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A quantitative theory of nonradiative quenching of hot luminescence in F centers excited by

an extremely short laser pulse is given on the basis of the Franck-Condon principle in optical

excitation and the momentariness of nonradiative transitions (NRT) in the cases of strong elec-

tron —(accepting mode) phonon coupling. The treatment given differs from the qualitative

considerations by Dexter, Klick, and Russell and Bartram and Stoneham in two important as-

pects, namely, the strength of the coupling between the 1s-like ground state and the 2p-like ex-

cited state as well as the damping constant of the lattice vibration are taken into account. It will

be shown that the coupling strength via a promoting-mode phonon is just intermediate so that

its nonperturbative treatment in the region of crossing of the two potential surfaces is essentially

required. For strong electron-phonon coupling, the interferences between different passages

through the crossing point Yare found to cancel out mainly due to the initial wide distribution

of the excitation spectrum. This fact is taken into account by applying the Landau-Zener formu-

la of NRT's for mutually independent passages through X. Accordingly, a systematic method to

determine the classical motions of the lattice is presented. It will be shown that the system may

have many more chances to pass over L for damping oscillation on the 2p potential surface than

on the ls potential surface as long as the damping is slow. In this way, the probability for an
1 1

ex'cited F center to return to its ground state will be numerically calculated for
4 ( A (—

where A is the excited-state lattice relaxation energy divided by the optical-absorption energy.

The result shows that the Dexter, Klick, and Russell postulate that A (
4 might be a sufficient

and necessary condition for luminescence is inadequate.

I. INTRODUCTION

The problem of nonradiative transitions (abbreviat-
ed as NRT) by multiphonon emission has been of
considerable experimental and theoretical interest for
a long time since the pioneering works of Huang and
Rhys' and Kubo. ' One purpose of the theory has
been how more generally ' and/or how with better
approximations (non-Condon schemes" ") to calcu-
late the first-order transition rates between nonsteady
electronic states prepared by some experiment.
Under the condition that the transition probability is
much smaller than unity (in either limit. of weak or
strong coupling), the formalism for instance given by

Kubo and Toyozawa has sometimes successfully
been applied to studies' "of energy transfer
between localized electronic states in crystals' ' '
and in photosynthetic systems, ' "electron-hole
recombination in semiconductors, "' relaxation of
vibrationally excited molecules, ' NRT in small
molecules, ' and in large molecules, ' and so on.

Nevertheless, the problem of the nonradiative
quenching of F-center luminescence has long been
unsatisfactorily understood with recourse to only a
qualitative mechanism' " originally suggested by
Dexter, Klick, and Russell (DKR)2' on the basis of a

schematic application of a two-state configuration
coordinate diagram as shown in Fig. 1. They' pro-
posed that if point 8 lies above intersection point X
(i.e., E» & ( V)), then after one period or a few
periods of the vibration following the light absorption
process, the system will cross over X with so high
probability that the comp1ete quenching of lumines-
cence may occur. Bartram and Stoneham (BS)24

demonstrated that it is impossible to prove that there
is no luminescence when E» & (V), but then in most
ionic crystals luminescence has been sought in vain.
Mott' has recently discussed this problem in connec-
tion with the potential curve crossing problem in
molecular collisions, which has long been tackled by
many researchers in that field" to surpass or gen-
eralize the pioneering works of Landau and Zener
(LZ). At present no superior theory to LZ's has ap-
peared except for two limits of weak or strong cou-
pling between terms. " The so-called LZ formula'
which can be used for the arbitrary coupling strength
is known to be valid more generally than its deriva-
tion would indicate. ' However, we still have no
quantitative theory of NRT in solids which is applica-
ble to the case of intermediate coupling between the
ls-like ground state ~g) and the 2p-like excited state
~e) in F centers.
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FIG. 1. Two-state configuration coordinate diagram. The
excitation spectrum by a very short laser pulse is also depict-
ed. Only the vibration quanta in its shaded part can pass
over Xduring at least one vibration period and therefore
contribute to NRT through L

from the successive passages through L' The prob-
lem of NRT in solids is very simplified by the strong
cancellation of the interference terms coming from
the sum over all the possible double passages. 6' In
this way, we find that the LZ formula can be used as
a reasonable basis of the intermediate-coupling theory
of NRT in solids.

To develop such a theory, the accurate description
of the classical lattice vibration in the region of cross-
ing must be determined. Then, it is essentially im-

portant to take into account the irreducible energy
flow from the configuration coordinate system to the
other modes. In Sec. III, limiting ourselves to the
linear electron-phonon coupling situation, we present
a general formalism of such "classical" approximation.
The term classical is used to distinguish it from the
conventional semiclassical approximation, although
both give the exact equal transition probability in the
weak-coupling limit at high temperatures as shown in

Sec. IV. The system of F center in ionic crystals,
described in Sec. II, will be shown in Secs. II, IV, and
V to be just in the case of intermediate coupling.
Then, we must solve a series of differential equations
because, after a "real" NRT occurs near X, the poten-
tial surface on which the lattice moves classically

jumps from /g) to [e) or from [e) to [g). Section
VI will be devoted to solving them by use of the LZ
approximation. The results will be discussed and
summarized in Sec. VII.

II. DESCRIPTION OF THE SYSTEM

The purpose of this paper is to develop such theory
in the case where the electron-phonon coupling is so
strong that a classical approximation may be used to
describe the lattice relaxation. %e suppose that the
electron initially being in the 1s state with the lattice
in thermal equilibrium is excited into the 2p state at
t =0 by a very short laser pulse, conforming to the
Franck-Condon principle. It should be noted that
due to the Heisenberg uncertainty principle the exci-
tation spectrum is half-infinitely distributed ' as
shown in Fig. 1 even at low temperatures. Only the
vibration quanta with high initial energies lying in the
shaded part of the excitation spectrum can pass over
Xduring at least one vibration period and therefore
contribute to NRT through X. Among these vibra-
tions, one with comparatively low initial energy will

make a double passage through Xwith low velocities
for which the LZ formula breaks down. However,
we can estimate that such vibrations can occupy only
a small portion in the shaded part of excitation spec-
trum in the case of strong electron-phonon coupling.
But, even for the other vibration quanta which can
make double passages through Xwith high velocities,
the transition probability for such a double passage
does not simply conform to the LZ formula but, in
addition to it, contains an interference term coming

A. Model Hamiltonian

Let us consider an interaction of an electron
trapped at some crystal imperfection with the sur-
rounding lattice. %e denote the jth normal coordi-
nate of the lattice vibration in the absence of the
electron by QJ. When the electron is added at the
trapped center, its interaction with the imperfect lat-
tice can be expanded up to the first power of QJ. If
we further take a quadratic approximation for the po-
tential energy, we can write the Hamiltonian of this
system as

sc(r, Q) = HE + HEL +HL,
t

2

+ V(r) —X uJ(r) QJ2m

+- X(PJ +cklJ QJ ) g

J

where Hs is the electronic Hamiltonian with QJ =0
for all j, HEL describes the fluctuating potential due
to the electric field of the vibrational modes at the
defect, and HL, is the lattice energy when there is no
electron.

As is well known, the electron in F center is in a
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discrete bound state such as a 1s-like ground state, or
2p-like excited states and so on. Throughout this pa-

per, the Jahn-Teller effect of threefold degeneracy of
2p-state will be completely neglected because our
concern is not in the polarization characteristics but
in the sum over all polarizations. Thus, we can adopt
a simple two-state model used by many authors.
Now, let

the bare transfer matrix T,g, while in the AR it is
caused by the off-diagonal matrix element of the lat-

tice kinetic energy K [iX= &21K11)= (KX)] which
exhibits a resonance type of strong dependence on
the lattice coordinate. The problem is which
representation can be a better starting point of per-
turbation theory.

