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Spatial excitation patterns induced by swift iona in condensed matter
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It is shown that a charged particle moving with velocity v in a medium of resonance frequen-

cy 00 may set up two types of electron-density fluctuations. Collective fluctuations trail the par-

ticle, composing a conical pattern in a relatively extended periodic wake of wavelength

-2mv/00. They constitute a mode of energy transport from the particle track leading eventual-

ly to particle-hole excitations. Single-particle interactions give rise to bow waves ahead of the

particles of wavelength 2mb/m v. The gradient along v, at the site of the ion, of the wake poten-

tial set up by density fluctuations, multiplied by the ionic charge, yields an expression for the re-

tarding force of the medium on the projectile in exact agreement with the Bethe stopping-power

formula appropriate to the medium. The wake of a dicluster causes forces between the consti-

tuent ions which account quantitatively for measurements of the breakup behavior of swift

molecular ions in thin foils. The increase in the energy straggling of a test charge, when moving

in the wake of a leading ion, is shown to be small compared with the straggling induced by its

own wake under normal conditions.

The theory of wake phenomena in the electron-
density fluctuations excited by charged particles mov-

ing in an electron gas' has stimulated many experi-
ments, in particular on the stopping power of matter
for ion clusters2 and on the space-time correlation
between cluster particles' after emergence from
dense media. 5 Collective density waves trailing an ion
with velocity w ) uo = e'/tin a condensed medium of
resonance frequency Qo have wavelengths,

0
=2m '/Qa, of the order of 10 A under typical ex-

perimental conditions. In addition, as shown in this
paper, close collisions cause electrons to recoil and
form a bow wave ahead of the ion. Clusters are
created by injecting swift molecular ions, such as H2

or (HeH)+, into a solid target. They lose their bind-

ing valence electrons after penetrating a few atomic
layers and generate a wake given by a (generally non-
linear) superposition of wakes due to the individual
ions of the cluster. This gives rise to a new interac-
tion between particles in a cluster determined by the
dynamic response of the medium. The dynamically
modified Coulomb repulsion between its constituents
causes the cluster to explode. Transmission experi-
ments are usually performed on thin foils such that
the time of penetration is so short that particles in
the exploding clusters trace out only a very small
fraction of the wake dimension. Under such cir-
cumstances, the cluster-particle interaction probes, in

effect, the slope of the cluster wake potential near
the origin. For example, the elegant measurements
by Gemmel and co-workers' of the angle and energy
distributions of channeled protons emerging from

single crystals of Si bombarded with swift (HeH)+
ions only probe distances -0.05K. . They present
convincing evidence that the force set up by the wake
potential of the leading ion can influence strongly the
motion of the trailing ion.

In light of the sensitivity of this important type of
experiment, we have derived in linear perturbation
theory expressions for the total field of density fluc-
tuations surrounding a moving ion, with special em-
phasis on the behavior near the origin. This enables
us to calculate the enhanced electron density at the
projectile nucleus and to compare it with exact results
from the theory of scattering of single electrons by
moving ions. This enhanced density is germane to
the discussion of the effects of dynamic screening on
atomic states6 and on transient magnetic fields at
recoil nuclei in magnetized foils. ' The mean gradient
along v of the wake potential at the origin, multiplied
with Ze, yields an expression for the retarding force
of the medium on the ion, We show it to be, at high
velocities, exactly equal to the Bethe stopping-power
formula. The force on the particles in a cluster
derived from the wake potential agrees, in its essen-
tial aspects, with the result derived from a local
dielectric response function. "

I ~ COLLECTIVE ASPECTS OF THE WAKE

The response of the valence electrons in many
media is describable to a good approximation by the
diagonal part, e(k, ru), of a (longitudinal) dielectric
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matrix which depends on the wave number k and fre-
quency co in a manner such that off-diagonal com-
ponents can be neglected. The scalar electric wake
potential, 4, of an ion moving in such media is given
in the linear approximation by' '

4(p, z) = Ji KJ«(pK) dK
Ze
mv

oo

&J droexp k'e(k, «i) . (1)
oo v

The cylindrical coordinates p and z refer to the
direction of motion and are defined as p —= (x'+y')'t'
and z —= z —ut relative to the position (x,y, z)
=(0, 0, ut) of the moving charge, Ze, with wave

number k = (~2+ t«z/uz)' z. The wave vector k has
component ~ in the p direction. The ion velocity, v,
is treated as a constant. The projectile, referred to
here as the ion, may be any charged point particle
with mass much greater than that of the electron.
The induced electron-density fluctuation, Sn (p,z), in

the medium is related to 4 by Poisson's equation and
is described by

taboo

Sn(p, z) =—
J tcJp(ptt) d& '

