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Multiple scattering of conduction electrons at disordered metal surfaces
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A conduction-electron probability of specular reflection and higher-order diffraction from an

atomically smooth but contaminated metal surface is calculated for the full range of surface di-

sorder. The average-t-matrix approximation is used to obtain the average surface-scattered-

electron wave function and current density, The effects of multiple scattering between adsorbed

impurities and of evanescent waves at the surface are especially considered. A resonance, in the

conduction-electrori probability of specular reflection from the surface, that is associated with

both multiple scattering and the presence of a diffracted wave is found. The multiple-scattering

theory is shown to predict minimum diffuse conduction-electron scattering at full coverage of
adsorbate and maximum diffuse scattering at half coverage of adsorbate in agreement with ex-

periment and in contradistinction to a single-scattering theory.

I. INTRODUCTION

There is a considerable body of experimental litera-
ture related to the manner in which adsorbed impuri-
ties scatter conduction electrons at a metal surface,
especially iri the context of the effect of adsorption
on electrical and magnetic properties of metal
films. ' Little theoretical effort, however, has been
directed towards this particular problem, although a
fair amount of theoretical work has been developed
foi' the associated problem of scattering from rough

. surfaces. 3

Greene and co-workers, in two fundamental pa-
pers, ' have treated conduction-electron scattering by
contaminated semiconductor surfaces. Many authors
have recently incorporated these theories in their own
theoretical or experimental' ' work. As pointed
out by Greene, 6 however, the Greene theories do not
treat the important consideration of multiple scatter-
ing between adsorbed impurities nor do they give a
full account of interference effects between emerging
surface-scattered waves. Their treatment of the
scattering problem has also been conducted in lowest
order (Born approximation) which is not a favorable
approximation for low-energy conduction-electron
scattering from nonweak surface perturbations at a
.metal surface.

In the present work, we therefore consider the way
in which smooth contaminated metal surfaces may be
expected to scatter conduction electrons —with par-
ticular attention to the effects of multiple scattering
and interference between propagating and nonpro-
pagating (evanescent) waves at the surface. To make
the problem tractable we examine the scattering prob-
lem in the context of scattering from highly localized
scattering centers, which we take to be a reasonable
first approximation for impurities adsorbed onto me-
tal surfaces, where screening is most effective, and

superior to the Born approximation.
In Sec. II, we give the basic assumptions of our

model and review a theory (discussed in a previous
paper by More and the author) for scattering by a

single impurity adsorbed onto a metal surface. %e
then generalize this theory to scattering by a high
random coverage of adsorbate. A technique, the
average-t- matrix approximation, borrowed from bulk

alloy theory, is adapted for this purpose. This ap-

proach consists of approximating, in terms of
averaged scattering properties, an actual disordered
(contaminated) surface by an ordered configuration
of fictitious or "coherent" potential superimposed
over the clean-state potential.

Section III presents the calculations necessary to
find the scattering amplitudes expected to arise from
a contaminated surface, here represented, on the
average, by a grid of coherent complex potential.
The scattering amplitudes are exhibited as reflection
coefficients for various diffracted beams that arise as
constructive superpositions from the multiple-

scattering theory. These beams occur over a back-

ground of random scatterings. The equations
describing them illustrate their dependence on a
number of pertinent parameters. These include the
angle of incidence of the conduction electron upon
the surface; the conduction-electron wavelength
which in our model is a measure of the Fermi energy
of the metal; the work function and the lattice
parameters at the surface; the scattering strength of
the adsorbate atom in the nonadsorbed state (i.e.,
imagined to be positioned in the bulk); and the ad-

sorbate concentration on the surface.
Sections IV, V, and VI are devoted to a presenta-

tion and discussion of the results. %e obtain a more
complex behavior for scattering amplitudes than sug-

gested by previous authors. In particular, we find a
resonance effect in the conduction-electron probabil-
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ity of specular reflection. %'e also compare the
multiple-scattering calculation with a single-scattering
calculation (which ignores muitiple scattering
between adsorbed impurities but includes multiple
scattering between the unperturbed surface potential
and a single adsorbed impurity). As expected, the
two theories are in close agreement for low adsorbate
concentrations. They are, however, in serious
disagreement for higher concentrations. Specifically,
the single-scattering theory fails to predict the reaso-
nance effect and also fails to describe the conduction
electron's expected scattering properties as the sur-
face contamination approaches full monolayer cover-
age. Finally, we show the necessity of a multiple-
scattering theory to explain a maximum, at half cov-
erage of adsorbate, in the conduction-electron pro-
bability of diffuse surface scattering and we relate this
property to some pertinent experiments.

II. BASIG ASSUMPTIONS AND THEORY

A. Preliminaries

As in the Greene theories, we consider the most
fundamental case of scattering of free electrons from
a surface with a random coverage of adsorbed impur-
ity atoms. Since we are primarily interested in deduc-
ing the theoretical implications of a complete treat-
ment of multiple scattering and interference
phenomena on surface scattering, a free-electron ap-
proximation seems appropriate as an initial excursion
into this problem. We also assume a nonreconstruct-
ed metal surface. This, in fact, is a common situa-
tion for many metals at low temperatures" (ignoring
relaxation of the surface atoms).

