PHYSICAL REVIEW B

VOLUME 20, NUMBER 6

15 SEPTEMBER 1979

Polarization energy for core states of alkali halides

E. Louis
Physical Metallurgy Department, Products R and D, Endasa, Alicante, Spain
(Received 22 January 1979)

The polarization energies for core states of alkali halides are discussed within the context of the theory
developed by Hedin and Lundqvist. It emerges from the analysis that the choice of a particular g-dependent
dielectric function is more critical than the accuracy with which the core wave functions are described. We
show that for very localized holes the use of a constant dielectric function leads to meaningless results. These
results are compared with those obtained with other theoretical schemes. Comparison is also made between
the theory of Hedin and Lundqvist and other theories, remarking on its more general character.

I. INTRODUCTION

The need of including correlation effects in Har-
tree-Fock calculations of energy bands in solids
has long been recognized.! Although local-density-
functional approaches provide a more conceptually
clear way to treat correlation,? the method which
consists of adding the polarization energy to the
Hartree-Fock result is still very popular in band-
structure calculations® and many other problems
such as F centers® or any kind of electronic ex-
citations in solids.® :

Since the earlier classical model of Mott and
Littelton,® two quantum—mechanical approaches
to the calculation of polarization energies have
been published. The first method was introduced
by Toyozawa’ and is based upon the concept of the
electronic polaron. Although the method is phy-
sically clear it has some restrictive approxima-
tions—such as the description of the elementary
excitations by a single exciton band—which have
not been removed by the authors who have suc-
cessively used the method to calculate the effect
of the electronic polarization on the electron-hole
interaction,! or upon a single electron in the con-
duction band,® or on band structures and core
levels in solids.® A more general approach was
lately developed by Hedin and Lundqvist.!° This
is the so-called Coulomb-hole plus screened-
exchange approximation. This method was used
by some authors!'!? in calculating the effect of
correlation upon energy bands and more recently
by Gadzuk® in the study of polarization energies
associated with electronic levels of atoms ad-
sorbed on metallic surfaces. These three methods
only include the extra-atomic relaxation die to
the atoms surrounding a particular atom, and
therefore the intra-atomic relaxation can be ap-
proximated by the polarization of the ion in which
the hole or the electron is created.® It is there-
fore clear that the main shortcoming of the pro-
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cedure which consists of calculating the electron
properties within the Hartree-Fock approximation
and then adding the short- and long-range correla-
tion contributions is that the different quantities
are calculated within different levels of approxima-
tion. Local-density-functional approaches avoid
this difficulty and are, therefore, conceptually
clearer.

Nevertheless, having the total energy split into
different terms can be, in some cases, a great
aid to understanding the physics of the problem
we are faced with. This is the case of the chemi-
cal shifts which affect the core atomic levels when
the atom is placed in a particular medium such as
a bulk crystal*® or a surface.’® This reason, and
the fact that the Hartree~-Fock approximation is
still very valuable, justify any investigation aimed
at a better understanding of the calculation of po-
larization energies.

The purpose of the present paper is to explore
the validity of different approximations made to
calculate the polarization energy for core states
of alkali halides. The study will be carried out by
means of the Hedin-Lundqvist scheme.!® This
scheme has been recently rewritten by Gaszuk!®
performing some approximations which seem to
work fairly well for core states. We shall in-
vestigate the relevance of two factors: (i) the di-
electric screening (for this purpose we shall use
different dielectric functions) and (ii) the descrip-
tion of the hole wave function. We shall show that
the main factor in getting accurate enough po-
larization energies is the dielectric function used
in the calculation. In particular, if the § depen-
dence of this function is not included, the results
for very localized holes are far from correct.
The electronic polaron model of Toyozawa’ as-
sumes a constant dielectric function and, as we
shall see, this forces one to perform the calcula-
tions by introducing a somewhat arbitrary cutoff
in the § integrals.! :
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The rest of the paper is organized as follows.
In Sec. II we shall discuss the model we use to
calculate polarization energies and compare it
with other models. Section III will be devoted to
illustrate the discussion of Sec. II, by calculating
polarization energies for different core levels of
various crystals. Three dielectric functions will
be used, and the hole wave function will be de-
scribed within different approximations. Our re-
sults will be compared with other calculations.
Finally, some concluding remarks are included
in Sec. IV.

II. POLARIZATION ENERGY

The polarization energy in a hole state ¢"(f),
with unrelaxed energy E,, is written by Hedin'® as-

AE,= f Er &' ¢, B F T, E),F) . 1)

Hedin and Lundqvist!® have written, within the
random-phase approximation the nonlocal polariza-
tion self-energy = (¥,T’, E) for a quasiparticle with
relaxed energy E as

fdwc('r E- w)éV(r w)
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where 6V(F ,w)/on (T, w) is the Fourier component
of the potential induced at point ¥’ by a charge at"
point T, which can be readily calculated from clas-
sical electromagnetism. The propagator G, cor-
responds to the undressed quasiparticle. The in-
tegral runs over the spectrum of elementary ex-
citations induced by the hole. Although in (1) the
relaxed energy E of the hole state has to be used,
a fairly good approximation is obtained by evaluat-
ing the self-energy and G, at the unperturbed ener-
gy E,, provided that the  is a small correction
to the total potential.