4m2v

d«i exp
e(k, cu)

O(x) = (z ) (1+x/~x~), and the cutoff wave vector of
magnitude k, = t«~/uF is given in terins of the Fermi
velocity uF = (3rr2n)'t3t/m of the valence electrons in
the medium. Equation (3) describes the collective
dielectric response of the medium, but does not
describe dispersion or single-particle behavior. The
empirical constant y describes damping. With Eq.
(3), the potential given by Eq. (1) becomes

2 Ze cop cupz cop p4(p, z) =Zeh«(p, z) + sin K«
v v vF

&&exp 0(—z)yz
2v

The first term gives the screened Coulomb potential
of the ion, and the second describes the oscillatory
potential due to the wake of electron-density fluctu-
ation trailing the ion. ' The function

K,(, )=Jt, 1+y2

approaches the modified Bessel function of zero or-
der, K«(g), for large g; it is K«(0, q) =(z) ln(1+v()
when g =0.

The function h«(p, z) in Eq. (4) can be written in
the form

h( ) S
R v, v

'
v

(6)

such that the charge-density fluctuation is given by

(—esn).
A convenient and instructive first approximation to

4 and Sn can be found with the aid of the local
dielectric function with a k cutoff,

The first term is the bare Coulomb potential per unit
charge of the ion, where R —= (pz+z )'tz. The second
term has a factor

Jp(gt) exp( —
) q ) t)S,(g, ~) =„Jp 1+t22

dg

2

e(k, «i) =1 — O~(k, —k)
«)(«i+i y)

where Op is set equal to the plasmori frequency
«i~ - (4me'n/m)'t' in an electron gas of density n;

O(x) denotes the unit step function

(3) and accounts for steady-state screening of the ion
charge by the electrons of the medium. For simplici-
ty we have set y =0 in.obtaining this expression for
S«. A simple form of Eq. (4) is obtained in the limit

y && cup. One readily verifies that

p ~pP OJpZ
Sp

v

1

R
v 2z —p

R5OJp

t t

~p ~ ~p i-1 1.5262
~z(ln

-'
~, fz f/u

cit)pR »1,
+p + o ~ ~

6)p R «1. (s)

The function h«, Eq. (6), vanishes in the limit
t«~R/u && 1. Since hp(p, i) =h«(p, —z), its mean z
gradient around R =0 vanishes, i.e. , (iih«/8z) „~——0.
Thus the screening effect described by hp makes no
contribution to the retarding force of the medium on
the ion.

As pointed out earlier, "one obtains

lim
Ze

R~p

'7f scop
2v

for the potential of the polarized medium at the site
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FIG, 1. Oscillatory portion of the scalar electric potential computed in the local dielectric approximation from Eq. (4). Plotted
is 4/Ze —ho vs z on the particle track, p =0. The plasma frequency, cuz, and the damping rate, y, have been chosen to
represent, approximately, the response of four different solids. The solids and the corresponding values of hcoz and y/cuz are:
Al (long-dash line) 15.4 eV, 0.616; Si (dot-dash line) 17 eV, 0.441; C (solid line ) 25 eV, 0.5; Ag (short-dash line) 3.78 eV,
0.02. The ion velocity was taken to be 4 a.u.

- of the ion. In this approximation, therefore, the
self-energy, E„ofa massive point charge is given by

E, (Ze=)'—(n~~/4v) When. applied to high-velocity
electrons, where electron-recoil effects can be
neglected, this estimate agrees, as it should, with the
self-energy calculated for fast electrons in an electron
gas 12, 13

It is instructive to compare the picture of the wake
as presented above with the model of a stationary
charge in an electron gas. For a negative stationary
charge one speaks of a correlation hole around it, and
for a positive charge one speaks of a density
enhancement at the charge. In either case the
response of the medium can be represented as a
screened Coulomb potential centered at the charge,
giving rise to a negative self-energy with a null ima-

ginary part. In comparison, a moving ion gives rise
to a cylindrically symmetric potential with a part cen-
tered at the charge, even in z, plus an oscillatory part
stretching behind the particle. The first part gives
rise to a real part of the self-energy which is negative,
and which originates from the correlation domain of
dimension v/Qo around the charge. Only the oscilla-
tory portion contributes to the imaginary part of the
self-energy that describes the slowing down of the
charge.