%e represent the clean-state surface potential by a
step function in the x direction with the step, Vo,

constructed at the surface plane (x =0) and equal to
the sum of the Fermi energy and the work function
of the metal. The electron wave function for the
clean state is then simply

2ie'Psin(k„x —8)e ", x «0
k(f) ='

—Kx ikll r
Te "e ~' x~0

Here gk = t(k„, k ~~) is the crystal momentum quan-
tum number identifying the electron wave function;
K2 —= 2m Vp/t2 —k2; and the boundary condition at
the interface trivially yields tang = k„/K„.

This surface model potential is commonly used in
describing other surface-related phenomena'4 (e.g. ,
electron field emission) and is expected to reasonably
approximate the actual situation of scattering from a
potential barrier that varies smoothly (over essential-
ly an interatomic distance) at the surface. It is clearly
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FIG. 1. Remodeled scattering at a contaminated surface.

an improvement over the infinite step model used in
the previous theories. '6

It is most useful, however, to avail oneself of the
mathematical simplicity that arises in infinite step, or
"hard wall", scattering. This is accomplished by re-
placing the finite step at the surface by an infinite
step constructed a certain distance, d, away from the
surface and into the vacuum. " The distance, d, at
which the hard wall is located must be such as to
yield a scattered electron wave function identical to
Eq. (I). This simulation is perfectly acceptable so
long as we only concern ourselves with the wave
function in the bulk and not beyond the actual sur-
face.

Thus we must position. the hard wall a distance, d,
to the right of the actual surface such that the wave
function for this case

kx=—arc tan
kx (2m Vp/t' k„')'~'—

The problem of conduction-electron scattering by a
contaminated surface is in this way modeled by
scattering by a grid of randomly situated impurities a
distance, d, in front of a hard wall. This is illustrated
in Fig. 1.

B. Scattering by a single idsorbed impurity

%e consider first the case of scattering from a sin-
gle surface impurity with position
r;=(O,y;, z;) =(O, R;) and perturbing potential v;. It
is convenient to express the general theory in opera-
tor formalism. The Green's function operator, or
resolvent, for the Hamiltonian that includes the hard

Qk(r) =2ie " sin(k„x —k„d) e p, x «d (2)

is the same as the actual wave function [Eq. (I) for
x «0]. That is

d=—8
k„
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wall is defined by'6

1
Gp =—lim

&-o E +i e —Hp

where F. (= t2kz/2m) is the electron energy and Ho
is the hard-wall Hamiltonian

fV
&o( r ) = + ~inrtntte step

2 pal

In configuration space, Gp has the representation

Go(r, r ') =Go(r, r ') Go(r, r')

eiklr-r 'l eikl r-r 'I
'

, (4)

The eigenstate, %'-„, associated with the full Hamil-

tonian, H -=Hp+ v;, is related to the eigenstate, 4-„,
of the unperturbed Hamiltonian, Hp,

'

through the
equation

+k = @k + Gpti@k

In configuration space, this equation has the form

titk(r) =Pk(r) + J Go( r, r ')t;(r', r")

(6)

xttt-„(r") d3r'd3r" . (7)

It is important to recognize, however, that the phys-
ically accessible parameter is not the matrix element
of t; that appears in Eq. (7) but rather the t matrix of
the impurity decoupled from the surface. We label
this quantity, t;. It is the t matrix associated with the
impurity positioned in the bulk, or, in a free-electron
approximation, in free space. By analogy to Eq. (5),
t; may be defined by

Ei =—Ui+ v(gpt/

~here Gp is the free-electron Green's function. Note

where Go( r, r ') is the well-known free-particle
Green's function and r =—(2d —x,y, z) is the image of
r =(x,y, z).

Go( r, r ') as given by Eq. (4) above is identical in

form to the Green's function used by Greene and
O'Donnell;~' In the present work, however, the hard
wall is no longer fixed at the surface but is displaced
into the vacuum a distance, d, which varies with the

angle of incidence of the electron on the surface, the
electron energy, and the work function of the metal

Kq. (3)j.
Next we will find it useful to use a t-matrix opera-

tor' associated with the perturbing potential of the sin-

gle adsorbed impurity and expressed in terms of the
Hamiltonian that includes the hard wall. We label

this operator t; and define it by

f] = vi+ v]Gpt;

that by assuming the same potential for the impurity
when it is located at the surface and in the bulk, we
are ignoring differences in binding character between
adsorbed and absorbed impurities. Although this as-
sumption may be justifiable in certain instances (as
for physically adsorbed atoms), it is not, in general,
an accurate description of the actual case (as for
chemisorbed atoms). Equation (7), therefore,
represents an additional approximation, which we use
to investigate the qualitative behavior of surface
scattering, particularly as pertains to the effects of
multiple scattering and interference phenomena.