Ig) =Qg(r, Qp) and le) =ib, (r, Qp) (2.2) 8. Estimation of transfer matrix element in F centers

Hg —= X cuj(hither+ —,) (2.4)

V =—H, —Hg =
& V) +8 V =

& V) —X(gi) 'i~coj (bg + bjt)
J

= &e IHEIe& —
&g IHEI g&

( &e I u& I e ) —
&g I u& I g) )

(2~ ) 1/2
t

T,p = Tg, = —X,i, (bi + b~ )
&e lu~lg)

2 ojg

(2.5)

(2.6)

where b~ (b~) is an annihilation (creation) operator
of the jth phonon. After Sharf and Silvey, 9 we shall
call this the "crude adiabatic representation (CAR)"
in order to distinguish it from the conventional adia-
batic representation (AR). The Hamiltonian in the
latter representation was first obtained by Kubo and
Toyozawa using the unitary transformation

11) = cosX
I g) —sinX

I e)

12) =sinxlg) +cosxle)

with

(2.7)

be the eigenfunctions of HE+ HEL with Q&
=

Q&p for
the 1s-like ground state and the 2p-like excited state,
respectively, where Qp = [QJp} is conveniently chosen
as the lattice equilibrium position of the lg) state de-
fined above, i.e., Q~p

=
&g I u~lg)/cu&'. p Then, the

Hamiltonian (2.1) can be represented as

sc =scp+s = (lg & H, &g I
+

I e&H, &e I)

+ (lg)?I, &e I
+ le)?;I &g I), (2.3)

with the definitions

As is well known, the fluctuation part of the
electron-lattice interaction in the case of ionic crystals
can be written'

0)p
HEL 1/2N

8m 1

Ug 6p

' '1/2

x X[—Qi(er k) cosk r +Q&(er k) sink r]
J

(2.10)

1

4''OJp
(2np+1) I &e le r lg& I'

3Ug Eo 6p

where the jth mode of the optical longitudinal vibra-

tion is specified by the wave vector k (k = k/1 k I) and
the angular frequency ppp (which is assumed to be
constant), ep and e are the static and high-frequency
dielectric constants, respectively, v, the volume of
the unit cell, W the total number of unit cells, and e
the electronic charge. It is further. well known' that
as regards a hydrogenic defect the promoting mode
(for which &e u» g) A 0) and the accepting mode
(for which &e u» e) N &gluj, lg)) must have odd and
even parities, respectively. Thus, . in our system,
these two roles of the lattice vibration are respective-
ly played by the first and second terms of Eq. (2.10)
which are distinct by symmetry. " Therefore, the
replacement of T~~ by its thermal average &T~g) may
be considered to be a good approximation. As a suit-
able starting point of the estimation of &e I u»lg), we
can assume that the electric field of promoting modes
is roughly uniform over the F center. ' These con-
siderations lead to

-H /kT
Tr (e g T,'g)

X =
~

tan ' (2 T, / V)

The result is given by

(2.8)
where

np —= n (cop) = [exp(cop/kT) —1]

(2.11)

se = 11) [H, + —,
'

[ V —( V' +4 T,',) 'i'] }&l l

—11)I x(21+12)i x&11

+12) [HE+ —[V+(V +4T )' ]}&21 . (2.9)

In the CAR, the nonradiative transition is caused by

is the Bose-Einstein distribution function, T being the
temperature.

The rate of radiative transition from the relaxed
excited state to the ground state was first calculated
by Huang and Rhys, ' which is given by

y = (4/3C )1&ele r lg)1 ((V) —gprdp)3, (2.12)
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where c is the light velocity and

go=((el'/. Ie) —«Ia/. Ig))'/2 o'

order that a mixing of the le) and lg) states can be
neglected around point 0 in Fig. 1. From Eqs. (2.7)
and (2.8), this condition is found to be

is called as Huang-Rhys factor.
From Eqs. (2.11) and (2.12), we get the formula to

estimate T,~ from the optical data

Tg « (V)

Then, the wave function can be written

(3.3)

((T2 &)
2/2

mc'(2no+ I)~oy

vg ( ( V) gotpp) goo ep
(2.13)

y(t) =exp( —/set) y(0)

= [e g ag(t) lg) +e ' a, (t) le)] I (n/])
(3.4)

with the probability amplitude operators

By use of the well-known data on KBr in which
gptop/(V) =0.223, gp = 22, top =3.0 X 10'2/SeC,

&0 =4.78, E~ = 2.33, 'Uz = 2.86 x 10 cm, and

y = 102/sec for a dipole allowed transition, we can
obtain a typical numerical estimate as

a„(t) = (h. le e '~'le)

= &ltlexp+ i J
—dry'(r) Ie&;

A, =e or g (3.5)

Tg —= Tg/o)p —1.34(2np+1)'/' . (2.14)

As will be shown in Secs. IV and V, the above inten-
sity corresponds to the intermediate-coupling situa-
tion when the system passes through X. Fhysically
speaking, the system after the passage will be evenly
distributed among two electronic states.

III. GENERAL FORMULATION

A. Transient polarization after
optical excitation

By reference to Fig. 1, let us suppose that the I'"

center is excited from the lg) state into the le) state
by an extremely short laser pulse at t =. 0. After that,
the phonon wave packet will pass back and forth over
Xwith or without nonradiative change of its electron-
ic state. Since y = 10~coo in alkali halides, we can
neglect radiative damping almost completely during
10' times period of vibration. Therefore, our prob-
lem is simply to solve the time-dependent
Schrodinger equation

y (r) —= e le

with

= lg»" (r) &e I+le».g(r) &g I,
iHkr -iH

T„„(r)—= e Tkl, e

A. A.'=eg or ge

(3.6)

(3.7)

The physical quantity to be calculated is the transient
probability for the system to be found in the le) or
lg) state. From Eq. (3.4), this is given by

Pk(t) =—(IP(t) Ih.) (ltl y(t))
=Tr [a k(t) pga kt (t) ]

with the canonical density matrix

pg =
I (n/]& &(n/] I

H/kr/ (H/kT)--.

(3.8)

(3.9)

where exp+~ i denotes the time-ordered exponential
with increasing (decreasing) time towards the left and
from Eq. (2.3)

/li/(t) = scl/l(t) = (Jcp+ 7)l//(t)

for t (& y
' under the initial condition

$(0) = Ie)l(n/])
2

(3.1)

P, (t) +P, (t) =1 (3.10)

P, (t) and Pg(t) are related by the conservation of.the
probability

(b,') '
/ ni 2/2

2

(3.2)

where IO) is the vacuum state of phonon field.
Exactly speaking, r~ must have an upper limit in

B. Perturbational expansion method

The only nonvanishing matrix elements of the
time-ordered expansion of a, (t) in Eq. (3.5) with
Eq. (3.6) are the even terms. This is given by

t I ~i t ~Png t' 2n-1
a, (t) = X (—1) „drt dr2 ~ dr2„2 dr (2( Arrl) 2A(r2„2, r2„)

n 0

(3.11)
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where

A(., r') =—T„(r)T„(r') . (3.12)
0 2n. 2+-1

2'-1 2~
l1

t(
)J 3e:2 2i+1

By use of Eq. (3.11) and its Hermite conjugate, P, (t)
given by Eq. (3.8) can be written" 0 t 0