Assuming a nonpolarizable hole, which in fact
is equivalent to restricting the sum over states
needed to calculate G, to the actual state », Gad-
zuk®® arrived to the following expression for the
polarization energy:

1 [ dq [47e*\ (1-€@,0) ,
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where p"(ci) is the Fourier transform of the charge
associated with the n hole state and €(q, 0) is the
static dielectric function. The assumption of a non-
polarizable hole made by Gadzuk has led to a for-
mula (3) which only includes static effects. The
consequences of this approximation are fully dis-
cussed by Gadzuk.!®

In expression (3), the information on the hole

state is contained in p"(a) and the particular med-
ium where the hole is placed is described by means
of (g, 0). For both quantities we have to explore
which approximations are significant.

It is worth noting that if one is interested in cal-
culating polarization energies for band structures
it will be necessary to calculate for an energy at
a particular k of the Brillouin zone. The propaga-
tor G, is then calculated as a sum over bands and
the wave number, and the final expression for
AE, is more complicated. Details for this case
can be found in Refs. 11 and 12.

We want now to apply expression (3) to the analy-
sis of the most simplified cases. We start with a
1s state described by means of a Gaussian func-
tion,®

915(F) = @ar/mf* e~ )

As regards the dielectric function we first choose
a constant €(q, 0) =¢,, where ¢, is the dielectric
constant due to the electrons. We do not write
€, to avoid confusion with the usual terminology in
which €, =€(§, ). We only mean that the e(q,w)
only includes electronic screening. Here we should
comment that for the problems we shall be study-
ing, ionic screening does not need to be included.
The reason is that the time required for the relaxa-
tion of the ions surrounding the one in which the
hole is created (of the order of a lattice vibration),
is much longer than the length of the photoejection
process.'* Nevertheless for the case of a constant
dielectric function, including' the ionic screening
would simply mean substituting €, by ¢; (usually
called €,). In the case of a g-dependent dielectric
functions some other problems would emerge.
We shall come to this point later.

In this case we find for E, the following expres-
sion:

AE,=(e*/m)@Y2 /)1 =€) /e, , (5)

where () is the mean radius of the function ¢, (F),
which is equal to (2/7a)Y 2. This formula has a
general character and holds for any core state
written in terms of a single Gaussian. In each
case {r) would correspond to the mean radius

of the particular state, 1s, 2p, 3d. It is interest-
ing to note that Eq. (5) has the same form as the
expi‘ession which is obtained from a classical
calculation which assumes a charged sphere in a
dielectric medium. This model was first used by
Jost'” although he wrote the formula correspond-
ing to a sphere having a uniform surface distri-
bution of charge instead of a volume distribution
(which is the most approximate representation of
the actual problem). Both cases can be obtained
from Eq. (5) assuming either a 6( —R) surface
charge or a 6(» —R) volume charge.
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There is a feature of Eq. (5) which must be not-
ed, i.e., for very localized holes, that is, {») =0,
the polarization energy tends to ». This is a char-
acteristic of the model we are using, which de-
rives from the infinite self-energy associated with
the Coulomb interaction. This will be removed
for a q-dependent dielectric function. We first
choose a very simplified dielectric function, that
introduced by Inkson'® which in fact is a simplifica-
tion of the one presented by Penn,®

- €P — 1
(0, 0) = 1+ T =y (/i)

where &y is the Fermi wave vector of the solid. If
we introduce this expression in (3) we arrive, for
the case of a 1s state [Eq. (4)], at

AE,= 2t 2[(1 - ee)/ee]e"z[l —erf(x)],
where

x= (kg /21 /a)le,/(e, - )]V ?

(6)
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and erf is the error function. We want to study two
limiting cases of (7). First we check its behavior
for a very localized hole, that is for o -~ «; in this
case Eq. (7) becomes

lim AE,=—é?(kg/2)e, —1)/e]V?.

ol—>o0

(8)

Now, AE, is finite for a very localized hole. We
have removed the infinity which appeared for a con-
stant dielectric function. It is easy to check that
for a— 0, we recover Eq. (5), that is for very de-
localized holes the polarization energy is dom-
inated by the shape of the wave function and the
long distance dielectric screening, no matter how
the q dependence of the screening is described.
Our expression for AE, has to behave in this way
considering that, for long distances, the dielec-
tric screening can be described by a constant di-
electric function. We also note that if we wished
to include ionic screening, since the g dependence
of €(q, 0) is calculated for the electronic screening,
we would have to add ¢; — ¢, to €(d, 0) as a con- )
stant and then for |§|~«, €({,0)~1~-¢, —¢,, lead-
ing to problems similar to those discussed for the
case of a constant dielectric function.” Neverthe-
less, this problem could be solved by considering
that the ionic screening is only effective at dis-
tances greater than the interatomic distance (a/2),
so that we could assume that the ionic part of the
dielectric function (¢; — €,) vanishes for ¢ = 4n/a.
This cutoff is by no means justified for the elec-
tronic screening.