Figure 1 shows plots of the oscillatory part of
4/Ze —ho computed from Eq. (4) as a function of z

along the trajectory, p =0, for various combinations
of co~ and y as indicated on the figure caption.

Equation (2) with Eq. (3) yields

Sn(p, i) =— Z o)p o)p p
2

J1
27' vvFp vF

OJpZ yz
& sin exp O(—z)

v 2v
(1O)

where J1 is the Bessel function of the first kind of or-
der one. In this cutoff approximation, there is nei-
ther dispersion of the plasmon waves, nor an
electron-density enhancement at R =0. It does not
describe knock-on collisions with single electrons, but
damping is included in a realistic manner. '

II. PLASMON DISPERSION

The polarization density retains a tractable analyti-
cal form if one goes beyond Eq. (3) and includes
plasmon dispersion according to the Bloch hydro-
dynamic approximation by inserting into Eq. (2) the
dielectric function

2

e(k, o)) =1+
p k —hl (0) + / 'y)

The constant P = (3/5)'~ vF is the propagation of den-

sity disturbances in an electron gas, vF being the Fer-
mi velocity of the electrons in the medium.

Denoting w —= (1 —p~/v') '~', neglecting y as well as
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gn(p, z) =—ZO)p W . ~ PWZsin q
22rvPp "~pt'/", vp

i/2

XJp q
MpP

terms O(p'), Eq. (10) becomes
(

dq (12)

The function $0 is given by

$0 =—Ze [h (p, z) —1/R ]

where, with kp= Op/v,

tv~
" t'Jp(pkot) exp( —kp~z~t)

h(p, Z) =
»o "' 1+(z/~z () (7 t/f4) + t'

Z p cos( pA/P)
( 2) ( )

p( 2 p2) 1/2

2 i/2where the variable A =—(h.'z —p')'/' with
X2 —=P2/(v2 —P2). An equation equivalent to Eq. (13)
was derived by Neufeld and Ritchie, and again by

Fetter. '4

A singularity in the polarization density occurs at
A =0, corresponding to the radial distance from the
particle trajectory

p = h.z =z/(v /p —1) = pz/v (v » p) . (14)

Equation (14) defines the envelope of the collective
wake, of half-angle —p/v. The singularity of Bn at
the cone is, of course, an artifact of the model dielec-
tric function Eq. (11). When the integration in Eq.
(12) is limited to q ~ pk, = pro~/vF, the wake cone is
marked by a maximum in Sn. In fact, if the full
dielectric function is employed, the maximum is re-
placed by a series of wavelike fluctuations as
described in Sec. III.

Equation (19) reduces to ho(p, z), Eq. (6), for y 0
and o)g 0.

The term $0 accounts for nonoscillatory dynamic
screening of the ion charge by electrons in the medi-
urn. Since h 0 when Rkp)) 1, the ion charge is
completely screened at distances large compared with

v/00. The second and third terms of Eq. (17) make
oscillatory contributions that stem primarily from col-
lective and single-particle responses of the medium,
respectively.

The functions $~ and $2 are expressed as integrals
with respect to the variable K after evaluating the co

integral in Eq. (1) by the calculus of residues. The co

integrand exhibits an interesting behavior as K in-

creases from the long-wavelength limit, ~ =0, to
large values where single-particle behavior dominates.
In Fig. 2 are sketched the loci of the poles of the in-

verse dielectric function appearing in the integrand
for a material characterized by Do =0.7, P =0.9, and

y =0.5S, in Hartree atomic units. The poles labeled
co;+ and eo; correspond to collective and single-

III. SINGLE-PARTICLE WAKE CONTRIBUTIONS 4J- PLANE

We retain the salient features of the quantum ex-
pression for e(k, au) in metals and semiconductors by
setting""

2

e(k, co) =1+
tvz +p k + tr k /4m —tv(tv +i y) (15)

K=0 K=0

4(p, z) = +4 (p,z) (16)

~here the wake potential, C, can be expressed as a
sum of three terms,

@ =do+at+42 . (17)

As in Eq. (11),plasmon dispersion is included
through the term containing P2. Single-particle ef-
fects now are accounted for by the term equal to the
square of the kinetic energy, lr'k2/2m, of a free elec-
tron with momentum kk. The small constant y
represents damping processes. The energy %og may
be taken to account for an effective band gap in ma-
terials like semiconductors, to give a collective reso-
nance frequency 00=(tvz+cu~2)'/2 '6".