P, (r) = X (-1)"C„(r),
N 0

with Cp(t) =1 and

C„(r) = I„(r—artie r2, , rg„ t, r,„)
x (A(rt, r2) A(r,„,, r2„))

(3.i3)

(3.14)

=0:—

=o.
2

0,

~2
~l

2

1~2
2~1

~ ~ ( ~ ~~~L
1 t

for n ~ 1, where the integral operators [I„)are
found to be given by

ft ff
It(rirt, r2) = J drt Jl dr2, (3.IS)

t"4 t"3
I2(teart, r2', r3, r4) =~ dr4~ dr3 ~ dr2 ~~i drt

pg

fat

+ d Y2 ~
d'r1, dT3 dT4' ' '

(3.i6)

In general, /„ is diagrammatically shown in Fig. 2(a)
where the upper (lower) time branch corresponds to
the increasing (decreasing) time sequence in
a, (t) [a,t(t) j t'owards the left and the solid and dot-
ted lines indicate the propagations of the system in

~e) and ~g) states, respectively. Indeed, it is impor-
tant to note that the sum of Fig. 2(a) can be reclassi-
fied into the sum of 2" '-type diagrams as shown in
Fig. 2(b) for n =1 and n =2, where a 'pair of parallel
solid (or dotted) lines both starting from r, and end-
ing in r (r, ( rj) expresses a propagator of the sys-
tem in e) (or ~g)) state. Further, NRT occurs dur-
ing every time region strung by a circular arc which

+ 0&
i~4 2~ 3

i

6 1 5~2

FIG. 2. (a) Diagrammatic representation of the integral
operators!, (i

~ rtr2 , , r,2„ t',. .r.&'„) operating to the correla-
tor (A(rt, r2) A(rt„ t, r&„)); a solid (dotted) line in the
upper or lower time branch indicates the forward or back-
ward propagation of the system in the ~e) (~g)) state. (b)
Reclassification of I„; A NRT occurs during every time re-
gion strung by a circular arc which stands for a pair of solid
and dotted lines.

stands for a pair of solid and dotted lines both start-
ing from rI and ending in rj (r~ & rj). We can say
that the NRT is "real" or "virtual" according to wheth-
er the electronic state changes or not in that transi-
tion.

The calculations of the correlation functions
(A(r]t, r2) ' ' ' A(r2N t, r2„)) can be easily performed
for Eqs. (2.4) and (2.5) Chen T,s is constant. Espe-
cially for n =1, the result is well known4 that

p oo p oo=T' exsp G+G(r2 —rt) —i(r2 —rt) (&) —
Jl, dtptpg((p) 2i „d'cpg—(t«)(sintpr2 —aint«rt)

I

(3.17)
where the interaction spectrum g(tp), G(r), and the interaction strength G are deftned by

g (tp) —Xgj[5(4« tpj) 5(QJ + tpj) j g ( tp)
J

(3.18)

(3.19)

(3.20)

2N

dtpg(t«) X (—1)"sinr«ra
a! 0 h~1

(3.2i)

G(r) —=
J~

dtp [n (tp) +1]e'"'g (tu)

G =—G(0) =„d~[2n(~)+I]g(tp)
Higher-order correlation functions can similarly be evaluated as

2N 2N

(A(rl, r&) ~ ~ ~ A(r2„ t, r2„)) = Te& exp —rtG + X X (—1) "+'G(r —ra)
h 1m h+1

ra oo 2N
—i (V) —J dtpt«g(t«) X ( 1)"ra 2i— —

0
h 1
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C. Semiclassical approximation

We further restrict ourselves to systems with
strong electron-phonon coupling as is the case in
many ionic crystals and semiconductors. This condi-
tion is specified by the nearly zero Debye-Wailer fac-
tor (e G =0) or by the large second moment of the
correlator (3.17), i.e.,

D'=~ . dms)'g(co) [2n(a)) +1]

ing times ) occurs during the times

1 1
1 2Q ri/ +

2 f/ 'and r2~ ~
= ttj (3.23)

with h, m =1,2, ...,n. Third, the logarithm of the
correlator should be expanded in a series of powers
of gt, the duration time of the ith NRT, for
i = I, 2, ..., n. Then, n first moments describe the
corresponding classical motion: (i) Case of n =1; Eq.
(3.17) with Eqs. (3.19) and (3.20) can be expanded
as

=—eo G&&co (3.22)

where ao is a mean frequency of vibration. Then, a
NRT event occurring during every time region strung
by a pair of circular arcs in Fig. 2(b) would end
within a much shorter time of order D ' than a mean
period of vibration 2m/ ~, so that the motion of the
system may be described classically. In this approxi-
mation, the system has no time to stay in two elec-
tronic states at the same time in agreement with the
classical picture.

D. Determination of classical motions

We present a systematic way to determine such
classical motions. First, the integral operator I„clas-
sified as Fig. 2(b) must be known. Second, the
changes of time variables must be made in a way that
the ith transition (i =1,2, ..., in the order of increas-

= T2 exp[ —i 0 (q, ) g~
—-D g + 0 (g3)]

(3.24)

0(g) = (V) —2„
is the Franck-Condon energy of the virtual NRT
which starts from (V) at q =0 and thereafter displays
a damping oscillation on the ~e) potential surface
around the relaxed energy given by

0(~) = (V) = (V) —2 J da) cog(co) . (3.26)

(ii) Case of n =2; Then, as seen from Fig. 2(b), we
have a virtual and a real double transition. The
corresponding correlators (3.21) are respectively ex-
panded as

In the above, as is well known,

dracog(ao)(1 —cosset) (3.25)

and

(A (7It —
2 (t, gt + —,

'
g)) A (q2 —

2 6, q2 +
2 (2) ) = TI exp [—i 0 (q~) gt —i 0 (g2) f2 + 0 ((')] (3.27)

(A (g, ——,
' (), g, + —,

'
g,) A (q2 —

2 g2, g) + —,
'

g,)) = T I exp [ i 0 (g,)g, —i [—0 (v),) + (V) —0 (v), —qt) ] f2 +0 (g') }.

(3.28)

(iii) Case of n =3; Then, we have four kinds of classical paths. Only a diagram expressing a new kind of classi-
cal motion is depicted in Fig. 2(b), in which the first, second, and third NRT's are real, real, and virtual, respec-
tively. The corresponding correlator of Eq. (3.21) is given. by

(A(91 T41 ~ ti2 +
2 42) A( 13 2 43 ~ ti3 +

2 43) A('rt2 2 42 ~ 'gl +
2 (1))

= Te exp( —i 0(g~)g~ —i[0(g2) + (V) —0(g, —g,)](,—i[0(g,) + 0(g3 —q2) —0(g3 —gt)]$3+ 0($') } . (3.29)

From these expressions, we find that so long as
any real NRT does not occur, the classical motion of
the lattice is unchanged and can be described by
0(q). When the first and last real NRT has oc-
curred at g~, the system thereafter continues to
display a damping oscillation around point 0 on the
}g) potential surface and can be specified by the
Franck-Condon energy 0 (q2) + (V) —0 (g2 —q~) at
q2. Furthermore, when two real NRT's have oc-
curred at g~ and q2 (q~ ( g2), the lattice vibrates

again on the ~e) potential surface with a slightly dif-
ferent Franck-Condon energy 0(~,) + 0(g3 v)2)—0(g3 —g2) at v)3.