The t matrix, t;, has an immediate and simple phy-
sical significance in the momentum representation. '

The matrix element of t; between momentum states
k

' and k ( corresponding to the same energy) is
proportional to the scattering amplitude f-„-„,for
elastic scattering from the incident state k to the
scattered state k '. Specifically, the relationship is

Gi=-Gp-Gp .

We next wish to investigate the representation of t;

in configuration space, in preparation for an analysis
of the actual scattered wave function. In order to
find t, ( r, r '), it is necessary to know t;( r, r ').

We wi11 assume that the perturbing potential,
tt;( r ), when situated in the bulk, is highly localized
and scatters conduction electrons isotropically. For
such an impurity, the corresponding t-matrix real-

space matrix element is given by

t, ( r, r ') =nfkg(r —R;)8(r' —R;) (10)

where f-„ is the s-wave scattering amplitude and

n = 4n tz/2m Th—is approximation ign.ores any an-

gle dependence of the scattering center in the bulk.
For metals the de Broglie wavelength of a conduction
electron is of the order of an angstrom and a typical

impurity has a range of the same order of magnitude.
Some angle dependence is, therefore, actually expect-
ed, probably including p-wave and, perhaps even, d-

wave scattering. The s-wave approximation is never-
theless a plausible first approximation for screened
impurities in a bulk metal and is superior to a Born
approximation. Furthermore, in the adsorbed state,
the surface potential and the extent of disorder (con-

We would like, therefore, ' to express t;, the t matrix
for the adsorbed impurity, in terms of t;, the t matrix
for the impurity alone. This may be easily accom-
plished through some simple operator algebra. " The
result is

1
l'i '1 —G)t;

where
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tamination) will tend to dominate the detailed scatter-
ing behavior of the individual impurities and make
still more reasonable their characterization as s-wave

scatterers for the problem at hand.
In configuration space, Eq. (9) takes the form

af, s(r —K, )S(r ' —K, )t;(r, r')=
I +afkGQ(K;, R;)

—= t(k)5(r —K, )g(r' —K, ) .

Equation (11) expresses the scattering properties of
the impurity in the adsorbed state. The 5 functions
characterize the impurity as a very short-range
scattering center and the multiplying factor, t(k), ex-
hibits the multiple-scattering property when coupled
to the surface potential. If we write t(k) explicity as
a geometric series and observe that

Gp(Ri, R;) =—e ' /2d

we have
i

e2ikd
t(k) a fk fk fk +fk

2d fk 2d fk
2d

i

(12}

many adsorbed impurities. In analogy to Eq. (6), we
write the general scattering equation as

+k =~'k+60~+'k .

Here +-„ is the conduction-electron eigenstate associ-
ated with the entire contaminated surface; 4-„ is the
eigenstate associated with the clean state; and T is the
t-matrix operator (with the hard-wall Hamiltonian)
corresponding to the entire contaminated surface per-
turbation.

The surface perturbing potential, V, is given by the
sum over the surface lattice of ail individual impurity
potentials, ti;. From Eq. (5), we may then write the
total t matrix T, as

T = Xv;(I +GQT)

In order to express T, the t matrix associated with all
the adsorbed impurities, in terms of t&, the t matrix
associated with an individual adsorbed impurity, we
use a general procedure of multiple scattering theory
(as described, for example, by Lax in a review paper
on this subject" ). We define

Q; = v;(I + Gp T) = (I + ti Gp) t; I + Gp x QJ
J

Here t(k) has a clear physical interpretation. A
Bloch wave incident upon the adsorbed impurity is
partially scattered off into the bulk with scattering
amplitude fk. Part of the Bloch wave, however, is
scattered to interact with the surface potential (dis-
placed hard wall) and there suffers a phase change of
w (hence the negative sign). As the wave moves
away from the wall, it interacts with the impurity
again and repeats the above process ttd infinitum
During each transit between impurity and wail and
back again to impurity (through a distance 2d) there
is an additional phase change of 2kd and a reduction
in amplitude proportional to 1/2d. The hard wall acts
as a ". mirror" and appears to emit scattered wave-
fronts from the impurity's "image".

The total scattered wave is a superposition of all
multiply-scattered waves that move off into the bulk.
This superposition appears formally in the second
term of the right-hand side of Eq. (7). Waves ieav-
ing from the wall without additional interaction with
the impurity and those that strike the wall first are
included through the multiplying factor Gp(r, r ') (as
distinguished from a free-electron Green's function).

C. Scattering by a random coverage .
of adsorbed impurity

Having observed the manner in which a single ad-
sorbed impurity scatters a conduction electron, we
may now discuss the scattering from a surface with

Simple algebra then gives

Q, =t;+tGQ X Q, ,
J&i

so that

T X ti + X X tiGQtJ + X X X tiGQtJGQti +
i i JWi i J Wil WJ

Equation (15) represents a standard multiple-
scattering series. In the present context, it describes
all possible combinations of multiple scatterings
between individual adsorbed scattering centers and
the surface potential.

