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Effect of pressure on the elastic properties of vitreous As2S3
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The elastic properties of amorphous As2S3 have been measured as a function of hydrostatic

pressure up to 20 kbar. The pressure dependence of the isothermal bulk modulus KT is inter-

preted in terms of an interatomic potential, consisting of a Lennard-Jones and a Born-Mayer
term. It is shown that this potential predicts a structural phase transition at a pressure range
350—400 kbar. A complete correlation is found to exist between the pressure dependence of the
elastic properties and the pressure dependence of the rigid-layer modes as measured by Zallen

on crystalline As2S3.

I. INTRODUCTION

The interest in chalcogenide glasses as photocon-
ductors and their potential use as solid-state switches
has stimulated intensive research into their optical
and electrical properties. However, details of their
disordered structure have proven to be more difficult
to ascertain than their crystalline state. This is be-
cause x-rays. and optical lines in the glassy state gen-
erally appear very broad and thus are less informa-
tive. Hence, different kinds of experiments are
needed to reinforce any particular model proposed to
account for the detailed structure.

High-pressure acoustic experiments are a useful
tool in studying the nature of the bond forces in
solids. These techniques have been recently applied
to amorphous Se (a-Se) by Litov and Anderson' and
to a-As2Se3 by Ota and Anderson. The experiments
involved the measurements of the velocities of shear
and longitudinal sound waves as a function of hy-
drostatic pressure, up to -20 kbar. The important
quantity derived from these measurements is the
isothermai bulk modulus Kr (inverse compressibili-

ty). Since Kr is related to the second derivative of
the interatoiTiic potential, it provides a sensitive test
of the interatomic forces. The results on a-Se have
shown that ET can be derived from an interatomic
potential which is dominated by a Lennard-Jones
term at low pressures plus a Born-Mayer term at
higher pressures. This appreciable deviation from a
Lennard-Jones dependence at a relatively-low-
pressure range was interpreted by Litov and Ander-
son' as being a percursor of the transition to metallic
structure at the very-high-pressure range. Evidence
that the chalcogenides, such as a-Se, a-As2Se3, and
a-As2S3, undergo or tend toward a metallic transition
at very high pressure was recently demonstrated by
Minomura et al. based on their electrical-
conductivity measurements.

The microscopic mechanism leading to a metallic

transition with pressure among the chalcogenides is
understood in detail only in crystalline Se and Te.4

In these cases, the application of hydrostatic pressure
results in a denser packing of the chains and relative-
ly little deformation along the stiff chains. This
response is a manifestation of how pressure affects
the electronic spatial distribution among the bonds in
the chalcogenide groups. In Se, for example, with in-
creasing pressure, charge is being promoted from the
intrachain orbitals toward interchain orbitals. This in-
creases the attractive interchain forces to the point
that at a critical pressure these forces overcome the
repelling Lennard-Jones forces, thus forcing the lat-
tice to undergo a structural phase transition.

In this paper we describe high-pressure experi-
ments on a-As2S3, similar to those performed on a-
Se. Our results show that ET has a similar pressure
behavior to that in a-Se, thus reflecting the domi-
nance of the weakly coupled layers on the compressi-
bility. The fact that an additional term of the Born-
Mayer type is needed to 'describe the interatomic
forces indicates, just as in the case of a-Se, that with
the application of pressure, charge is being redistri-
buted from the intralayer to the interlayer regions,
eventually causing at very high pressure a structural
phase transition.

II. STRUCTURAL CONSIDERATIONS

Although the structure of As2S3 and As2Se3 is dif-
ferent from that of Se, they all possess common
features that presumably will prove to have an impor-
tant role in their behavior under very high pressure.
Se has a one-dimensional chainlike structure in
which the Se atoms are strongly bound to each other,
whereas the interaction between the chains is much
weaker and has been shown to be of the Van der
Waals character. A similar picture is found in As2S3
and As2Se3. These two crystals possess a highly pro-
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nounced layer structure, ' with the layers stacking
along the b direction. %'ithin the layers, each As
atom is threefold coordinated to form a pyramid
structure, and each S atom is twofold coordinated, as
can be seen in Fig. 1. This structure is also known as
the orpiment structure. In the crystalline state the
atoms in the layer are tightly bound in accordance
with the covalent bonding requirements of atoms
from columns 5 and 6 of the Periodic Table. The ra-
tio between interlayer to intralayer bond length of

1.57 indicates that adjacent layers are held by a
weak Van der Waals force. The layers can also be
viewed as being made out of long As-S-As helical
chains pointing along the c direction, with each chain
coupled to its neighbors with a row of S atoms, or as
interwoven puckered rings, each consisting of six py-
ramids.