Substitution of Eq. (15) into Eq. (1) yields the po-
tential in the form

K =0 K=O Re(u)

u &K) uP &K)

FIG. 2. Loci of poles of the inverse dielectric function
[e((K +so /v )', co)] in the complex plane for values of
the material constants of Eq. (15) given by

=(eo +co ) / =0.7 a.u. , P=0.9 a.u. , and y=0.58 a.u.
The poles at points labeled ~,—(K) correspond to collective
resonances, those labeled eo;(K) to single-particle excita-
tions. The poles move, following the arrows, as the variable

K increases from zero. As K tx2, cv,
+

co,+ and

~c ~s Also, v =4 a.u.
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particle responses, respectively. The poles move as
indicated by arrows 'as K increases from zero to infini-

ty, K ~, where co;=co; . The fact that the two
poles, ao, and co, , lie above the real co axis is surpris-
ing at first glance, since their presence seems to sig-
nal the breakdown of causality: in effect, the single-
particle excitations in the medium appear to precede
the moving ion in time. In reality, the ion is treated
as having been in motion long enough for the com-
plete development of waves including knock-on elec-
trons. There are, then, indeed precursor or bow
waves of electron-density fluctuations that run ahead
of the particle. Bow waves are associated primarily
with electrons that have been scattered in close colli-
sions with the ion into the forward hemisphere of
directions.

The scale of spatial variations of 4 and 5n due to
the +co, poles is 2'—t/mv, the de Broglie
wavelength of an electron which has acquired
momentum mv from the ion. In the velocity range
of interest, v & vF, such fluctuations are short com-
pared to the length scale, v/Qp, associated with the
poles at eo =+co, that describe the collective fluctua-
tions in the wake trailing the ion.

When y 0, one derives closed expressions for $~
and @2 in terms of the integration variable q = K/J2,
viz. ,

J2 Zem2~,'
qh~(P, + z) =

2 „'l qJ

sin( J2z g+)
82' (q2 + g2 )

(20)

The notation +z in the argument of @~, Eq. (20),
means that when z )0, g+ is to be used in the right-
hand side of Eq. (21); similarly ( is used when
z (0. Also,

Ze co~ m
@2(p,z) =—,Jl qJp(v2pq)

exp( —2' '21 {z{)N
X

2 2 dq P

q,q (q, +q )D
(21)

where

and

W=(2i+C+2i S)(q2+2i2~ —212)

+2gpq (2)pS —
2) C)

where

C =COS(E22t z), S =Sin(422i {Z{)
and

D =(q'+~' -~')2+4~2, &' .

Ft(0 ) =——Pi(0,z)8
gz z 0

Ze o)p
2

'
2

2
'" -2 2U lJ . P

I

Similarly, if the test charge is located just in front of
the ion, the retarding force becomes

(22)

F (0 ) -=—g (0. )
gz z~o +

ZeMp fp + p22
'

2

2 ln 2
'U

(23)

The arithmetic mean of these terms, multiplied by
the charge Ze, yields the stopping power of the medi-
um for the ion, viz. ,

It may be shown from Eqs. (18)—(21) that
@„(0,0) = —m Zero~~/2v 0p, i.e., @~(0,0) = @2(0,0) =0,
if damping can be neglected (y 0). The value of
4„(0,0) = Qp(0, 0) represents a model-independent
contribution to 4 from the poles ~ =+i Kv in the
complex co plane, corresponding to the extreme
long-wavelength response (k 0) of the medium.
The function qhp is symmetric with regard to a reflec-
tion in the z =0 plane so that its mean gradient at the
origin is zero. Both 1)&2(0,z)/Bz and (ihip(0, z)/Bz
diverge logarithmically at z +0. Their sum has a
finite discontinuity at the origin that cancels a discon-
tinuity in the z derivative of @; there.