The eigenstate corresponding to the contaminated
surface is now given by

9'» =«p» +Gp Xt;+ X X tiGptJ
i r' J&i

If, finally, the single impurity scattering problem
were performed in Born approximation [so that Eq.

(16)

If no multiple scattering between adsorbed impurities
were considered, the following approximation would
replace the above result:

IIV 10» =ip»+GQXti@» =ip»+Gpgt; ip»
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(8) was truncated to r; = v;], the general scattering
equation would appear as

q'r=@k+GQX&q'k =@'k+GQl'q'k .

Equation (17) is the starting point for the Greene
and Malamus theory of conduction-electron surface
scattering from adsorbed impurities.

As in the Greene and Malamus theory, we now
note that an equation such as Eq. (16) refers to the
scattered state arising from some specific configura-
tion of impurities randomly adsorbed onto a surface.
Even if we were theoretically capable of describing a
model for such a configuration, the problem of
counting surface lattice sites is evidently a statistical
one. The pertinent quantity is, therefore, not the ex-
act scattered wave but rather the average scattered
wave.

We represent the surface statistically by an ensem-
ble of contamination configurations and denote the
averaging process by the symbol ( ). Equation (16)
then gives the average scattered state as

(q'-„) = @-„+GQ X (t;) + X X (t; GQt~)
i i JWi

+ X X X (r;GQtgGQt()+
i J Wil WJ

(18)

This general equation is exact within the context of
any model of clean-state surface potential and adsor-
bate overlayer. However, the actual calculation of
averaged quantities like

(r;GQt~), i W j
and

(t, GQtgGQt(), i W j W l

requires a theory for the correlation between ad-

sorbed impurities located at different metal surface,
sites. This is, in general, a complicated and presently
not well-understood problem. ' ' We, therefore, as-
sume a totally random array of surface impurities (as
in the Greene and O'Donnell and Greene and
Malamus theories). This allows us to assume statisti-
cal independence and write

(t;GQt&) = (t, ) GQ(t&), i W j
But note that, even for a totally uncorrelated array of
adsorbed atoms, it is not completely correct to write
for higher-order terms

(r,.GQf)GQf/) = (r, ) GQ(rj) GQ(rj), i W j W i . (20)

This is because the same lattice contribution may oc-
cur more than once in such an expression. That is,

in Eq. (20), the subscripts i arid I may refer to the
same lattice site. Nevertheless, we use Eq. (20) and
its generalizations to higher-order terms as an ap-
proximation. It clearly represents a reasonable model
in which to formulate an analysis of multiple scatter-
ing and interference effects of electron surface
scattering. In fact, this approximation is well known
in the theory of binary alloys as the average-t-matrix
approximation (ATA)." 2'

In view of the preceding discussion, the average
scattered state of a surface-scattered conduction elec-
tron is now given by

1

+ Go X (r ) + X X (r ) Go (rj)
i i JWi

+ X X X (t;) GQ(t)) GQ(rI)+
i J Nil WJ

(21)

Equation (21), which explicitly exhibits the surface
average-t-matrix approximation, can be given a con-
venient pictorial interpretation. The approximation is

equivalent to replacing the contaminated surface with

its actual disordered array of perturbing potentials, v;,
by an ordered array of ficticious, or "coherent", poten-
tials, q;, with q; defined by

(r;) =—q;(1+ GQ(r;)) (22)

In this correspondence the perturbing potentials, v;,
randomly occupy the surface lattice but the coherent
potentials occupy every surface lattice site. Equation
(22) defines the coherent potential, g;, as that poten-
tial whose r matrix (with the hard-wall Hamiltonian)
is just the average t matrix of the actual impurity
configuration (with the hard-wall Hamiltonian).

To see this co~respondence, note that, by the same
argument that led to Eq. (15), the r matrix
corresponding to the sheet of coherent potential will

be given by the multiple-scattering series

T,p= Xv);(1+GQT, p)—

= X (r) + X X (r) GQ(rj)
. i i JWi

+X X X «, )GQ(~, )GQ(rj)+
i JAilWJ

But by application of Eq. (13), the scattered state
arising from the -lattice of coherent potential is identi-
cal to the average scattered state of the actual con-
taminated surface.

Thus, the problem of conduction-electron scatter-
ing by a contaminated surface is formally reduced to
a consideration of scattering by a grid of coherent po-
tential positioned a distance, d (which is a function
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of the electron angle of incidence on the surface) in

front of a hard wall. This calculation is discussed in
Sec. III,

From Eqs. (24) and (25) we obtain

(Qj) ( j) 1 + Go X (Qi) 4 -„=(rj)
l&J

III. SCATTERING AMPLITUDES
OF THE AVERAGE SCATTERED WAVE

A. Scattering from a grid of coherent
potential in front of a hard wa11

Here we investigate the way that the conduction
electron is scattered in the model discussed above.
The situation is schematized in Fig. 2.