In the semiclassical approximation, the logarithm
of the correlators (3.21) are expanded up to the
second moments which the temperature dependence
of P, (t) is described. Unfortunately, however, the
integrations of the higher-order terms than the first
are practically impossible to perform for the
sinusoidal classical motions mentioned above.
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E. Definition of a kind of
"classical" approximation

pt
=T~exp i „,d—r V"(r) a, (t) (3.30)

and

Instead of it, limiting us to high temperatures, we

propose a kind of classical approximation in which
the temperature dependence is introduced into the
calculation only as the initial boundary condition of
subsequent classical motion. This is based on the
Franck-Condon principle in optical excitation and the
momentariness of NRT's in the case of strong
electron-phonon coupling.

To formulate this approximation, let us derive sin-
gle equations of a, (t) and ag(t). Substituting Eq.
(3.4) into Eq. (3.1), we have two equations for the
probability-amplitude operators

ia, (t) = T„(t)a,(t)

and P(t) =Qtoocoscopt, respectively. Then, from Eqs.
(2.4) and (2.5), the lattice energy and the Franck-
Condon 'energy have the forms

Eg ———,
' [P(t)'+~o20(t)') = —,

' ~o2g' (3.36)

Vg= {V)+svg= {V)—(2gptop)' Qsin8, (3.37)

respectively, where 8= coot. Thus, the initial boun-
dary condition can be imposed by replacing the mean
Franck-Condon energy {V) in the classical motions
of V"(t) and Ve'(t) by Vg given by Eq. {3.37).

In Sec. III 0, it was shown that only real transitions
can change the classical motion of the lattice.
Corresponding to it, the classical approximations of
Eqs. (3.34) and (3.35) are composed of a series of
equations:
(i) When no real NRT occurred in the past, Eq.
(3.34) is approximated by

ia, (t) = T„(t)a, (t)
t t

= T,gexp i „dr V»(r) ap(t) (3.31)

aeo {t)—t Qo(t) a.o (t) + Te'garo {t)=0

with the initial condition a,p (t) =1 where

Qp(t) =—Q(t) +5vg

(3.38)

where Vt"t(t) is the Heisenberg representation of V

in the
~ X) state and takes the form

= Q (t) —2(gptopEg) sln8 (3.39)

Vt&(t)= e' 've '-' (ii) When a real NRT occurred at rt, (&t) where
Qo(q~) =0, Eq. (3.35) is approximated by

or

= n(t) + s v»(t) (3.32) ag, (t) + i Q ) (t) ag( (t) + T,'gag, (t) =0,
where

(3.40)

V»(t) =eg Ve—

={v)+sv'&'(t) . (3.33)

Elimination of ap or a, from Eqs. (3.30) and (3.31)
leads to the single equation

a, (t) —i V ' (t) a, (t) + T2ga, (t) =0 (3.34)

or

ag(t) +i V»(t) ag(t) + T'gag(t) =0 . (3.35)

From Eqs. (3.32) and (3.33), we find that the classi-
cal motions of V' (t) in Eq. (3.34) and V t(t) in

Eq. (3.35) display damping oscillations around the
respective equilibrium points, {V), and {V). Espe-
cially when the system remains in the ~e) state from
the start, the mean classical motion of Vt'~(t) is
given by Q(t) as was shown in Sec. III D. There-
fore, it is reasonable to assume that a projection of
the remaining term sv»(t) in Eq. (3.32) onto the
configuration coordinate space gives the thermal fluc-
tuation of the Franck-Condon energy at the absorp-
tion process, 8 Vg. Let the coordinate and the
momentum of the lattice thermal vibration in the
configuration coordinate space be 0(t) = Q sintopt

a,'& (t) —i Q2(t) a,'2 (t) + T,',a,'2 (t) =0,
where

(3.42)

n, (t) -=n(t)+ n(t ~,) —n(t —&,) +svg

(3.43)
and so on. The approximate numerical solution of
these equations will be given in Sec. VI. As a final
step, we must take its thermal average defined by

-E ]kT
d8 " dEge ~ I'gg 0

2m 0 ~'0
{P~(oo))—=

ta oo

J dEge
(3.44)

In the weak-coupling limit and in the absence of
nonthermal classical motion, the similar approach was
used first by Soules and Duke' in the problem of
the resonant energy transfer and recently by Henry
and Lang' in the problem of the nonradiative cap-
ture by multiphonon emission in semiconductors.

nt(t) —= Q(t) + {V)—Q(t —qi) +5Vg . (3.41)

(iii) When two real NRT's occurred at gt and

q2 (q& & q2 & t) where Qp(g~) = 0 and Q, (g2) = 0,
Eq. (3.34) is approximated by



THEORY OF NONRADIATIVE QUENCHING OF HOT. . .

IV. WEAK-COUPLING LIMIT

In this section, we calculate the lowest-order transi-
tion probability in a double passage through X in the
two approximations; semiclassical and "classical". %'e

prove that their results exactly agree with the thermal
average of the LZ formula since the interference ef-
fect coming from the double crossing becomes negli-
gible as a consequence of the lattice thermal average.

A. gem!Claaaioal CalCulatiOn Of Ct(24r/44p)

From Eqs. (3.14), (3.15), and (3.24), Cl(t) be-
comes

! &-If]l/2
C, (t) = T,' d(

! !/, d21 p[—Q(21)4

——,'D2g,2] . (4.1)

At the time t satisfying the unequality

D = Dp =—top[go(2np+1)]'/'

« +24oogo & (V)/J2 (4.7)

where no = n (4pp), the upper and lower boundaries of
the integral (4.3) can be replaced by ~ and —~,
respectively. As a result, we obtain

(22r) '/' T,24,

~oj Do

expanded around it like

Q(&) = (V& -2gp~p(I -cos~p&)

= (V& 4—go~0+go~03(5 ~/~o)2 . (4.5)

This approximation would hold fairly well when X
lies on the right-hand side of A, i.e.,

( V) & 2gpplp » pip

Since then from Eq. (3.22)

t » J2/D (4.2) x dx exp
( ( V) —4gpolp + go pip x )

2D02
Eq. (4.1) can be approximated as

p eo f13 t

Cl(t) = T,', J dpi Ji d2!lexp[ —/Q(2!1)$1 —, D2$1']—
J~r( —,') T„2

r (z),
21/4g3/4 (2n + 1)1/4

(4.8)
t

d'g] exp—
1 1

(4.3)

g(~) =go[8(~ —~o) —g(~+ ~o)] (4.4)

only in Secs. IV and V and assume that X is not so
far apart from the turning point that Q(21) may be

It is found that the integral (4.3) rapidly converges as
the system moves away from X where Q(211) =0. To
carry out the integral at t =22r/ pl, we adopt a single
frequency model specified by

with

P(z) =exp( —z ) F(—,—;z) + F( , ;z )——2v 22rz 3 3
4'2' 1(l)2 4'2'

4

(4.9)

z = (4go~o—(V))/—~&Do & [2gp/(2np+1)]'" (4.10)

in which F(u, p;z) is a confluent hypergeometric
function which has an asymptotic expansion for large
)z( as given by

zm (u)F(a, P z) = Xpm! P

r(P)
X

(—1)" ( ),( —P+I)„T(P),
X

(1 — )„(P— )„
(4.11)

tl+ = 2r/pip 4- [(4gpcpo —( V) )/goplp] '

with the velocities

(4.12)

where (()„—= I'(n + g)/I'(g). For z & 0, the mean
classical motion of the system experiences a double
passage at the times t

2$2CL7, X
1 (1)(3)

