequence of magnetization plots showing the
squeezing effect in a 6 &&6 X 40 system at k&T =3.025 J&.
The evolution of the magnetization per layer, M{z), in a
single run between 180 and 260 MCS/S (averages are taken
over 20 MCS/S) is shown. [Note that MCS/S means
Monte Carlo steps per spin. ]

Because of the significantly different values of the
equilibrium wave vector q(T), in the ground state
and near T, (see Fig. 5) there must be quite a large
temperature dependence of the wave vector, contrary
to the findings of the earlier mean-field theory treat-
ments. In the special case, —J2/J~ =0.6, one expects
a change from a wave vector q =

2
m- = 1.57 at T =0,1

to a wave vector q =q, =1.13 at T„where for the
infinite system, ka T,/Jt =3.82 +0.02, according to
the high-temperature series extrapolations. In order
to approximate these two values reasonably closely,
we have used N =40 and N =56. Because we are
using pbc we are then taking into account the two
series of wave vectors q = 2mk/40' and q =2mk/56,
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FIG. 5. Plot ot the equilibrium wave vector q vs the ratio
ot' the exchange integrals, —J2/J~. The bold lines ref'er to
the ground state. The dot-dash curve gives the critical wave
vector according to mean-field theory; the solid curve repro-
duces the high-temperature series extrapolation results of
Ref. 6.

FIG. 6. Plot tor a 10 & 10 x 40 system of the specif'ic heat
per spin C (calculated f'rom the total energy fluctuation) and
ot the energy per spin, E, vs temperature. Note that J& = Jo
is used to scale the variables. The solid curves serve merely
as a guide to the eye: the estimate f'or T»,„ is indicated.

respectively, with k being an integer representing the
number of complete waves. The expected limiting
values for q are obtained for k =10, 7 and k =14, 10,
respectively,

In the light of the well-known finite size effects"
we have also varied the number (L x M;L = M) of
spins of the xy layers, For the 6 x 6 X40 and the
10 x 10 && 40 Monte Carlo systems we have estimated
the "ordering temperature" T,„, by the location of
the maxima of the specific heat and the turning
points of the energy per spin: See Fig. 6, which
shows data for the 10 x 10 x 40 system. For the
smaller block one obtains ks T,„/Jt =. 3.63 +0.03, for
the larger one krt T,„/Jt =3.74+0.03. A qualitative-

ly similar increase of 'T „for larger finite systems
has been observed for the usual three-dimensional
Ising model. ' To get a quantitative picture, one
should use the appropriate finite size scaling theory.
To our knowledge, however, quantitative results are
available only for systems, where one varies either all

linear dimensions (L = M = N ) simultaneously" "
or only one linear dimension, say N, taking the other
two to be infinite. ' In the first case, the ordering
temperature approaches its limiting value as W ",
where the shift exponent A. is given as the inverse of
the canonical critical exponent v, " In the latter case
one finds' ' ' X =2 for pbc. In our instance, two
linear dimensions are changed at the same time
(L = M), the third dimension N, being fixed and
moderately large, but certainly not infinite. The
corresponding finite size scaling behavior is not
known exactly; thus for the purposes of rough esti-
mation we have incorporated in Fig. 7 the two ex-
treme shift exponents h. =2 and )t=1.4 (the last
corresponding to the largest expected value of v, note

4.0—
k aT/Jt

14 10

I

0 0.01

14 10
I

0.05 0.09

FIG. 7. variation ot the "ordering temperature", T»,„,
for L & L &&40 systems. The trial exponents P =1.4 and
tt =2 are discussed in the text.

the argument'5 that the transition from the sinusoidal
to the paramagnetic phase should be described by the
critical exponents of the XY model or n = 2 sym-
metry). At any rate, we obtain a rough estimate (see
Fig. 7) ktt T, /Jt =3.82 +0.03, for the transition tem-
perature of the infinite system, which is in embar-
rassingly close agreement with the high-temperature
series expansion estimate of 3.82 +0.02 for the same
ratio —J2/Jt =0.6.