The average scattered state is given by Eq. (21).
Alternatively, using Eqs. (13) and (14), we may write

where

(Qj) = (rj) + (rj) Go X (@)

Thus

4'„=4-„+G,g (r, )Oj-
JWi

(27)

If the surface impurity is randomly adsorbed onto
surface lattice sites with a concentration, c, then the
ensemble of uncorrelated surface contamination con-
figurations will yield probabilities of impurity adsorp-
tion and no adsorption at the ith lattice site equal to c
and (1 —c), respectively. Thus, the average r matrix
at the ith site is given simply by (t;) = ct; In view o.f
this and Eq. (11), Eqs. (26) and (27) become in
coordinate space and for the case of s-wave scattering
impurities

(P-„(r)) =P-„(r)+ X Go( r, R;)et(k)Pjk-(K;), (28)
I

g&(R;) =Q-„(R;)+ g Go(R;, Rj)ct(k)g-„(Rj)
(29)

As discussed by Lax in his review of multiple
scattering theory' and later utilized by McRae in a
theoretical analysis of low-energy electron diffraction
from perfect crystals, it is instructive in multiple-
scattering phenomena to define an "effective" state.
This state may be viewed as the net incident state
(after repeated multiple scattering) that is scattered
by an individual scattering center. In the present
context, we define this state as

r

1+G X (Q) &0-„

J&i
i

so that the average scattered state can be written

(q-„) =C-„+G,X(r;)@„.

(25)

(26)

Metal Vacuum

Coherent potential ( g j )

X=o

FIG. 2. Scattering by a grid of coherent potential before a
hard wall.

Equation (28) has the following interpretation.
The incident and scattered waves contained in this
equation are to be thought of as propagating under
the influence of the unperturbed surface potential
(the tildes over the Green's function and t-matrix
parameter denote this). @-„(r)and P~k(R, ) are,
therefore, described as "distorted" waves. irjik(R;) is

the "effective" distorted wave that is incident on the
coherent potential scattering center located at the ith

surface lattice site. It is scattered there with scatter-
ing amplitude proportional to the parameter ct(k)
which includes all multiple scattering between the
coherent potential and the unperturbed surface po-
tential as outlined in the discussion following Eq.
(12). The total averaged wave scattered by the entire
disordered surface is then just the superposition of all
waves emanating from each coherent potential on the
grid plus the wave scattered by the unperturbed sur-
face potential alone [i.e., the backscattered part of
@-„(r)]. Equation (29) exhibits Pjk(R;) as a self-

consistent superposition of the incident standing
wave @-„(R;)and the scattered effective distorted
waves coming from all the scattering centers except
the ith site.

In order to solve for the average scattered wave

(P-„( r )), it is necessary to first solve for the effec-
tive distorted wave PLk.(R;) incident at the ith surface
lattice site. This may be easily. accomplished because
the averaged contaminated surface exhibits two-
dimensional periodicity (as illustrated in Fig. 2) so
that the averaged scattered wave must obey a two-
dimensional Bloch condition. This requires that the
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+(Kt) =e ~~ t ' yt (K ) (30)

Substitution of Eq. (30) into Eq. (29) with a change
of the dummy summation index, then, yields

y~(K, ) =@-„(K,)

or

+ X Go( 0, R&)ct(k) e P~(R;) (31)
j&0

y&(K;) = y-„(K, )

I —X G ( O, Rg)ct(k)e
JAO

(32)

Equation (31) is a statement that the effective dis-

effective distorted wave also satisfy this Bloch condi-
tion. Thus we may write

torted Bloch wave incident on the ith scatterer is just
the self-consistent superposition of the original un-
perturbed incident wave and the scattered waves
emanating from all the other scatterers excited by the
-effective distorted Bloch wave. This interpretation of
a Bloch wave is familiar from the case of three-
dimensional bulk crystals (cf. Kohn and Rostoker, 2~

Korringa, 26 and Ziman"). In that case, however,
there is no homogeneous part of the wave function
analogous to $-„( r ) since there is no unperturbed
incident wave associated with a conduction electron
in a bulk crystal. Also, the "distorted" Green's func-
tion in our equations is usually replaced by the free-
electron Green's function in the bulk case.

We may now substitute Eq. (32) into Eq. (28) and,
using Eqs. (2) and (4) for $-„and Go( r, r '), respec-

tively, obtain

(~(r)) =Q-„(r)—

ikl r-R; I ikl r -R,. -2d e
~ I2ict(k) a„&(. k&) ~ e '

. ~ e
x lr-R -2" ei I

i kll ~ R.
e

(33)

ct(k) ~ e
ik(R I

t~o IR, I

ik(RJ+2d e
&

I

e ' ikll RJ8
I Kt+2e e i I

Here e ~ is a unit vector in the x direction (perpendic-
ular to the surface and pointing into the vacuum).