The extent. of disorder in the vitreous chal-
cogenides relative to the crystalline state is not
known with certainty. This point was recently em-
phasized by Klein et al. , who studied the Raman

and infrared spectra of amorphous and crystalline
As2S3. Their results on a-As2S3 indicate the presence
of order beyond a single AsS3 pyramid, but were in-
sensitive to the details of the extended order. Thus,
the structure of the layer still remains an open ques-
tion, and at the present stage it is difficult to infer
the existence of chains or layer segments in contrast-
to a random network of AsS3 pyramids in the glassy
state. Tsuchihashi and Kawamoto' also made com-
parative studies of amorphous and crystalline As2S3
using infrared and x-ray techniques. They attribute
the lower density of a-As2S3 to an open structure in
which the number of pyramids around the rings fluc-
tuates between five and seven compared to the
number of pyramids in the crystalline state, which is
Slx.

It is apparent from the orpiment structure of As2S3
that an application of moderate hydrostatic pressure
to the crystalline material will result in a denser pack-
ing of the layers with little effect on the intralayer
distances. The effect of pressure on packing in amor-
phous As2S3 will be more complex since in the glassy
state loosely bound layer segments or chains can be
affected with relative ease as adjacent layers.

III. EXPERIMENTAL

Cylinders of As2S3 glass, 4 in. in diameter, were

purchased from the Servo Corp. They were cut to
size, and their end faces lapped flat and parallel. The
elastic moduli were determined from the velocity and
its pressure dependence for longitudinal and shear ul-
trasonic waves. The latter were generated by crystal-
line quartz transducers, X and Ycut, of 10-MHz fre-
quency, bonded to the samples by a 1:1 formula
weight mixture of glycerine and phthalic anhydride.
Since the attenuation of the longitud'inal wave was
appreciable, the measurements of the pressure
dependence of the velocity were performed here by
the pulse-echo method, using unrectified echoes. a

. For shear waves, where the sound attenuation was
much lower, the pulse superposition technique was
used. The absolute values of the elastic moduli were
determined from the sound velocity measured by the
pulse-echo technique. The pressure was generated
by means of a piston cylinder apparatus, ' " using a
mixture of equal volumes of pentane and isopentane
as the pressurizing fluid. A more detailed description
of the cell experimental setup including the high-
pressure cell is given in Refs. 1 and 11.

FIG. 1. Crystal structure of As2S3, The large dark circles
are As atoms; small open circles are S atoms. The upper di-
agram is a projection along the [010] direction looking at the
plane of the layers. The lower diagram is a projection along
the [001] direction looking at the edges of the layer planes.

IV. RESULTS

Sound velocity in As2S3 glass exhibits some fre-
quency dispersion. ' Thus, in principle, all velocity
values should be extrapolated to zero frequency be-
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TABLE I. Zero-pressure, room-temperature elastic
moduli and various other material parameters.
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Density
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fore they can be used to evaluate the static elastic
moduli. From the data of Ng and Sladek, ' it is evi-
dent that this effect is quite small in the frequency
range of 0—10 MHz. Since the velocity is proportion-
al to the frequency, the change between 0 and 10
MHz will be about 1%. Thus, for all practical pur-
poses, the use of 10-MHz data is justified.

The elastic constants from which the bulk modulus
is calculated for a-As2S3 are C' and C', where I is
longitudinal waves and t is transverse waves. It is
easy to show'" that the elastic moduli, C,', C,', and
K„corrected for variations in the sample path length
I and density p, are given by

12

c,'=c,', ~ (Ia)
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FIG. 3. Elastic constant C'of a-As2S3 vs pressure.

where
r r r

fo ' fo I+~vT

and

"~d
s =1+—

i

]c

and where f is the frequency, a the coefficient of ex-
pansion, y the Gruneisen constant, p the pressure, T
the temperature, and s = lo/I for isotropic solids is a
measure of the sample's compression. The small
correction sory T =0;001 in Eq. (2) was assumed to be
independent of pressure. The zero subscripts refer to
1-bar values of the various quantities.