Although the particular values of AE, depend
on the way in which the dielectric function depends
on § (see Sec. III), once the § dependence is in-
troduced, the polarization energy behaves as dis-
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cussed above. For instance, if we use the dielec-
tric function calculated by Lipari2® which includes
a ¢* term, the result for AE, can also be expressed
in terms of error functions and its limits for’a— 0
and @ —~« are similar to those discussed above;

in particular for o~ 0 we also recover the case of
a constant dielectric function. In Sec. III we shall
show that for the core states of alkali halides, the
choice of a q-dependent dielectric function is more
critical than the accuracy with which the wave
function associated with the core state is de-
scribed.

We turn now to compare the model we are using
with the one which emerges from the analysis of
Toyozawa.” Inoue et al.® have studied the Hamil-
tonian of Toyozawa by treating the interaction be-
tween the electron and the quasiparticle (exciton)
in perturbation theory. Within their treatment,
the polarization energy associated with a hole,

“in the second order of perturbation, can be written

- vz|?
AE,[E) == —= *l al =,
7 Ek-9) +w-E(k)
where w is the exciton energy and Vg describes
the interaction between the electron and the ex-
citon and is given by

)

- /2 ;
VoMWV L @), (10)

14 q
where V is the volume of the crystal. It is
straightforward to show, by assuming flat bands
(our case) and replacing the sum over g by an in-
tegral, that Eq. (9) coincides with Eq. (3) for the
case of €(g,0)=¢,. We have then shown that in the
case of flat bands (core states) and a constant di-
electric function both theories lead to the same
result. It is then clear that besides the approxi-
mations inherent to both methods, the one de-
veloped by Toyozawa has two further approxima-
tions, namely, it assumes a single exciton band
and includes a screening which is static and q
indepedent. In this paper, and due to the assump-
tion of a nonpolarizable hole, we have also taken
a static screening and reduced the quasiparticle
spectrum to w =0 (Ref. 13). Nevertheless the
method of Hedin and Lundqvist!® provides a more
general picture than the model introduced by Toy-
ozawa.”

The q dependence of the dielectric screening can
be easily included in the scheme of Toyozawa,’
and has been done by Woo and Wang.?! When this
is done, the expression which is obtained from Egs.
(9) and (10) for the case of flat bands, exactly
coincides with Eq. (3). Also, including this depen-
dence allows one to avoid the cutoff in the § in-
tegrals which has been necessarily introduced*
to avoid problems related to our discussion con-
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TABLE 1. Polarization energies (eV) for various metal core levels in alkali (4) halides.
The results given in columns a, &, and ¢ correspond to three different calculations in which
three different dielectric functions are used, namely, a constant (a), the Inkson (b) (Ref. 18),
and the Lipari (c) (Ref. 20) dielectric functions. The tabulated values correspond to —AE, of

Eq. (3) (see text).

AF ACl ABr Al
a b c a b c a b c a b c
Lit 1s 11.24 6.74 -+- 14.60 7.07 4.37 15.69 7.10 4.34 16.91 7.05 4.09
1s 38.47 8.43 50.26 8.26 3.27 55.93 8.33 3.32 59.37 8.01 3.06
Na* 2s 7.81 5.36 +-+ 10.20 5.95 3.35 11.35 6.22 3.44 12.05 6.19 3.22
2p  7.10 4.89 -~ 9.28 5.42 3.04 10.32 5.67 3.13 10.96 5.64 2.93

cerning the case of a constant dielectric function.
It is not the purpose of this paper to show if there
exists or not an equivalence between both theo-
ries, once the approximations of the theory of
Toyozawa are removed.

III. CORE STATES OF ALKALI HALIDES

We turn now to apply Eq. (3) to some particular
cases. We shall calculate the polarization ener-
gies for 1s, 2s, and 2p levels of the anion and
cation of lithium and sodium halides. To describe
the core wave functions we first choose a minimal
set of Slater-type orbitals.?® The radial wave func-
tions corresponding to 1s, 2s, and 2p orbitals are
written

R (r)=Ae 1

R, (r)=B,e” %" +Bye~b1" | (11)

Rzp(r) =Cre 'V ’

where the exponents «,, B8,, and y, are obtained
from the expressions given by Clementi and Rai-
mondi.???®* The coefficients A and C are used to
normalize the wave functions, whereas one of the
B coefficients is used to make the 2s orbital or-
thogonal to the 1s orbital, and the other to nor-
malize the 2s orbital.