Equation (33) is the expression we have been
seeking. It gives the averaged surface-scattered-
conduction-electron wave function in terms of the
primary parameters of interest. These include the
concentration of adsorbate c; the angle of incidence
of the conduction electron upon the surface (con-
tained in k„); the scattering strength of the adsorbate
atom in the bulk [contained in t(k)] through Eq.
(11);and the surface lattice parameter (contained in

the lattice vector R;).
The numerator of the second term in Eq. (33)

comprises the superposition of all waves arising from
multiple-scattering combinations between a single
coherent potential-scattering center and the unper-
turbed surface potential (displaced hard wall). The
denominator of that term represents the modifica-
tion, from the standing wave $-„(R;), in the effec-
tive distorted wave incident on a single coherent
potential-scattering center. This modification stems
from multiple scatterings between all the other
coherent potentials on the surface and the unper-
turbed surface potential. A single scattering, or
kinematic calculation would exclude the sum in the
denominator. However, such a calculation still re-
tains the effects of repeated scatterings between a

single coherent potential-scattering center and the un-

perturbed surface potential.

8. Structure factor, S(R,X), and

averaged surface-scattering amplitudes

From Eq. (33), we see that we need to evaluate

sums of the general form

ik(R+7 RJ I

s(K,x) =-X ' e
t IK+x-Ktl

where r =(R,X). McRae, ' using a method
developed by Ewald, has shown that such a two-

dimensional direct lattice sum may alternatively be
expressed as a sum in the corresponding two-

dimensional reciproca1 lat tice

i(k —
I kll+g( ) i2(xl

S(R,X) 2ni
X

e (&~~+g) a

g (k I k//+gl )
(35)

ikl RJ Is'-=X J . 1
ik(R +2de (

IKt+2~ ei I

klli kll RJ

Here A is the area of a unit surface cell and g is a
two-dimensional reciprocal-lattice vector [for a square
lattice g

—= (2m/a)(n e 2+ m e 3) where n and m are
integers and a is the lattice parameter].

We may now use Eq. (35) and the following defini-
tions

Ic-=(k —
I

k ii+ g I
)'
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to rewrite the averaged-surface-scattered wave as

4m ct(k) Ik„& .
(k d)

&y-„(r)) =P-„(r) +
1 —c-- —S't(k)

-iK~ -K~ 2iK~ ',

e ~ —e e lt
' i~ [l+seE-

(38)

In Eq. (38), r is in the crystal bulk (x (0).
We want the scattering amplitudes, or reflection

coefficients, of the averaged scattered wave. Thus
we look at the asymptotic behavior of &P-„(r)). In
this region, away from the surface, the only waves
that will survive are those for which E- is real.
There are also waves close to the surface for which
K- is pure imaginary. These waves are evanescent

waves that travel along the surface but that decay ex-
ponentially away from it. They are the waves that

were not included in the Greene and Malamus
theory. It is apparent that the evanescent waves are
important in forming the effective waves incident at
the coherent potentials that give rise to the full aver-
aged propagating wave and are necessary in a self-
consistent scattering theory. However, far from the
surface they vanish and, therefore, do not directly
contribute to the far field.

Letting Ko =—(—Ko, k ~~+g) be the wave vector
corresponding to a diffracted wave and substituting
for g-„(r), we have far from the surface

e " (sink d)
4rt ct(k)

~(r) eik ~ r e x eik r + A A

t(k) s, 8
K~eal

8

2iK~ '

i K ~ r
eK-

Noting that Ko=. k and Ko =k=( k, k~[) (i.e., the
zeroth-order diffracted wave is just the specularly re-
flected wave), we may rewrite the averaged scattered
wave away from the surface as

i K

&y-„(r)) e'" '=+R „'e'"" -+

K~eal
l]'

where

[grrict(k)/A ] sjn2k„d
Rj = e I +

(I [ct(k)/~]S') k„—
,

(40)

[4rrct(k)/A ale " sink„d

(I —[ct (k)/a] S') (41)

C. Probabilities for specular reflection
and higher-order diffracted waves

Equations (40) and (41) represent the reflection
coefficients, or scattering amplitudes, of the specular
and higher-order diffracted waves contained in the
averaged-surface-scattered wave. We now briefly dis-
cuss how these quantities are related to the
corresponding probabilities for specular reflection and
higher-order diffraction. The.correspondence is espe-
cially simple for the case of a spherical Fermi-surface
model.

Let SP-„—= P-„—&P-„) be the fluctuating difference
between the conduction-electron wave function asso-
ciated with one particular surface contamination con-

figuration and the averaged wave function obtained
from the entire ensemble of contamination configura-
tions. Since the averaged fluctuation vanishes, the
averaged probability current density is

&
J k) =—im(&&k) 78k))+—1m&84-»4-)

(42)
The first term of Eq. (42) represents the current

density associated with the averaged surface-scattered
wave. It is equivalently the current density associated
with a conduction electron scattered by the coherent-
potential-grid —displaced-hard-wall scattering mechan-
ism. The remaining second part of the averaged
current density is associated with the fluctuations
from the averaged scattered wave. These fluctuations
comprise the diffuse background of chiefly randomly
scattered waves that also emergy from the contam-
inated surface.