In Fig. 8 we show some equilibrium configurations,
averaged over about 90 MCS/S, for the magnetiza-
tion per layer M(z) as a function of temperature for
the 6 x 6 && 40 system. One sees that the wave vector
may be determined merely by counting the number
of wave crests or maxima. The results, for all sys-
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FIG. 8. Equilibrium configurations for the magnetization
per layer M(z) (averaged over about 90 MCS/S) for the
6 && 6 & 40 system. The reduced temperature T/T~, x, with

k&Tm, x =3.63 J&, is marked on the right.

FIG. 9. Wave vector q(T) vs the reduced temperature,
T/T~, „, for the system sizes indicated. (The dependence of
Tm, „on N =40 or 56 has been neglected. ) The arrow indi-
cates the critical value, q„according to the high-temperature
series analysis (Ref. 6).

tems considered (6 x6 x 40, 10 x10 x 40, 6 x 6 x 56,
and 10 x 10 x 56) are summarized in Fig. 9, where
the wave vector q (T) is plotted versus T/T, „,
where T,„refers to the ordering temperatures of the
systems with N =40, i.e. , we assume only a weak
dependence of T,„on N in accordance with our
findings within the finite size scaling analysis. The
results shown have been obtained by runs of at least
700 MCS/S; for some temperatures near the apparent
jumps in q (T), as many as 2000 MCS/S were used.

We may summarize Fig. 9 in the following way:
obviously, there is a rather dramatic change of the
wave vector in a comparatively small temperature

~range between about 80 and 90% of the transition
temperature. Certainly, we cannot decide from the
present study whether, for an infinite system, this
change occurs in a sequence of commensurable wave
vectors (as here forced by the pbc) or by a continu-
ous change of the wave vector, as would be true for
the analogous wave vector determined by the max-
imum in the structure factor for the corresponding
one-dimensional Ising model. An interesting ques-
tion is, whether there are certain plateaus, regions in
which the wave vector changes only by a small
amount over a relatively large temperature region or,
perhaps, even locks in, at a constant value, a
behavior apparently observed for erbium, e.g. Our
results, especially for the 10 x 10 & 40 and
10 x 10 x 56 systems, certainly do not contradict such
a staircase-like behavior near q = —, m. We remark
also that there are theoretical grounds for
believing that the ground state value q(0) = —, m

probably does lock in below some definite tempera-
ture.

In concluding this section, a word of caution may

V. FOURIER ANALYSIS AND
HIGHER HARMONICS

Using N =40 as the length of periodicity, one can
express the magnetization per layer M(z) in a
Fourier series as

M(z) = g [ a k co(s2m zk W/)+b ksi n( 2mkz W/)]

(5)

Recall that M(z) is defined only for the discrete
values of z =1, N. The coefficients ak and bk are
simply

1

ak = —$ M(z) cos
2" 2m kz

N, i N
(6)

1

b„=—$ M(z) sin
2 . 2mkz
N. , N

We have calculated these coefficients by taking the
average for M(z) in equilibrium over 20 MCS/S and
then repeating this averaging at least 36 times. This

be appropriate. Starting from an equilibrium confi-
guration with q =

~~ ~, we were not able to reach
in a reasonable computing time (4000 MCS/S in a
6 x 6 x 40 system) the state at a lower temperature
with the appropriate new and distinct wave vector ex-
pected from the data obtained by "heating" the
ground state as described above. Instead, the old,
high-temperature wave vector appeared to lock in.
This behavior could, however, correspond to a
genuine rnetastability of the sort which has been seen
experimentally in the form of hysteresis effects.
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procedure takes into account the small time scale
fluctuations of the waves mentioned previously. The
long time drifts can be eliminated by studying
(ak + bk) ' instead of ak and bk separately.