Only the term Q~(p, z) has a nonzero mean z gra-
dient at the origin and, thus, contains the retarding
effect of the medium on the particle. It may be
shown that Ft(0 ), the retarding force on a unit test
charge located just behind the ion, in terms of Eq.
(20) is given by

with

q, = {[m(v' —p')/t]' —Qp]' '/%2v,

—(~2 + 52) 1/2 2 ~2( 2 p2) /t2 2

52 {[/222(v2 P2) /t2] /r/2(2v2q2 + II X)/ t2]1/2

(24)
Z2e2Qj 2'ln"

dz 2y 6 —v
2 -2 2

In Eqs. (22) —(24), v~=v' —P and
v~ = v~ —t2Qp2/m2. FOr v muCh larger than p and
(tQp/m)' ', one retrieves

In addition,

2t+=2 ' {[q +2(mPq/t) +(m Qp/t) ]'/

+ [~2(v2 p2)/t2 q2)]]1/2

dE Z e ~p 2m~2
ln

dz &2 mo

the Bethe stopping power formula for fast ions

(25)
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proceeding through an electron gas characterized by
the plasma frequency 00.'8 This prescription of com-
puting the stopping power of the medium from the
mean force on the particle is well known. ' Although
we have (properly) omitted the contribution from $0
and $~ to the retarding force in the calculation
displayed in Eqs. (22) —(24), it may be seen that the
total force is continuous at the origin and possesses a
finite discontinuity in slope there.

The electron density fluctuation function may be
written

Sn (p, z) = Sn ~(p, z) + Sn2(p, z) (26)

in terms of contributions from the poles at +~, and
+co„respectively.

One finds for negligible damping that

Zm'~p " qJp(&2pq) sin(&2(+z)
Sn) p, +z

JZn t'
27)

and
Zm'o '

S~2(p, z)=, J qjo(J2pq) exp( —J2q ~z~)
C

x- "+, , dq . (28)
v)+q (7I', +q')

In this approximation, the density is enhanced at
the ion by the amount

Sn(0, 0) =Sn, (O, O) = 4' (29)

~here small terms due to collective effects containing
a&~ and P are neglected. This result agrees with the
exact calculation of electron scattering on a point
charge, Ze, in the limit v» Ze2/t.

Figure 3 shows plots of Qo(0, z)/Ze vs z (curve A)
and [$~(0,z) +Qz(0, z)l/Ze vs'z (curve B) for the
material-parameter values given in the figure caption.
For comparison with 8 the corresponding potential
function computed in the local dielectric approxima-
tion of Eq. (4) is displayed as the dot-dash curve C.
As discussed following Eq. (8), @0(0,z) is symmetric
with respect to the position of the ion at z =0. Note
that in the domain z & 0, the asymmetric potential
function (Q~ +@:)/Ze (curve B) has been scaled up
by a factor of 100 so that single-particle fluctuations
are easily seen. The sum-total wake potential, Eq.
(17), is given by curve D. The slope at z =0 yields
the stopping power, Eq. (24).

-1

.r -I-.r
/

8 (x ~oo)

l P

I
z (a. U.)—

FIG. 3. Scalar electric potential in a medium near the track of a projectile, located at z =0, moving with velocity v =4
a.u. =8.76 x 108 cm/sec in the positive z direction through a medium characterized by cv =0.919 a.u. =25 eV P =0.974
a.u. =2.13 & 10'0 cm/sec, and cv = y =0. These potential values were computed from Eqs. (17)—(21) with the use of the dielec-
tric function of Eq. (15). Curve A sho~s @0(0,z)/Ze vs z, and is symmetric with respect to reflection through the point z =0.
Curve 8 depicts [F5~{0,z}+$2(0,z)]/Ze as a function of z. Note that in the region z )0 the function has been multiplied by 100
for the sake of clarity. Curve 0 displays the total wake potential, Eq, (17). For purposes of comparison, f4(0,z)/Ze —ho(0, z)]
computed from Eq. (4) has been displayed as curve C, showing the prcdiction of local dielectric theory.
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FIG. 4. Induced density fluctuations along the trajectory of a projectile for the same parameters chosen for Fig. 3. The solid

curve was calculated from Eqs. (26}—(28). It shows a collective wake trailing the particle and the electron density enhancement,

Eq. (29), at the origin. The value of Sn(0, 0) is given to high accuracy by Eq. (29), which was derived neglecting collective ef-

fects completely. The bow wave and the periodic crispations superimposed on the trailing wake signify small-impact parameter

collisions with the projectile. The dashed curve displays the results of calculating 5n(0, z) from Eq, (10}using the dielectric

function, Eq. (3), without dispersion, hen dispersion is included according to Eq. (13), without single-particle response, Sn

follows the dash-dot curve labeled "hydrodynamic approximation. "