~tZ2n 4 4 (4.14)

and then only the second term of Eq. (4.11) contri-
butes to Eq. (4.8); that is

'

dQ (23)

d'g q~f)—+
= 4-2 [go4po3 (4go4po —( V) ) ]1/2

2CLz
1

especially for z & & 1, ~here

Cl = 22r Tgg/211

(4.15)

(4.16)
—23/4( 3D ) 1/2 (4.13) is the first-order single-pass transition probability for
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the mean classical motion of the system, predicted by
the LZ theory. Here, it should be remarked that
the factor other than 2C(Lz in Eq. (4.14) does not
mean the breakdown of the LZ formula as was re-
cently concluded by Nasu and Kayanuma3' (although
they have not derived its explicit form) but describes
the effect of an ensemble average of the LZ formula
over the initial excited state, as will be shown later.
On the other side of z & 0, only the first term of Eq.
(4.11) contributes to Eq. (4.8) to give

at T =0, it approaches a constant,

&2mt, ',
1

(PO[gpo1O(( V) 4gporp)]

(4.20)
( ( V) —4gp(op)x exp ——

2go~o

F(z) as a function of z is plotted in Fig. 3. Since it
has a maximum 1.2 at z =0.52, the weak-coupling
condition can be estimated as

r

C 2m
1

OJp

21/4~T2
eg e

o(g oDo)'" (I I)'" Teg &&

'
1/2

2' go (2np+1)'i —1 3(2.no+1)'i'
1.2 n I'(—)

„p n!z2" 4 4" (4.17)
for the typical value of gp =25.

(4.21)

E' = (4go~o —(V))'/4go~o

= ~E»F +4go~o —( V) (4.19)

which is smaller than the energy difference between
Xand F(=AE»F=E» ——(V)). Even at T=0, the ex-
citation spectrum depicted in Fig. 1 can be approxi-
mated by a Gaussian when gp )) 1 although it van-
ishes for E ( (V) —gpcup, because only the vibration
quanta with energies larger than E» (& (V) —gp(op)

can make NRT's as was explained in Sec. I. There-
fore, our formula is applicable to all temperatures.
Especially for

z = (4go~o —( V))/(oo(2go)'" (—1

mT /(o g(otopDolzl )'z]e "
(4.18)

especially for z & —1. It is found that at high tem-
peratures the NRT for z & —1 occurs with the effec-
tive activation energy given by, from Eqs. (4.7) and
(4.9),

B. Classical calculation of C1(2~/cop)

In the classical approximation defined in Sec. III E,
Ct(2'/(op) can be easily evaluated by the formula

r

2 Ã

0)p
( (

I+ 21K

d8
2~ ~p

r
r

Eg —Eg/kTx J d e (t as"
(

(4.22)

where as" (t) is the first-order classical probability am-
plitude of NRT given by [from Eq. (3.31) with

a, (t) =1 and the replacement of Vi'l(t) by Qo(t)]

f 2%'/etio p j
ax" = iT,s Jl dt—exp[ —i J dt' Op(t')]

QJp I

( i

(4.23)

The problem takes essentially the same path as that
of Henry and Lang, ' although their case does not in-
clude nonthermal motions. Substituting Eq. (3.39)
with Eq. (4.5) into Eq. (4.23) and putting

Q2&/(a)o}
p{z)=

I 1

12

v = [(V) —2gprrrp —2(gptopEg) stn8]/(op

we obtain

(4.24)

r

cl 277
ag

OJp
t

e '""J„(2gp)
I Mp

(4.25)

where the Bessel function of order v defined by

—1
J„(2gp) =—

Jl dx cos(2gp sinx —vx)
0

(4.26)

0 1

z ={4g, ).-&g}/~D,
2

can be approximated by the Airy function as

1
J„(2gp) ——J dx cos[(2gp v)x gpx ]

m'

FIG. 3. Double-pass transition probability Cl(2m/wp) in
the Weak-COupling limit aS a funCtiOn Of 4gprap —(V). Ct
is that predicted by the Landau and Zener theory.

r

v 2gp
1/3 1/3

go go
(4.27)
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rigq = le + ((2go —~)/go)'"}/~o,

with the velocities

(4.28)

when 2gp » I and under the condition (4.6).
In this model, the lattice vibration with the initial

condition specified by Eg and 8 experiences a double
passage at the times

for all y. In the above, the thermal average of the
sinusoidal behavior of Ai( —y)z for y & 1, which
expresses the interference between the double pas-
sages, practically vanishes because the thermal fluc-
tuation of the phase —,y'~' in Eq. (4.33) largely

exceeds 2m. Therefore, from Eqs. (4.22), (4.25),
and (4.33) with Eq. (4.32), we obtain

+8'j Q

dn, (r)
dl f ~t)g— 2 1

1 d8
Qlp 2%

4m T'
d&8

0 V~g

=+2(go«)o)' '(4gpcopkT)' '(z +Je sine) ' ',
(4.29)

where we introduced two dimensionless variables

x O(z +Je sine), (4.34)

which is nothing but the thermal average of the
LZ formula

and

z = (4goopo —( V))/(4go~okT) ~ z (4.30) Cjgz —= (4m Tzs/v)0) O(z +Je sine)

e = Eg/kT (4.31)

The problem is much simplified by noting that the
argument of the Airy function in Eq. (4.27), given by

v —2gp rig
gp

1/3 4 4 4/3upgo

Finally, let us prove that Eq. (4.34) exactly agrees
with the semiclassical result (4.8) at high tempera-
tures. Substituting Eq. (4.29) into Eq. (4.34) and us-

ing the expansion formula

e(z+ Jesine) R ~ ( I „(2n —I)!! (Versine)"

(z + v e sing)' (2n)!! z"+'

=—2g(~)~' (z +Je sine)i6 k~
'"

OJp

(4.32)
(4.35)

to perform the integrals over ~ and 8, we easily ob-
tain

involves a thermal fluctuation of the magnitude
gy —4gp~ (kT/rpp)'~' sufficiently larger than I for

gp &) 1 and kT & cop. This means that, when taking
the thermal average of Ai(—y)z, one can use the ap-
proximate expression accurate only for lyl & 1,

C, =2Re CP X (—').(—'),„,n!z'" 4" 4" (4.36)

(Ai( —y) ) = (O(y) [I + sin(3 y3~2)]/2' Jy )
I

—(O(y)/2m ay ) (4.33)

where ReZ means the real part of Z. It is convenient
to define Eq. (4.36) in terms of Mellin-Barness —type

integral,

1

't

C/ =2Re Cp . ! ds( —1)*z "r(s)r(—s+ —„)r(—s+-)2m 1 «'+- 1 3

Mp 2&I ~ 0+-ioo
t

(4.:

Carrying out the contour integral inside the Rez )0
plane and using the Kummer's transformation for-
mula: F(a, y', x) =e'F(y —n, y;—x), we finally ar-

rive at the semiclassical result (4.8).
This exact agreement of the semiclassical and clas-

sical results at high temperatures strongly suggests
that our classical approximation to be applied to high

temperatures could be generalized to all temperatures

simply by replacing 2kT/(t)p in the final result by

2n (cop) +1. By doing so, the term of "thermal aver-
age" can be sublated into ensemble average over the

initial state excited by a very short laser pulse.