In order to determine the harmonic content of the
magnetization wave forms, we have plotted
(a„'+bkz)'~' vs k as illustrated in Fig. 10. Certainly,
as regards the dominant wave vector, the resul'ts are
completely consistent with those presented in Sec. IV.
In other words, Fourier analysis confirms what is
found simply by counting the number of visible wave
crests or maxima. More interestingly, there seems to
be a systematic dependence of the line shape of the
leading (or "first") harmonic on the size of the sys-
tem. For T/T, „=0.93 we have examined the sizes
L = M =6, 10, and 14. The line shapes were
analyzed in two ways. 'first a power-law behavior of
the line shape was tested by plotting on a double-
logarithmic scale (ak'+ bk')'~' vs ( 2r7k /q) —1, where

q = q(T) denotes the location of the leading harmon-
ics as before. Only a weak dependence of the ex-
ponent, say 8, on L appears: indeed, all three cases
can be reasonably described by 8=3.1 +0.3. This
power-law behavior is reminiscent of that observed
experimentally for the structure factor in the
smectic-1 phases of a liquid crystal. ' There, it arises
from the fluctuations of a one-dimensional density
wave which corresponds in the spin model to the
one-dimensional modulation of magnetization, along
the z direction. On the other hand, we are not really
calculating the structure factor, but only the Fourier
transform of the average magnetization per layer,
Indeed, if one plots (akz + bk')' z vs 1/L for fixed
values of k, the same effective temperature T/T, „,
and the three values L =6, 10, and 14, a linear ex-
trapolation suggests the vanishing of (akz + bkz) '~2 for
all values of k corresponding to a ave vector not
equal to q(T) in the limit L ~~. While it would be
desirable to calculate the structure factor for the mag-
netic model, this is computationally very expensive.

Evidently (see Fig. 10), Fourier analysis reveals the
existence of a nonvanishing third harmonic: indeed,
for the 14 x 14 x 40 system the third harmonic per-
sists even up to 0.93T,„(i.e., ks T/J~ =3.515, the
highest temperature studied). The location of the
third harmonics in the figures may be surprising at
first sight; however, it reflects simply the periodicity
length, N, of the system. "1n the case of q =2'(40 ),
which arises, e.g. , for T/T, „=0.829 (not shown in

Fig. 10), one cannot distinguish between the second
and third harmonics. However, in the light of the
other results, and the theoretical analysis by Miwa
and Yosida, ' one can, nonetheless, safely identify
the observed peak at k = 16 as indicative of the third
harmonic.

Quantitatively, the mean-field analyses'8'9 predict
a decrease of the amplitude of the third harmonic ac-

I

2

(~k + ~s ) r/r~o„= o.sos

0.5

10 15 20

5 4 2

/ max=

0.5

0
0

(b)

10
k

15 20

cording to (T, —T)3~'. We did not try to test this
prediction, because the finite size "background" is too
large. Furthermore, we could not detect higher odd
harmonics within the precision of the Monte Carlo
study for T & 0.8 T„although these are also expect-
ed theoretically and are evident from the M(z) plots
below 0.75 T,. What is rather surprising, however,
and also evident from Fig. 8, is that even when the
maxima in the magnetization wave forms are close to
saturation (M,„=0.90 to 0.95) the amplitude of the
higher harmonics for the states with q ( q(0) =

z
m

is quite small, and the wave forms are rather close to
pure sinusoids. Indeed, this conclusion remains true
even if the instantaneous configurations for the
6 x 6 x W lattices are examined. Furthermore, the
clusters of overturned spins in adjacent layers appear
to exhibit rather little correlation. For q ( q(0),
therefore, a picture in which each layer orders more
or less independently in the mean field provided by
its adjacent and next-nearest layers may have a
greater range of validity than might be anticipated on
a priori grounds.

F16. 10. Fourier coefficients, (ak + bk)', of' the mag-
netization vs wave index k for a 10 & 10 x 40 system at two
temperatures (with k~ T,„=3,74 J~). The labelled arrows
indicate the positions at which various harmonics may ap-
pear. A plot for T/t'Tm, „=0.829 resembles (b) except for
the location of the peaks, which are now at k = 8 and k =16.
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VI. SUMMARY

We have studied the modulated phase in a three-
dimensional Ising model with competing interactions
between layers (J1 & 0, Jz & 0) using, in particular, a