Figure 4 exhibits a plot of Sn (O, z)/Z vs z comput-
ed from Eqs. (26)—(28) for the parameters used in

preparing Fig. 3. The prominent peak at z =0 is
predominantly due to single-particle density enhance-
ment at the ion. At distances large compared to u/u&p

behind the ion, Sn (O, z) oscillates with wavelength
—2iru/cop The das.hed curve represents the result of
computing Stt (O, z) from Eq. (10) in the local dielec-
tric approximation, Eq. (3); it oscillates for all Z & 0,
but out of phase by n/2 compared to the solid curve.
When merely dispersion is included according to Eq.
(13) without single-particle response, Sn (O, z) follows
the dash-dot curve referred to as the hydrodynamic
approximation.

Figures 5 —7 display the wake potential as
4(p, z)/Ze in the p, z plane as derived from Eq. (17)
for the parameters chosen for Fig. 3 and the ion
velocities indicated in multiples of the atomic unit
vo= e'/tt. Figures 8—10 show the corresponding
electron-density fluctuations according to Eqs.
(26) —(28). One sees the distinctive oscillations of
the wake potential in the region behind the particle,
z & 0, of wavelength =2m v/sop. Preceding the parti-
cle, the bow wave with much smaller amplitude ap-
pears at z )0, of wavelength =27r tt/mu, as given for

p =0 in the magnified view of Fig. 3. The bow
waves, here clearly visible, form periodic paraboloidal
disturbances with apexes slightly in front of the pro-
jectile and extending behind it with half angle of
opening —arcsin(P/v). They signify the emission of
plasmons by the ion, that eventually are damped intd
electron-hole pairs. Single-particle effects in the form
of bow waves are contained only in a dielectric
description such as Eq. (15) that gives asymptotically
the proper single-particle behavior for large k.

These are new results. Heretofore, the equations
for 4, presented in complete form in Refs. l and 11,

were discussed only in terms of simplified dielectric
functions which did not contain single-. particle
descriptions and, thus, could not lead to the com-
plete, rich wake structure given by Eq. (26) et seq.

Vager and Gemmell ' proposed an empirical for-
mula for the wake potential to accourit for measured
distributions" for protons emerging along the beam
direction from thin foils bombarded with (2 to 3.5)
MeV (HeH)+ ions. The experiment probes the wake

potential close to the origin, near the initial separa-
0

tion given by the internuclear distance (-2 A) of the
ions. The formula results from Heisenberg broaden-
ing' of the local dielectric potential by replacing p'
with p'+(tt//m u)', where 2mlt/mu is the de Broglie
wavelength of an electron in the medium viewed
from the rest frame of the ion. In short, compared
to our Eq. (4), the Eq. (5) in Ref. 21,

(x'+y') ' '= dt J0(xt) exp( —)y)t), (31)

to obtain

2ZP oJp cdpz
4vo = Zehvo(p, z) + — sin

V lf

»/~
xKO p+OJp

fthm U
(32)

ZPQJp P . Qlp(
4yo(p, z) =—

I sin
v "o v

t

1 ~/e

x p + +((+z)~ d(
h

mv

(30)

is a potential that is Heisenberg-broadened in the p
direction. ~~ This can be seen by integrating Eq. (30),
-with the identity
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where

I
hvo(p, z) = ——

R
OJp OJ&

p +
lJ V foal v

' 2' 1/2
0)p Z

~ 1 1

(33)
Evidently, this type of heuristic quantum correction
does not include Heisenberg broadening in the z
direction nor the bow wave component and, thus,
leads to a result that differs merely in minor ways
from our simplified form'9 quoted in Eq (4.). Only
a complete dielectric description, as Eq. (15), reveals
the full-wake phenomenon with bow waves, Eqs.
(26)—(29), and yields the potential that gives the
correct formula for the stopping power, Eq. (25).

As we indicated earlier, " for the effective,
velocity-dependent charge number, Z'(u), of the
moving ion, z4 the relative density fluctuation ~&11/r1 ~,

in the collective part of the wake [z & —,vr(v/01~)),

given by

13

&Z'(1) —' ', , »v0, (34)
n mes~ ~

I
m&0

is always smaller than one. That is, linear-response
theory applies even for collective wake phenomena
induced by ions with large atomic numbers.