V. STRONG-COUPLING LIMIT

y(0) = 1» I ln l) (5.1)

under the supposed condition (3.3). Then, in the

In this section, we shall examine the condition for
strong-coupling limit. Then, it is necessary in the
zeroth approximation to start with the adiabatic wave

functions, ll) and l2) given by Eq. (2.7) with Eq.
(2.8). The initial wave function P(0) given by Eq.
(3.2) is assumed to be transformed into the more
realistic form
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system with the Hamiltonian (2.9), the probability amplitude at(t) for the first-order NRT from l2) to ll) is easily
obtained in an operator form,

at(t) = (1{y(t))

dr exp(ir {Hr+ [V —
—, (V'+4T,r)' ']})g (r) exp( —i r {H + [V+—'( V'+4T,')'i']}) (5.2)

The existing quantum-mechanical calculations of
NAT (nonadiabatic transition) probability are all

based on the substitutions of Hg and 0, for
Hr+ [V —

q
(V +4Trg)'t ] and

H~+ [V+T~(V'+4T,r)' ~], respectively. 'o" But,
such an approximation wouid apparently lead to its
overestimation. %e believe that a more reliable esti-
mate can be obtained in the classical approximation
without substitutions, which is defined by

a, (t) = a[(t)
—=—

J dr x'(r)
0

x exp i J dr—' [Qp(r')~+4T ]'
(5.3)

The integral (5.8) was approximately performed by
Nikitin in the problem of NRT near the turning
point in atomic collisions. But in our case the ther-
mal average of

l a[ (2m/roo)
l

must be taken to obtain
the NAT probability

r r )

P» ———
I de dec ' a' (510)

esp . 2m' ~0 0 0

Nikitin's result' is given by

r

2 exp( rr b/—4J(), for (» 1,

la (2rr/to ){2,—exp[ ——trb(1. 57 —1.114)]
for l(l «1,

with
1

X'(r) —= —tanc d 1 &
2 Teg

d 2 f)p( )

—exp( —,'~big{'"), for —(»1.
(5.11)

T,r Op(r)

Qp(r)'+4T)g
(5.4)

To proceed further, we adopt the same model for
the system discussed in Sec. IV. Substituting Eq.
(3.39) with Eq. (4.5) into Eq. (5.3) with Eq. (5.4)
and introducing the dimensionless variables

or (5.12)

which is a monotonically increasing function of g in
the region where the above first-order perturbation
theory is applicable, i.e.,

2 exp[—mb/4((()) 'i'] « 1

b =—(2T )'t'/~g(),

g(r) = (go/2 T„)'"(~or—~),
and with use of Eq. (4.31)

[4gorop ( V) +2(gprppEg)'t~ sinai]/2Tr

= g) + (gptopkTa)'t'sintt/Tg

we obtain at t =27r/rpp

x exp ib J dg [(g —() +1]'i

(s.s)

(5.6)

(5.7)

(5.8)

(~) &(—,'~b)' .

Thus, the strong-coupling condition is found to be

b &) 1 or Tr » —,gott3 =1.4, for gp=22. (5.13)

The above conditions (5.9), (5.12), and (5.13) stand
together as far as gp & & 1.

Finally, let us consider the effect of thermal aver-
age. Since the thermal fluctuation of ( is small
(5(—= g

—(() = jgp/T„« 2got 6 =3.3 for gp =22),
the solution (5.11) in the first approximation takes
the form

la[(2rr/cop) l
= exp[2(PaTzkT/cuo)'t sjnti]

x la[(2m/coo) lt-tt& (s 14)

with

T,g « 2go & ( V) =—(V)/rpp (5.9)

where we have replaced the integral region of
by taking ac-

count of the conditions (3.3) and (4.6), i.e.,

rr'/32 g)', for (() » 1,
P= 1.52, for lg)l «1,

9m~i (Q l/32, for —(() & ) 1 .
(5.15)
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Substituting Eq. (5.14) into Eq. (5.10) and perform-
ing the integral, we obtain

with

tango = I 0/Alp = I p (6.4)
P22(2m/~p) =exp (/3T gkT/top) laf (22r/~0) lt-g& .

(5.16)

Thus, we found that NRT is enhanced in the region
of (() given by Eq. (5.12). At the largest value of
(() = (—mb)2 » 1, the enhancement factor takes its

mlnlmum,

exp(p T g kT/(up) = exp[2«g02 /m4 (2 Tg) 8]

« exp(2 g't /m") = 6 3

for gp =22. As (f) decreases, the enhancement fac-,
tor increases remarkably although P22(2m/~0) de-
creases. Therefore, we find that the strong-coupling
condition (5.13) is revised due to the thermal aver-
age.

VI. NONRADIATIVE QUENCHING OF HOT

LUMINESCENCE IN F CENTERS

In this section, we present a modified theoretical
justification of the quenching mechanism of
luminescence originally proposed by DKR" and later
used to predict the occurrence of luminescence from
available optica1-absorption data by BS. The suffi-
cient (not necessary) condition for luminescence to
be observed at low temperatures, used by BS, is com-

posed only of

In the existence of the damping of lattice vibration,
the condition (6.1) that X is not accessible by the
mean classical motion must be corrected,

I

minQ(t) = Q
n —2@p

OJp

-I'p(m -2')/sup
=go&op(A —2 —2e ) & 0

(6.5)

This is a necessary condition for the luminescence to
be quenched. By use of this condition and Table I of
BS, we can obtain a rough estimation of I p.

' Since
the F-center luminescence in host LiF is substantially

quenched with A =0.323, ~I p (& 0.6 must be satis-
fied. Therefore, we assume that

n'I"p &( 1 (6.7)

Then, the transition probability P~(~) with 8Vt2 =0
vanishes. Meanwhile, the purpose of this paper is to
evaluate P~(~) when the first turning point of the
mean classical vibration occurs in the region above X-

but not so far apart from it, i.e.,

2& A-' &2(l+e ' ' ') =—A-' (6.6)

A ' =—(V)/got«0 &4 (6.1) 8. Calculation of mean classical motions

In addition to gp, A, and T, we take into account two

other important parameters; i.e., the damping con-
stant of lattice vibration 1p and the strength of cou-

pling between terms A. With use of them, the inten-

sity of F-center luminescence itself will be calculated.

The mean Franck-Condon energies of virtual or
real NRT's, given by Eqs. (3.39), (3.41), and (3.43)
with 8Vt2 =0, are evaluated as follows: (i) When any

real NRT did not occur in the past,

Q, (t) = Q(t) =Eq. (6.3) (6.g)

A. Model for dissipative system (ii) When only a real NRT occurred at 2i~(& t) in

the past,
The damping constant 1 p, which expresses the ir-

reducible energy flow from the configuration coordi-
nate system to the other modes, is introduced by a
model of interaction spectrum given by

Q (t} (V) +4g (t«2+1.2)ll2S e 0 2 0

& cos(«ppt + $0 + @]) (6.9)

g(~) =-gp r,
(tp —o)0)2+ r02

Ip
(tp + top) + I p

(6.2)

with

tang~ —= sincopg, /(e —coscupgt),p~l (6.10)

1 p may have two different origins; the nonmono-
chromaticy of normal mode frequencies and the
anharmonic interactions between normal modes.