Monte Carlo approach. Different boundary condi-
tions on finite systems have been compared, leading
to the selection of periodic boundary conditions to
get a well-defined sequence of possible wave vectors
which are, however, commensurable. Various kinetic
processes occurring in the sinusoidal phase have been
discussed: squeezing, free expansion, and drift. A

dependence of the wave vector on the temperature is

enforced by the quite distinct wave vectors describing
the ground state and the modulated phase near T,.
We find that a dramatic change of the wave vector
occurs in a fairly narrow temperature range (from
about 0.8 T, to 0.9 T, for —Jz/J1 =0.6). Third har-
monics seem to prevail in the magnetization pattern
up to T„having been detected unambiguously up to
0.92 T,. However, the magnitude of the third har-
monic component is relatively small, even when the
maxima in the magnetization waves are close to sa-
turation.

For values of —Jz/J1 & 0.6 we may anticipate
behavior very similar to that reported above but with

a correspondingly larger value for the critical wave
vector, q, .6 Lower values of —Jz/J1~r on the other
hand, first bring one into the region where the
ground state is ferromagnetic (see Fig. 2) and then
into the vicinity of the Lifshitz point itself. It may be
anticipated that Monte Carlo simulations will show
greater fluctuations in these regions: indeed, this is

confirmed by some preliminary runs at —Jz/J1 =0.38
(for which the high-temperature series indicate6

ksT, /J1 =3.53 and q, =0.77). Studies on the
6 x 6 x 40 system suggest that the ferromagnetic-to-
modulated phase transition takes place somewhat
below ksT/Jt =2.8. The Fourier transforms of M(z)
samples show. broad peaks indicative of large equili-
brium fluctuations, even for. 10 x 10 x 40 systems.
However, in contrast to the case —Jz/J1 =0.6, the
wave vector q(T) for Jz/J1 ——0.38, dro—ps from its

value at T = T, when the temperature is reduced. It

is planned to study this phenomenon in further detail

and also to investigate the two-dimensional. version
of the model.
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APPENDIX: GROUND STATE

1 $ (J1Szsz + 1 + J2$zsz + 2) (Al)

where s, corresponds to s„~, in Eq. (l). Using the
transfer matrix (screw) method, the ground-state en-

ergy per spin can be calculated quite easily from Ref.
20, where the case (iii), Sec. ll, has been discussed.
The four-by-four matrix is

K)+K2 K) -K2
e e

0 0
—K —K -K) +K21 2

0 0
-K +K —K -K2

1 2 e 1 2

0 0
K) —K2 K)+K2

(A2)

with K1 = J1/ka T and ICz = Jz/ks T The ground-sta. te
energy can be found from the solution of the
eigenvalue equation

Since the exchange interactions in the xy layers are
of ferromagnetic sign [see the Hamiltonian (1)], the
problem of determining the ground state reduces to
that for the Ising model of a linear chain with nearest
and next-nearest-neighbor interactions

+K —2K +2K2 2K] +2K2 ~ K) K2 K] +3K2 4K2' —g'(e ' ' —e ' ') —A. (2e —2e ) —(e —2+e ) =0 (A3)

At zero temperature K~ and K2 are infinite. There-
fore, in order to determine the eigenvalues A. , one
can neglect all terms except A4 and the maximum
term in the rest of Eq. (A3). The energy per spin, E,
follows from the identity (T =0) E = —ka T lnlt. For

E = J1 —Jz, for
~
Jz/J1 ~

& —,and

E =Jz, for
i Jz/J1i & —,

(A4a)

(A4b)

J1,Jz & 0 [case (iii)], the lowest energies at zero tem-

perature are
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E = —Jt —J2, for [J2~/J~ ( 2, and
1

E=J2, for IJ21/J» —,

(Asa)

(AS b)

where Eq. (A4a) represents the antiferromagnetic
state and Eq. (A4b) refers to the (2,2) antiphase
state. Likewise, for J~ )0, J2 (0 [case (iv)i, one
gets

where Eqs. (ASa) and (ASb) represent the ferromag-
netic and the (2,2) antiphase state, respectively.

.The nature of the various ground states can be
checked from the structure of the eigenvectors or,
more concretely, by examining the configurations
generated by the matrix from the initial states "up-
up" and "up-down" in the limit T 0.
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