The paraboloidal cones of boundary waves
displayed in Figs. 5-10 deserve further comment.
They are akin to Mach cones of acoustical waves gen-
erated in elastic media and to Vavilov-Cherenkov
cones of the radiation fields generated in dielectric
media by swift projectiles. But the waves discussed
here differ from the known phenomena. They
represent coherent charge-density fluctuations in-
duced by the longitudinal electric field of moving
ions in a Fermi liquid of charged particles. These
density fluctuations consist of coherently emitted ele-
mentary excitations. In the linear average description
used here, they are plasmons at large distances
(»u/00) from the track and quasiparticles (struck,
dressed electrons) at points close (« u/00) to the

III; ENERGY FLUCTUATIONS

The wake potential described by Eq; (1) represents
a statistical average of a quantity that is subject to
quantal fluctuations. A. measure of these variations
may be obtained by comparing 0, the straggling of
energy loss (or gain) of a test charge Q located at an
arbitrary position in the wake, with —(dE), the ex-
pected value of its energy loss. We do not assume
that the test charge is bound in the wake of the lead-
ing charge but only that it proceeds with equal veloci-
ty through the medium and remains at essentially the
same location in a coordinate system in which the
leading charge is at rest for a time long enough for
the calculation sketched below to be valid. We have
in mind an ionic dicluster formed when a swift
molecular ion is incident on a solid. The eriergy loss
may be written in terms of the force on the test
charge exerted through a path length dR as

(dE) =—(Q1(d—E)a+ QZe (dE) ) (35)

The mean energy loss for a unit charge due to the
self-wake of the test particle is given by

track. The energy flux in the shock front may be
quite large for Z )) 1 and v & v0, according to the
theory employed here. One must remember, howev-
er, that the plasmon is a quantum entity. Multi-
plasmon absorption by a single electron ejected from
the valence band could conceivably result in the
emission of a very energetic electron. But the proba-
bility for such high-order, compound processes is un-
known and must be evaluated before one can make
quantitative predictions about the significance of such
high-energy products for the study of electronic
shock waves. It seems likely that the overwhelming
fraction of the decay products consists of a large
number of low-energy electrons, each with energy=AOD, corresponding to the single-particle decay of
plasmon states.

(36)—(dE)0=dR —4p=dR
z J K dK Jl 1 I.m

2 0 I~™co d(d —1

(}z n u' o o k' e(k, cu)

The energy loss due to the wake of the leading ion at the position p, z for a unit test charge, in terms of Eq. (1),
is given by

oo oo—(dE(p, z)) = dR d1„(p,z)—/Ze = dR K dK J JD(pK) Im (37

The total force, (dE/dR), is due to—the action of electronic motion induced in the medium through the scalar
electric potential, 40, set up by the test charge and through the wake potential 4 trailing the swift ion. The force
is the result of the development, in time, of the wave function of the medium under the perturbing influence of
the ion and the test charge.

The effect of the medium in terms of elementary collision processes entails the quantum of energy Ace and the
momentum tK perpendicular to v. The probability, d'p/dK dry, that the test charge absorbs a quantum of fre-
quency cu and wave vector K while traversing the path length dR becomes
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t 1 t

dP =dR 2Q tr Z J ( )I ex (iraz u) +QI
dt's dra n irv tr +aP/u e(k, ta) e(k, r0)

(38)

Note that only if both p and z are zero is Eq. (38)
positive definite. It must have the possibility of be-
ing negative, since it may describe energy gain in cer-
tain regions of the wake.

The differential probability dzp/dru dtr is similar to
the complex space- and time-dependent Van Hove
correlation function, which is obtained by Fourier-
transforming a positive-definite probability distribu-
tion function that depends on energy and momentum
transfer. This type of correlation function reflects
the essential quantum properties of the system. "
Equation (38) may also be regarded as a kind of
signer distribution function, since it describes
momentum and energy transfers to the medium at an
arbitrary position.