We have used the wave functions of Eq. (11) to
describe the 1s orbital and the 1s, 2s, and 2p or-
bitals of Na*, F~, Cl~, and Br~. Three dielectric
functions are chosen, a constant (ee), the one in-
troduced by Inkson'® and finally the more accurate
of Lipari.2® With all these ingredients we have
calculated the polarization energies by means of
Eq. (3). Our results are reported in Tables I and
II. Several points are worthy of comment. (i) The
choice of the dielectric function is very important.
The large values obtained with a constant dielec-
tric function are greatly reduced when the Inkson'®
dielectric function is used; a further reduction,
nearly 50%, is found when the more accurate di-
electric function of Lipari®® is used. This behavior

is in line with the discussion of Sec. IV. (ii) The
polarization energies depend more noticeably on .
the crystal where the hole is created, than on the
actual core level. In particular, the changes in
the polarization energies found in going from lith-
ium to sodium halides are specially important.

In order to look at the dependence of the po-
larization energies on the accuracy with which the
wave functions are described, we have taken the
local orbital description of the 1s orbital of Li*,
given by Kunz?* for the lithium halide crystals.
The results obtained with these wave functions
differ by less than 1% from those reported in Table
I. Similar results could be obtained for other
levels.

We turn now to-compare our results with other
theoretical calculations.®?% First, the results
obtained by means of the classical model of Mott
and Littleton are the same for the different core
levels of a particular ion, as the model does not
include any information on the actual level. More-
over, the values for the polarization energies are
somewhat lower than those of the present work,
specially for the anion levels. For instance, our
result for the 2s level of Br in lithium bromide
is 3.3 eV higher than the one given by Du Pré

TABLE II. Polarization energies (eV) for 1s, 2s, and
2p cores levels of F~, C17, and Br~ ions in lithium and
sodium halides (H). (See also caption of Table I.)

LiH NaH
a b c a b c
1s 35.98 9.89 c-- 31.24 8.13 see
F~ 2s 6.09 4.90 5.29 4.16 o
2p 5.76 4.63 . 5.00 3.93
1s 89.33 10.11 4.69 77.98 8.61 3.28
Cl™ 2s 18.57 8.33 4.94 16.21 7.15 3.50
2p 20.45 8.02 4.54 17.85 6.87 3.20
1s 198.9 10.23 4.62 179.9 8.98 3.31
Br~ 2s 46.3 10.28 5.21 41.88 9.05 3.75
2p 52.41 9.35 4.59 47.41 8.23 3.30
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et al.?® As regards the values obtained by means
of the scheme of Toyozawa,® we note that they are
also lower than those of the present calculation,
and do not depend on the particular level. The
reason for the last feature could be the following.
As remarked earlier in this paper the assumption
of a constant dielectric function requires the in-
troduction of a cutoff in the § integrals. This is
usually assumed to be! 27/a, a being the lattice
constant, and is of the order of 0.5-1.0 a.u. Then
in the interval 0-27/a, the Fourier transforms

of most of the core levels are constant and there-
fore the polarization energies so calculated do not
depend on the particular orbital.

IV. CONCLUDING REMARKS

In this paper we have used the scheme of Hedin
and Lundqvist,'® as rewritten by Gadzuk,™ to cal-
culate the polarization energies for core states
of alkali halides. Although many approximations
have been made in order to obtain the self-energy
associated with the hole, we think that they are
justified for deep and highly localized states.'
We have shown that the choice of the dielectric
function is more critical than the accuracy with
which the wave functions are described, showing
that for very localized levels a constant dielectric
function leads to meaningless results. Therefore,
a good description of the electronic screening is

needed in applying the present scheme to calculate
polarization energies. The results we have ob-
tained by means of the Lipari dielectric function,®®
have to be fairly accurate, as that dielectric func-
tion has been fitted to detailed band structure cal-
culations.

Besides, we have proved that for core levels the
polarization energy obtained from the scheme of
Toyozawa’ coincides, once a ¢-dependent dielec-
tric function is introduced, with the one obtained
from the model of Hedin and Lundqvist.°*** The
introduction of a §-dependent dielectric function
avoids the use of an ad hoc cutoff to perform the
q integrals, which is the origin of most of the
shortcomings of the calculations based upon the
model of Toyozawa.® Moreover the introduction
of the g-dependent dielectric function directly in
Vz [Eq. (10)] also avoids the use of the rather unjus-
tified §-dependent function used by Woo and Wang?*
to calculate the total screened interaction.
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