In Eq. (2b) ss is a measurable quantity and its sub-
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FIG. 2. Elastic constant C'of a-As2S3 vs pressure.
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FIG. 4. Bulk modulus KT of a-As2S3 vs pressure.
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TABLE II. Isothermal bulk modulus and compression as
a function of pressure.

P
(kbar)

KT
(kbar)

V/t Vo

0
1

2

3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

128.8
139.5
148.3
156.0
163.0
169.4
175.7
181.9
188.2
194.6
201.2
208.0
214.8
221.6
228.3
234.8
241.0
246.8
252.2
257.2
261.8

1.0000
0.9926
0.9857
0.9792
0.9731
0.9673
0.9617
0.9S63
0,9512
0.9462
0.9414
0.9368
0.9324
0.9282
0.9241
0.9201
0,9162
0.9125
0.9088
0.9053
0.9018

stitution in Eq. (3) leads to the evaluation of s.
Table I presents the measured values of the room-
temperature adiabatic elastic moduli, together with
other pertinent material parameters used in the above
calculations. The results for O', C', and ET are
shown in Figs. 2, 3, and 4, respectively. In Table II
the pressure dependence of KT and the compression
v = V/ Vo= 1/s are presented in numerical values.

In Table III we show the pressure derivatives of
the elastic moduli at zero pressure. It is noted that
Kr'(0) = 7.5, which is high by comparison to "nor-
mal" solids ranging around 4. Values of Kr'(0) —8

werc also found for a-Se, ' a-As2Se2 indicating, as we
shall discuss later, that the interatomic forces in these
materials are similar.

U. DISCUSSION

A. Interatomic potential

The fact that the interlayer atomic separation in a-
0

As2S3 varies between 3.56 and 5.00 A led Zallen
et al. '" to assume, on the basis of the Pauling cri-
teria, that the major interlayer forces must have the
characteristics of Van der Waals forces. Similar argu-
ments were used to derive the nature of other inter-
chain forces on a-Sc."Ho~ever, when both materials
are subjected to increased hydrostatic pressure, the
elastic data reveal appreciable deviation from a Van
der %aals dependence. In a-Se this deviation was
recognized because of the effect of pressure on the
charge spatial distribution between intrachain and in-
terchain regions. 4 This has the effect of increasing
the attracting interchain forces and thus lowering the
total energy. Ample evidence for these effects were
provided by optical experiments on a-Se in which in-
trachain modes decrease and interchain modes in-
crease with pressure. ' Theoretical calculations by
Joannopoulos, Schluter, and Cohen' have also sup-
ported these conclusions. It appears that similar ef-
fects take place in the two-dimensional chalcogenides
As2S3 and As2Se3. In both cases, the chalcogen atom
enters into a covalent bonding with a pair of its two
nearest neighbors, using two of the six s2p4 valence
electrons, while the other four form two lone-pair or-
bitals that protrude into the intermolecular regions.
In Se, under the effect of very high pressure, these
orbitals strongly overlap to form a covalent bonding
as manifested by the transition to the metallic state. '
The evidence, based on electric conductivity meas-
urements of Minomura et al. , is that a-As2S3 and
a-As2Se4 will also transform to the metallic state at
pressures greater than -300 kbar. Evidence for
charge promotion from the intralaycr to the interlayer
regions is derived from pressure-optical experiments
on these materials by Zallen et al. " Here too it is
observed that two of the intralayer modes decrease
with increased pressure, whereas all the interlayer
modes increase with pressure. In the following, wc
will demonstrate that the elastic properties in a-As2S3

TABLE III. Pressure derivatives of the elastic moduli.

9P
GC4g

QP gp2

(kbar ')

9 C44
2

QP2

(kbar ')

92K

QP2

(kbar ~)

Adiabatic
Isothermal

10.0 + 0.4 1.91 + 0.035 7,51+0.4S
7.51+0.45

—0.16+0,017 —0.050 + 0.002 —0.100 + 0.014
—0.099 + 0.014
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$(R) =A/R —8/R —Ce "" (4)

where A, 8, C, and X are constants and R is the
average interlayer distance. In Eq. (4) we have as-
sumed that 48(R) is simply a function of R excluding
any dependence on the intralayer distance r. Later
on it will be seen that these assumptions are ade-
quate, since the contribution to compression by the
internal covalent bonds is negligible in comparison
with the contribution by the interlayer bonds. A very
important feature of @(R) is that its third term is
responsible for a structural phase transformation at
very high pressures. At some critical pressure I'„ its
attractive character overcomes the repelling—12
1/R term, thus destabilizing the structure and forc-
ing it into another phase. These features, as we shall
see below, will allow us to predict a phase transfor-
mation in a-As2S3 at pressures well above 350 kbar.
This is done by analyzing Kr as derived from $(R)
in terms of our present experimental data. Using the
well-known definition for the bulk rhodulus

can also be treated on the basis of the above micro-
scopic picture.