In the present work, we are concerned with the
nondiffuse scattered waves that emerge from the
contaminated surface. Thus, we fix our interest on
the current density of the averaged scattered wave.
The current densities corresponding to the specular
and higher-order diffracted waves contained in &P-„)
are given [using Eq. (39)] respectively by

J==—'k IRk'I'
m

and
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while the current density corresponding to the in-
cident conduction-electron wave is just
J;„,= ( )1'/m ) k .

The probability fluxes associated with the specularly
reflected, diffracted, and incident ~aves are the pro-
jections of corresponding current densities onto unit
surface area and are given respectively by

K, /R—
g

m

The'actual probabilities for specularly reflected and
higher-order diffracted waves are then simply the ra-
tios of associated probability fluxes to the incident
probability flux. That is

and

ik(IR . +2d e1I

/»o I R-„. +2d e) I

2i(k -~7k, +g) )'i d
2 Irl ~ e. (k' —

I
l ii+gI')'"

e2ikd

2d

We wish to evaluate the sum, S', for a square lattice.

Both S1 and S2 converge too slowly to be evaluated

directly. We may use McRae's24 application of the
I

Ewald te=hnique to accelerate the convergence of S1.
This method is not applicable to S2. However, a

simpler method can be used for S2 (which, converse-

ly, is not applicable to S) ). . We use Eq. (35) to
transform S2 completely into a sum in the reciprocal

lattice minus the contributing term at the origin.
This is just

(43)

D. Structure fggtor S'

E-
g Z g

where R-„and R are given by Eqs. (40) and (41).
g

The square-root factor in this equation quickly be-
comes pure imaginary yielding a rapidly decreasing
exponential term and consequently a rapidly converg-
ing expression for S2.

We have evaluated the sum, S', using the above
methods for a square lattice of lattice parameter a.
The details of the calculation are tedious but straight-
forward. The result is

In order to finally evaluate the probability func-

tions appearing in Eq. (43), it is first necessary to

evaluate the structure factor, S', that appears in Eqs.
(40) and (41). S,', recall, is defined by Eq. (37) as

S'=S1 +S2

where we now define

'I

~2ikd ikS'=- —ik 1+erf 2E k2]4E2e
W2r

(44)

ik) R-. )
i k][ R.

/»0 IR-;I

Here E is.an optimization parameter in the Ewald

technique, erf is the error function with a complex
argument and

~ + k ]
cos(akn) —Ree"""erf(aEn + ik/2E)

an
n 1

cosak(n2 Pm2))/2 Re[el'ak(a +m ) erf(aE(n2+In2)1/2+/k/2E)]
+2 X X cos(akrn+ak, m)

n 1m 1 a n+m)
I

SR = X [G(K(n, 0)) +G(K( n, 0)) +G(K(0,n—)) +G(K(0, —n))]

where

+ X X [G(K(n, m)) + G(K(n, —m)) + G(K(—n, m)) + G(K( n, —m))—]
n 1m 1

and

G(K(„)) 1 1+ f iK(n, m)
K(n, m) 2E

K(n, m) I k„'—
f

'
1/2

(n'+ m') — (k, n + k, m)
0 a
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IV. MODEL CALCULATIONS

TABLE I. The diffraction angle, HD, as a function of the

electron angle of incidence, H, and azimuthal angle, @, for

gold and copper (100) surfaces.

Metal

HD
'

0
0
0
0
0
0
0
0
0
0

0
15
15
15
15
15
15
15
15
15
15
15

0
6

12
18
24
30
36
42
48
54
60
0
6

12
18
24
30
36
42
48
54
60

35.0
34.4
32.7
29,7
25.1

17.6

26.9
26.3
24.4
21.0
14.9

35.9
35.4
33.7
30.8
26.3
19.3

28.8
27.5
25,7
22.4
16.8
2.8

For our model calculations we have considered me-
tals such as gold and copper for which a free-electron
approximation is plausible. To avoid unnecessary
complication, we treat only the case of their non-
reconstructured (100) surfaces. Values used for
these metals of the parameters pertinent to the
present theory, the Fermi wave vector, k, the step
parameter, Va (which is the sum of the work func-
tion and Fermi energy), and the surface lattice
parameter, a, were extracted from Refs. 29—31.

Table I gives information concerning the presence
of surface diffracted conduction-electron waves for
various values of the electron angle of incidence
(relative to the surface plane) on gold and copper
contaminated (100) surfaces. e will see later that
the presence of diffracted waves has an important ef-
fect on the conduction-electron probability of spec-
ular reflection.