To obtain 0' we need only multiply the integrands

I

of Eqs. (36) and (37) by @ca, as was shown on gen-
eral grounds by Bohr. Thus,

02(p, z) = ((dE)2) —(dE)2

=
f
Q'Qa2+Q Ze0„'(p,z) f

(39)

where the usual straggling in energy loss for a unit
test charge is given by

2 it ~ Ql dta IOtt=dR
z J Kdx Jl, Im

m. v2 k

(40)
i.e., is caused by the wake set up by the test charge
itself. The contribution of the wake induced by the
leading ion to the straggling in the energy loss of the
test charge at p, z becomes, for Q = e,

~z( ) dR
2g

d f «t dry I ( ) I
—exp(ta&z/v)

(41)

It is understood that 0 by definition must be positive definite, hence the absolute value sign on the right-hand
side of Eq. (39). In the limiting case Q « Ze, both the energy loss and the straggling of the test charge calculat-
ed from Eq. (39) without the absolute value sign may become negative if it is located, e.g. , in the

2.0

1.5

l.o

0.5 dR )c

(a)

0.3

O

~ fear
I

O. f

—20 —15

z (a. u. )

-10

FIG. 11. Total energy straggling per unit pathlength, 02(0,z)/dR [(a), solid curvel, of a charge Q =e behind a moving pro-
ton under the conditions of Fig, 3 is only slightly larger than the constant quantity, 00/dR [(a), dotted line] due to the test-
charge wake in the absence of the leading proton. The total stopping power, —(dE(0,z)ldR) [(b), solid curve) of a charge
Q =e in the proton wake varies strongly with z and can approach zero, as compared to the constant —dE/dRO [(b), dashed line]
of the test charge without a leading proton. The parameters chosen were the same as those used for Fig, 3.
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region

& z & ——;O~p-v/~p .3 7r lJ 7T lP

2 p 2 Mp

Figure 11(a) displays Eq. (39) for a test charge
Q = e along the trajectory (p =0) of a proton (Z =1).
The difference between fiz/dR (solid curve) and the
z independent Qo/dR (dashed line) is seen to be
&10% at. all distances equal to or larger than typical
internuclear separations in molecular ions (-2 a.u.).
By comparison, Fig. 11(b) shows that the stopping
power, (dE(0—,z)/dR), for the test charge along the
leading-ion track varies strongly with z relative to the
constant value, (dE/d—R )o, in the absence of a wake
and, in fact, can approach the value zero. We con-
clude that under typical conditions of experimental
interest, energy fluctuations in the wake have only a
small effect on the energy loss and straggling of pro-
jectiles moving in the coherent wakes that trail swift
ions in solids. This is to be expected since the trail-
ing part of the wake consists mainly in small displace-
ments of a relatively large number of electrons and
hence carries small momenta (« tkF). In additio'n

the quantal energy content of the trailing wake
should be narrowly concentrated about the plasmon
energy. The leading ion plows its way through the
electron gas leaving only gentle perturbations that
persist in the neighborhood of the track. These per-
turbations may affect the trailing ion appreciably but
should give rise to minimal fluctuations in its motion
compared with fluctuations experienced in its direct
interaction with the undisturbed medium. Similarly,
we expect that dewaking of an electron in a wake-
bound state trailing a swift ion will originate primarily
from interactions of the wake-bound electron with
electrons in the ground state of the solid" and that
negligible contributions will arise due to interaction
with the wake of the leading ion. This implies the in-
tegrity of the wake potential, which indeed has been
.confirmed through observations of the alignment of
diclusters by the wake force, the Coulomb-explosion
patterns of clusters, "and the wake splitting of atomic
states under resonant coherent excitation in crystal
channels 's

V. SUMMARY

%e have shown that a swift charged particle in-
duces excitations in an extended matter medium. In
the region behind the particle, they are predominant-
ly collective in character. In the forward hemisphere
of directions, quasiparticle excitations make up bow
waves preceding the particle. These constitute
knock-on electrons which have experienced small-
impact-parameter collisions with the particle. In
domains very close to the particle (R & t/m u), both
the wake potential and the wake density undergo
marked variations along the particle track. The for-
mer determines the stopping power of the medium
for the particle, and the latter the electron density at
the projectile.

Energy straggling of particles moving in the wake
of leading ions is shown to be somewhat larger than
that experienced by isolated particles. But the incre-
ments are sufficiently small for normally occurring
ion clusters so as to affirm the wake as a well-defined
physical phenomenon in many-electron systems.

A swift ion creates paraboloids of multiple elec-
tronic shock waves of some complexity. It is con-
ceivable that this rich spatial structure of electron-
density fluctuations may have interesting manifesta-
tions in experiment and important consequences for
the behavior of matter under high-intensity ion-beam
bombardment.
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