As mentioned before, the Van der Waals potential
was found to be inadequate for describing the elastic
properties as a function of pressure. In particular,
the experimental values of KT as evaluated from the
elastic constants plotted in Fig. 3 were found to devi-
ate appreciably below the KT as derived solely from
the Van der Waals potential. The agreement can be
improved by taking into account the extra interaction
term, originating from the lone-pair orbitals overlap-
ping with antibonding states at different layers. Since
the interlayer distances are on the order of 4—5 A, it
is reasonable to assume, just as we did for Se, that
the wave-function spatial dependence along other
lone-pair direction is asymptotically exponential. Ad-
ding this term to the Lennard-Jones potential, the to-
tal interatomic potential takes the following form:

These constraints leave Eq. (6) with only a normal-
izing contant a and two fitting parameters A. and x, .
However, as we shall see, the critical normalized den-
sity x, is constrained to values of 1.65 to 1.85, &hus,

basically, leaving Eq. (6) with only one fitting param-
eter A..

In deriving Eq. (6) it was assumed that for the~3
amorphous state the volume contracts as V —R . It
should be noted that for the crystalline state, in
which the layers are neatly stacked, V =AR, where A

is the cross-sectional area of the layer planes, and
which under moderate pressure remains constant.
The above difference for the functional dependence
of V on R for the amorphous case arises, because in
this state the infinite layer planes are broken into
very small segments, whose size are on the order of a
few Angstrom long, and are randomly oriented with
respect to each other. Under these conditions, the
volume, under the effect of hydrostatic pressure, will-

decrease isotropically. Assuming that only interlayer
motion is allowed it is clear that each dimension of
the macroscopic sample will contract as -R and thus,—3
the volume will contract as V —R . The fact that
the density of the vitreous As2S3 is smaller than that
of the crystalline As2S3 indicates that voids are
present among the broken-layer segments. Their
volume-pressure relationship is probably also dictated
by Van der Waals forces, such as described by Eq.
(4), and their volume will contract under the effect
of pressure as I', where I is an effective size of the
voids. The effective interlayer distance R, then, in-
cludes also the effect of voids.

Equation (6) for Kr was fitted to our data and the
results are shown in Fig. 5. The best fit was achieved
with parameters a =3.72, ) =38, x, =1.75, and 8

I0.0

9.0-

Kr= V
V2

we obtain, using Eq. (4),

Kr ——a [180x' —54x' + (6 —128)x' '

x (2x'"+Z)e"" ']

(5)

(6)

e.o

7.0

o 60

5.0

where a =2/9 Vp, x is the reduced density, C is elim-
inated by the equilibrium condition, and 8 is evaluat-
ed by requiring KT to become zero at the transition
density x~. After a few manipulations one obtains

9x,' —F(x, ;z)
2[15x,' —F(x,;Z)]

2.0

I.O

100 1.10 1.20 150 1.40 1.50 1.60 1.70 'I 1.80 1.90 2.00

where

x(1-x ~3)
F(x, ;Q = x,' (2x,' + A.)e

FIG. 5. Bulk modulus KT of a-As2S3 vs p/po. Solid
curve is due to Eq. (6). Arrow indicates the density at
which phase transition is predicted.
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derived from Eq. (7) is 0.5032. As can be seen, the
fit is reasonably good. The value of normalized den-
sity x, =1.75 corresponds to a predicted critical pres-
sure of about 350—400 kbar. The predictions can. be
tested experimentally since this range of pressure is
accessible through the apparatus of the diamond an-
vils. Unfortunately, Minomura et al. did not carry
their electrical measurements on a-As2S4 and a-
As2Sc3 beyond 250 kbar. Their results show that in
both materials, the electrical resistivity decreases very
sharply with pressure, and around 250 kbar attains
metallic characteristics. Hence if our assumption is
correct that $(R) in Eq. (4) does indeed characterize
the major interatomic forces, then it is anticipated
that a-As2S3 will exhibit a phase transformation at
around 350—400 kbar.