Substituting Eq. (6.2) into Eq. (3.25) and perform-
ing the integral, we obtain

Q(t) = (V), +2gp(«0 +102)' 'e ' cos(quot + @0)

Si =2 'e ' (1 —2cosu&02tte '+e ')' (6.11)

(iii) When only two real NRT's occurred at qt and

rt2 (222 & q2 & t) in the past,

Q2(t) = (V) —2gp«)0+2gp((oo +I'p)' S2e

(6.3) x cos(tppt +$0+ @2) (6.12)
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with around the nth turning point with the velocities

I pg) . rpg2e . Sincopql —e Sincopq2

rp» p~ll + e coscopq2 —e cos~p7j~
(6.13) (i) +up(") ——

d Qp(l)
dt

S2 = [1 + 8 (1 2 cos«)p'g))
2I'Ppl = +2,(,'+ r()) ' 'g,'" [z,(rolo'"') ]'.",

21 pq2+ e '(I +2 cos«)02)2)

(2)2 —2)))]1/ e 2, (6.14
where

Zp(x) =~gp[2e 2"—(A ' —2)e "1

(6.24)

(6.25)
and so on. Since NRT occurs principally near X
where the above Franck-Condon energy vanishes, we
can approximate Q;(t) (i =0, 1, 2, . ..) by a parabola
around the Ith turning point giving the local
minimum under the conditions (6.6) and (6.7),

-r ~(»
(i) Q p(t) = ( V), + 2gp«)pe

x [—1+—,
'

(«)(2) + I'(2)) (l —lp"')'], (6.15)

(ii) +uo")=

where

d Q, (l)
dt f-r (n)

&+

{

= -2 ( '+r2))/2g3/'[z'" (r, r("')]'/'

(6.26)

for {r—/ps
~

& —m (1=1,2, ... ), with

lp" = (2I —1)m/«)0 —2yp/«)0 .

r, «)
(ii) Q)(r) = (V) +4gp«)ps)e

(6.16) (111) +& (I~n) d Q2(l)
dt (n)

+

(~2 + r2)1/2g3/4

Z(0 (x) 2 j&~s)(4$)e- n A-)e (6.27)

x [—1+—,( () +rp)(r —l,"')'], (6.17)

for {r—r)1
~

& —,~, with && [Z (lm) (r r (n) )]1/2 (6.28)

= lp 4)/«)0 & g)(I) «)

-r f«)
(iii) Q2(t) = (V), +2gp«)0S2e

(6.18) where

Z2' (x) = jgqs2[2$2e 2"—(A ' —2)e "] (6.29)

/2 = lp 42/«)0 + '92 + '91 (6.2o)

and so on. Especially, in this approximation, respec-
tive classical motions of the lattice experience the nth
double passage through X at the times

l ' 1/|2
2A —(1 —2A) exp(rprp(n) )

A(«)02 + I'(2))
(6.21)

"[—1+—, («)o+rp)(l —/2")'], (6.19)

for {l—t2(0
~

& 2m, with

or

z (r l(l) ) z(0 (r r(0)

(6.30a)

and

and so on. Here, we have supposed that the first and
the second real NRT's have occurred in the regions
of g) = lp" and 2)2 —rp, respectively (I ~ m)
Since the mean velocity of the lattice must vary con-
tinuously at any real NRT event, S~ and S2 in Eqs.
(6.27) and (6.29) should be determined by the rela-
tions;

„(» „(II)&p

4AS) exP'(rprp )( ) 1!2

ii tin+ =ip"
2AS, (~,2+ r')

2AS2 —(1 —2A) exp(rprp"')

(6.22) «~) (lmm)
lP& = U2

or

Z(') (r, r,")=Z'"'(rolo") .

(6.3Ob)

(6.23)
Substituting Eqs. (6.25), (6.27), and (6.29) into Eqs.
(6.30a) and (6.30b), we get

r f«) r (I) 2r (&)

S, -S(') = {e 00 +[(4A)' —8A(1 —2A)e" +e " ]'/']/8A (6.31)
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l/2

S(t~& = 1 a a + — —1 e +S ' (4S, ' —A"'e )
g~ ~ ] $ 21' f&

4 2A
(6.32)

We plot in Fig. 4 the relations of Zo(x) vs x (solid
lines, Zt('l (x) vs x (broken lines which stem from
solid lines), and Z2(t ' (x) vs x (dotted lines which
stem from broken lines) for various values of A in

the typical case of go=25 and m I 0 =0.1. Discrete al-

lowed points are indicated by open circles, which are
located at

x=rata" =(2n —1)n r,
=0.1(2n —1), n =1,2, . ..

and must lie on the upper half plane because only po-
sitive Zo(x), Zt(o (x) and Z2(t ~ (x) can give real

velocities at L To avoid complexity, many lines

were omitted.
From this calculation, we find a very important fact

that the chances for the system to make real NRT's
from ~e) to )g) principally through X are exceedingly
higher than those to return back into

~ e) again

through X For instance, in the case of A =0,35,
go = 25, and m I 0 =0.1, there are four chances of the
former but no chance of the latter. The physical
reason is simple: As seen from Eqs. (6.15), (6.17),
and (6.19) (St =S2=1), it comes from the special

situation that the amplitude of damping oscillation on
the ~g) potential surface is about twice larger than

that on the )e) potential surface. As f'a increases
(decreases), the chances mentioned above decrease
(increase) rapidly.

C. Calculation of NRT probability

To solve Eqs. (3.38), (3.40), and (3.42) with the
characteristic frequencies given by Eqs. (6.15),
(6.17), and (6.19), after Landau, 29 we also assume
that the interference between the double passages
near each turning point of lattice vibration may be
neglected although in our system this assumption can
be justified only after taking the thermal average of
classical transition probability in the same way as in
-Sec. IV 8. Then, the probability for a transition from
(e) (or ~g)) to (g) (or (e)) in a double passage
through X may be estimated from the LZ formu-
la. If the four kinds of velocities on X are all

equally given by the expression

v(Z) 2ru=o(co +I'0)' go/ JZ (6.33)

apart from their signs as is the case in the present ap-
proximation, this formula takes the form

2 exp — I —exp —,for Z )0,A A

PZ =i Z Z

0, for Z &0,

(6.34)
with the strength of coupling between terms defined

by

A = m T,z/go [I + (I'0/co )']' '

2/g 3/4 (6.35)

We depict in Fig. 5 the graphs of P(Z) vs Z for vari-

P(z) = 2 es (-P)[ ~ -~P(-/2 &1
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FIG. 4. Square velocities at X as functions of time, for .

various values of A in the typical case of go=25 and

m I 0-0.1. Real allowed points are indicated by open circles.
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FIG. 5. Landau-Zener formula P(Z) for the double-pass

transition probability as a function of Z defined by Eq.

(6.33): the velocity on X. A is the coupling strength defined

by Eq. (6.35). Note that P(Z) is nearly constant &0.5 for

0 & Z ( 8 in the cases of intermediate coupling (A =0.5 and

~ =I).



2526 MASAMI KUSUNOKI 20

ous values of A: A =0.1 (weak-coupling case),
A =0.5 —1 (intermediate-coupling case) and A =8
(strong-coupling case). When Tz is given by Eq.
(2.14) and go=22, A takes the values =0.5 at T =0,
=1 at T = coo, and =2 at T =2&co. It is important to
note that P(Z) as a function of Z behaves like a step
function —

—,O(Z) for Z ( Zo(0) = 8, only in these

intermediate-coupling cases where we are concerned
with. This property brings about an important con-
clusion that the final transition probability Pz(~) is
maximized in such cases of intermediate coupling.