8. Comparison with the optical data

%e will now examine the extent to which our elas-
tic data and the interatomic potential P(R) correlate

- with the available optical Raman data. Several optical
Raman experiments on vitreous and crystalline As2S3
have been carried out, both as a function of tempera-
ture and pressure. 6 ' ' Kobliska and Solin, '9 who
compared the Raman spectra of As2S3 in the crystal-
line state with that in the vitreous state, were able to '

provide valuable information about the vibrational
and structural properties of both. The optical data
tend to support a picture in which both the layer
characters as well as thc pyramid units are well
preserved in the vitreous state. This is particularly
reflected in the optical spectra of the two phases
when a comparison of the density of vibrational
states of amorphous and cyrstalline As2S3 is made.
Kobliska and Solin find that the two data sets are re-
markably similar in the sense that the density of
states for the vitreous phase is basically the envelope
of the corresponding crystal-data points. Further-
more, they showed that the continuous Raman spec-
tra of vitreous As2S3 [including the rigid-layer (RL)
modes region] could be easily accounted for by as-
suming a slight distribution in both force constants of
thc fundamental modes and the pyramid apex angles.
Thc fact that the intermolecular forces retain their
basic identity ln vitreous AS2S3 allows Us to compare
our elastic data iii a-As2S3 with optical data of the
crystalline state.

%e make the comparison with the optical data as-
suming, as before, that under moderate hydrostatic
pressure the elastic properties in vitreous As2S3, to
first order, will be affected only by the interlayer
forces. It is very easy to show 0 that for a one-
dimcnsional chain the force constant k is related to
the elastic stiffness constant c of the line by the rela-
tion c = ka, ~here a is the interatomic separation.
For a three-dimensional structure, a similar relation

can be derived, using a simple dimensional argument;
i.e., that there are -1/a chains per unit area. This
gives a force constant that is related to the elastic
constant as

k =ac

' Nf

ff m(m+1)bRo
I

R

'n
n(n +1) Ro—2R, R

A. (n mb) e"—
+ e

(Rp)'

Substituting the values for m = 12, n =6, A. =38,
b =0.5032, and u = (R /Rp), we get

14/3

E;" = =--= 78.4—Cff A 1

Ro
I

~. 8/3

—42—1

—(4.648 x10'P)e 3s (10b)

Hence, there should be an intimate relationship
between the elastic constants c11 and c44 and the
rigid-layer compressional and shear mode force con-
stants, respectively. Several years ago, Zallen'8 meas-
ured the Raman spectra of crystalline As2S3 as a
function of pressure up to 10 kbar. From his results
he was able to identify the rigid-layer modes and
study their pressure dependence. At zero pressure
he finds that the compressional spring constant is
k;" '=9 x10 N/m and that the two nondegenerate
shear constants are k.s"ear 1 8 x 102 N/m an
k&'""'=3.5 &10' N/m. Viewing a-As2S3 as an effec-
tive three-dimensional interlayer network of chains
with effective interlayer distance Ro, we can use Eq.
(9) to estimate the RL spring constants. Substituting
our values of c11 and c44, and taking the average re-
ported interlayer distance as R0=4.5 A, we get
k," ]'=9 x10 N/m and k'""'=2.6 x10 N/m. The
latter value for k "'" is exactly the average value of
the two nondegenerate shear mode spring constants,
as reported above by Zallen. This excellent agree-
ment between our estimated force constants and the
rigid-layer spring constants indicates that the elastic
properties are primarily dominated by the interlayer
forces. Additional support for that notion comes
from thc prcssure dependence of the effective spring
constant evaluated from the interatomic potential
$(R). As noted before, tEq. (6)], the bulk modulus
Er as evaluated from @(R) agrees well with our ex-
perimental results. This indicates, in view of our
conclusions above, that the prcssure dependence of
the effective spring constant, defined as
k,'"'—= 82@(R)/82R, should reflect the pressure depen-
dence of those reported by Zallen for the crystalline
AS2S3. Taking the second derivative of Eq. (4) with
respect to R, we get
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k,'"/k "(0), where k ""(0) is the zero-pressure value
of k ", may now be evaluated as a function of the
pressure, and the results are plotted in Fig. 6 along
with the normalized rigid-layer spring constants asso-
ciated with the 25, 36, 62, and 69 cm ' modes. %e
see that the k "rate of increase with pressure is
about the average of all the RL modes. This is rea-
sonable in view of the average properties of $(E).
However, a more plausible explanation can be given
by evaluating the effective macroscopic compressibili-
ty P from RL force constants k;. This can be per-
formed using Zallen's scaling force law for molecular
crystals. " From his pressure (Raman) experiments
on Ss and As~St, Zallen finds that the Gruneisen
parameter yl = (I/P) (d Inv;/dP) for the phonon i,
where v; is the frequency, is very much frequency
dependent, falling sharply from values of order 1 at
low frequencies to values of order 10 ' at high fre-
quencies. This, as it is well known, is inconsistent
with the usual frequency Gruneisen scaling law for
regular three-dimensional network crystals. In his
model, Zallen assumed that the bond force
constant/bond strain relation for each bond type i
continues to obey the scaling law

(1la)

where y = I, $, is the microscopic strain, and the y&

are assumed to obey the scaling relation

(1 lb)

where now g is the macroscopic strain g = X, g;. He

then proceeds to show that the y; rougly scale accord-
ing to

TABLE IV. Rigid-1ayer modes and their associated y's,
calculated from Eq. (111).

Mode
(cm ')

25
36
62
69

average

4.60
2.82
1.39
2.27
2.77

where kl is the force constant for the lowest mode.
Since v&

—k~'i' and from Eq. (12), y, —v ', as exper-
imentally observed by Zallen. Equation (1la) basically
states that with increased pressure, all force constants
obey a "universal" law with respect to their micro-
scopic strain, whereas according to Eqs. (11b) and
(12), they differ with respect to the macroscopic
strain. It is clear that softer bonds will have yi larger
than the harder ones, since under hydrostatic pres-
sure most of the volume change is soaked up by the
softer bonds. From Eqs. (Ilb) and (12), it is now
also clear why the force constant of the lower modes
rises faster with pressure than the upper modes.

Now, in order to account for our pressure depen-
dence of the effective force constant ki'", shown in

Fig. 6, we apply Zallen's model. Using similar argu-
ments, it can be easily shown using Eq. (11) that the
Gruneisen parameter y; scale according to

kl
yi 2

k;
(12)

yi (13)

1.70

1.60

1.50

O
1.40

1.30

1.20

1.10

1.00
0 I 2 3 4 5 6 T 8 9 10

Pressure (kbar)

FIG. 6. Rigid-layer modes force constants of crystalline

As~S~ vs pressure. Superimposed is K' derived from @(8)
(data after Zallen (Ref. 18)j.

where P& is the individual bond-type i compressibility.
From Eq. (lib), we see that y& controls the rate of
increase of each force constant. It is clear then, from
Eq. (13), that an effective y'" which corresponds to
ki'" could be evaluated if a procedure for evaluating
P'" were known. Such a task for vitreous AsqSq is

obviously too formidable at the present time. How-

ever, in searching for an averaging procedure, we

have found that a simple mathematical average of yi
(excluding any internal vibrations) gives a very good
fit to our data (Fig. 6). This implies through Eq.
(13) that p'" is just a mathematical average of the in-

dividual Pl, i.e. , P'"= (I/n) X,"i3,. It is interesting to

note that for,composite materials such as rocks with

disparate compressibilities, mathematical average
seems to give reasonable results. " In Table IV, we
list those y; used in the above calculations. %e see
that y'"=2.77 compared to an experimental value of
3.1.
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VI. CONCLUSIONS

Measurements of the elastic moduli of a-As2S3 up
to 20-kbar pressure are reported. The bulk modulus
evaluated from the above data is interpreted in terms
of an interatomic potential, consisting of a Lennard-
Jones term and a Born-Mayer term. The inclusion of
the Born-Mayer term is based on the microscopic
structure of a-As2S3 and the variation in its electronic
spatial distribution as a function of pressure. The
above potential predicts a phase transformation at a
pressure of 350—400 kbar, a fact which is borne out
by the electrical measurements. A comparison of the
acoustic and optical data reveals a complete correla-
tion between the pressure dependence of the elastic

properties and the behavior of a rigid-layer model
under pressure.
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