By use of the numerical results as shown in Figs. 4
and 5, we can numerically calculate Pz(~) given by
the LZ formula

P;( ) =P(Z, (i,tt»))([I-P(Z,")(i,tt2&))][I-P(Z&" (i,tt3)))+ "]
+P(Z,"'(I..t,"'))[P(Z,""(i,t."'))+" ] ]

+ [I —P(Z, (r, t&')))] (P(Z, (l.,t t»)) [I —P(ZP) (r, t&'))) +" ]

+ [1 —P (Zo(I'Otoz' )}][P (Zo(I'Ot03' )) + ] } (6.36)

The results are drawn in Fig. 6 in the cases of
A =0.5, 1, and 2 with m I 0=0.1 and go=25. For ex-
ample, for A =1 and A =0.3, we have only
Zo(I'otot ) =2.155 and Zo(I'otot ) ) =0.549 from Fig. 4
and then we can read from Fig. 5 P(2.155) =0.500
and P(0.549) =0.385 to get the final result:
P'(oo) =0 500+(1 —0.500)0.385 =0.693. Then, we
say that the quantum yield is 30.7%. Small dips of
Pz(~) around A & 0.37 in the cases of A =0.5 and 1

indicate the appearance of back transfer into the
~ e)

state for larger values of A. In general, Pz(~) =1 at
A =0.5 independent of m I'0 and 2 and P,'(~) =0 for
A& A, . where

x O(z +basin&) (6.37)

The first point is already taken into account by apply-
ing the LZ formula. Next, we demonstrate the
second point at high temperatures by choosing an ap-
proximate form of P~(~) near A —A, for A =0.5
and 1,

P~ (oo) = a [I —A, (A ' + S Vg/go&op) l 't

x O~(A, ' —A ' —SVg/gpcup)

=u(4A kT/goo)0)' (z+ Jesinto'

z =—(2gocuoA, ' —( V) )/4 (goo)ok T) ' (6.38)

D. Ensemble average of P~~(o ) in tQe initial state

The ensemble average of P~(~) over the initial
state excited by a very short laser pulse plays two im-
portant roles: (a) the interference between different
passes through X coming from different boundary
conditions strongly cancels out; (b) the NRT through
Xbecomes possible even for A ~ A, and at T =0.

P~(~) = a(4A,'kT/go~0)'t4G(z) (6.39)

The integrals over e and I) in Eq. (3.44') with Eq.
(6.37) can be performed in the same manner as in
Sec. IVB. The result is given by

G(Z) = 8(Pg~)&

0.5'

0

0.25

A=o Q
0.3 0, 35 0.4 0, 45 05

-0 ' 5 0.5

Z =zM)I;-k)
1.5

FIG. 6. Landau-Zener formula for the total transition
probabilities at ~, as f functions of A, in the cases of inter-
mediate coupling. Its thermal average as shown in Fig. 7
gives the quenching rate of luminescence.

FIG. 7. Effect of thermal fluctuation of initial boundary
condition around a marginal point of the Landau-Zener for-
mula P~(~) indicated by a dotted line.
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which has asymptotic forms
(6.40)

Jz (1 —I/16z2+ ), for z )) I,
G (z) = 0.346+0.511z, for ~z ~

&& 1,
for —z &&1 .

(6.41)

The numerical calculation of G(z) for —1 & z & 1.5
is depicted in Fig. 7. It is found that for z & 1 the ef-
fect of thermal average can be neglected within an er-
ror of 5%.

VII. DISCUSSION AND SUMMARY

DKR ' proposed in their original paper that the
crossover at X sometimes occurs with high probability
(&1) so that the condition (6.1) may be necessary
and sufficient. This postulate seems to have been as-
certained for luminescences for Fcenters in alkali
halides, alkaline-earth oxides, and MgF2 by BS.
Accordingly, Mott' has conjectured that since the LZ
formula for a double passage through X, P(Z), is in
no case greater than 0.5 and will normally be much
less, the crossover with high probability would occur
when the turning point of lattice vibration coincides
with Xwhere the LZ formula breaks down.

In Sec. IV, however, we have shown that the tran-
sition probability for a double passage through X, C~,
obtained in the semiclassical approximation, is noth-
ing except for the thermal average of the LZ formula
C~$. This proof strongly suggests that DKR's postu-
late and Mott's conjecture can never be the case
since the thermal average of the LZ formula P(Z) is
also in no case greater than 0.5. Thus, the appreci-
able quenching of F-center luminescence naturally re-
quires that there must occur many chances to pass
through Xwith nearly maximum probability (&0.5)
for each transfer in the course of lattice relaxation in
such a way that the probability of back transfers from

~g) to ~e) is strongly suppressed in virtue of some
special situation. Indeed, we have shown that this is
just the case in Sec. VI.

The essential features of our theory are summar-
ized as follows: (a) The NRT occurs almost instan-
taneously according to the Franck-Condon principle
with strong electron-phonon coupling. This justifies
the classical approximation used in this paper. In this
approximation, the temperature dependence is intro-
duced into the calculation only as the initial boundary

with

(2m) '~2

G(z) = Re (I+i)F(-- ——z )
gi (5) 4'2'

4

2 5 1+ I'(—)' (1 — )F(—, ——')

condition of subsequent classical motions. In Sec.
III D, a systematic way to determine such classical
motions has been presented. It should be noted that
only "real" NRT can change the classical motion of
the lattice: As after a real NRT occurs, the center of
vibration jumps from A to 0 or from 0 to A. (b) The
NRT occurs principally when the system passes
through X in the configuration coordinate space
where the Franck-Condon energy of NRT vanishes.
It should be noted that when the system is excited by
a white pulse, the shaded part of the excitation spec-
trum depicted in Fig. 1 may be approximated by a
part of Gaussian even at low temperatures. Here,
only the lattice vibration in the shaded-part can pass
over X and contribute to NRT. Therefore, the ~ider
the area of such shaded part is, the more the proba- .

bility of NRT increases. As I () increases, that area
decreases. (c) The damping of lattice vibration in the
configuration coordinate space is essentially important
for the system to end in the lower state, as was indi-

cated by Stoneham. ' As shown in Fig. 4, we have
found that the system may have many more chances
to pass over X for the damping oscillation on the )e)
potential surface than on the )g) potential surface so
long as m I o && 1. This means that the total proba-
bility of forward transfers ((e) ~g)) is much larger
than that of back transfers (~g) ~e)). But it does
not mean immediately that the luminescence is
strongly quenched, because it is required that the
transition probabilities for these double passages take
about the nearly maximum values ()0.5). (d) The
strength of coupling between terms can be specified
by A defined by Eq. (6.35). The cases of A « 1,
A —1, and A && 1 correspond to weak, intermedi-
ate, and strong couplings, respectively. %e have
shown that F centers in ionic crystals are in the cases
of intermediate coupling. This fact brings about the
property of P(Z) mentioned above and so is essen-
tially important for the understanding of the strong
.quenching of F-center luminescence. It should be
remarked, however, that the quenching is not com-
plete in our theory contrary to DKR's postulate and
perhaps some data for 0.25 ( A & 0.4 in Table I of
BS24 although the accuracies of experiments are un-
known. (e) Applicability of the LZ formula is based
on the existence of any mechanism of phase random-
ization, such as an energetic spread of the initial
boundary condition due to nonmonochromaticy of in-
cident light and/or thermal fluctuation in addition to
the damping of localized vibration. Recent numerical
analysis of transient NRT in a single mode model
(I'o =0)2 is consistent with this statement.

Even for a monochromatic excitation, if tempera-
ture is sufficiently high, the LZ formula would be ap-
plicable as its effects in optical spectra of molecules
were recently investigated by Averbukh et al.
Therefore, the excitation spectrum of luminescence
at high temperatures can be a direct experimental
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evidence of the relation of 1 —(P~(~)) vs A (Figs.
6 and 7) with the replacement of A ' defined in Eq.
(6.1) by A ' =—Aa/gacoo where Oo is the frequency of
incident light. We believe that such evidence has al-

ready been found by Street et al. " on the problem
of nonradiative recombination in amorphous sem-
iconductors.
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