According to Eq. (39), a propagating diffracted
wave with wave vector K-= (—K-, , k~~+g ) arises

when K-,' —= k —
~ k~~+g ~

is greater than zero. For
the surfaces considered, only one diffracted wave is

possible. The angle $ is the azimuthal angle mea-

sured in the surface plane [i.e., $ =arctan(k, /k~)].
For both metals, when $ is less than 45 ', the dif-.

fracted wave is associated with the reciprocal-lattice
vector g ~

—=-(2m/a) e2 ($ greater than 45' yields

equivalent results due to the symmetry of the square
surface lattice). The condition for a diffracted wave

is then

k'sin8+ k cos@cos8—
2
)04m 4m2

a a
(45)

and the maximum angle 8 for which diffraction oc-
curs for given values of k, a, and 8 is the solution of
the quadratic equation

t

—cos'8+ cos@ cos8+ I — =04m 4m

ka ka
t

(46)

as given in Eqs. (43), (40), and (41). Here K is

necessarily real.
The behavior of the electron probability of specu-

For gold and copper (100) contaminated surfaces and

f =0', no diffracted wave arises for 8 greater than
34.98' and 35.92', respectively. For qh =15', these
cutoff angles are, respectively, 28.93 ' and 30.15 '.

Table I gives the angle, 8D, that the diffracted
wave vector makes with its surface plane projection
[i.e., 8o =are sin(K~/k)] as a function of the
electron angle of incidence, 8 and $. As 8 ap-
proaches a cutoff angle, for a particular value of P,
the diffraction angle, H~, monotonically approaches
zero.

our primary purpose has been to calculate a
conduction-electron probability of specular reflec-
tion, P„as a function of its angle of incidence 8 on a
contaminated metal surface of varying impurity con-
centration and impurity scattering strength. Accord-
ingly, Figs. 3—7 all represent plots of P, vs 8 for con-
taminated surfaces of the metals considered. Curves
labeled MS (Figs. 5 and 6) or unspecified are ob-
tained from the full multiple-scattering formula of
the present theory as represented by Eqs. (43) and
(40). Curves labeled SS (Figs. 5 and 6) correspond
to a single-scattering calculation as described at the
end of Sec. III A (i.e. , S' =0).

Figure 4 also contains a plot of the electron pro-
bability of nondiffuse scattering, P„~, versus its angle
of incidence, 8. In the case of no diffraction, this is
the same as the probability of specular reflection.
However, when a diffracted wave is also present, P„~
differs from P, by the extra probability of the oc-
currence of the diffracted wave. That is, in general

P„„=P,+P
K

E

K-= I~= I'+
k

Z g
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V. DISCUSSION OF RESULTS

A. Resonances

The most striking feature of the present theory is

the prediction of a resonance in the conduction-
electron specular probability as a function of its an-

gle of incidence on the contaminated surface. The
resonance arises from multiple scattering of the
conduction-electron wave between adsorbed impuri-

ties and is associated with the ability of the surface to
diffract the incident electron as well as to specularly
reflect it.

In Figs. 3—6, the lower curve illustrates the reso-
nance effect. The upper curve corresponds to the
identically contaminated surface but to the case of no
diffraction (due to a different value of the electron
azimuthal angle, $). The upper curve, therefore,

lar reflection is compared in the various figures for
different values of impurity concentration, C, and
also the impurity scattering strength. This latter
quantity is here measured by the impurity s-wave
partial wave phase shift, 5. The relevant parameter
which explicitly occurs in the equations for P, and
P„d is the scattering amplitude, fk, of the impurity
when located in the bulk [Eq. (12)]. In our model of
isotropic impurities, fk is simply the first term of a

partial wave expansion. That is

fk = —e' si s5n
1

k

depicts the corresponding nonresonance situation.
The resonance property is exhibited as a qualitative

deviation, from the corresponding nonresonance
case, that takes the form of a dent or a bump (or
both) in the specuiar probability curve. More specifi-
cally, the specular probability, for the resonance si-
tuation, behaves as follows. It decreases from unity
at glancing incidence and either falls below (dent) or
rises above (bump) the corresponding nonresonance
curve until, in the vicinity of a resonance angle, it rap-

idly recovers. Thereafter, it closely approximates the
nonresonance curve.

Figure 3 illustrates a dent and bump resonance
corresponding to a copper (100) surface with azimu-
thal angle equal to 15'. The bump arises as the reso-
nance curve overshoots the nonresonance curve be-
fore returning to the nonresonant behavior. The
resonance occurs, in this case, near 8 =30.15', Fig-
ure 4 illustrates a dent resonance corresponding to a
gold (100) surface with azimuthal angle equal to 0'.
Here the resonance is near 8=34.98'. The case of a
resonance for a gold (100) surface with azimuthal an-

gle equal to 15' is given in Figs. 5 and 6, where the
resonance occurs near 8=28.93'. Note that these
resonance angles are just the cutoff angles (cited and
discussed in Sec. IV) at which the corresponding sur-
faces cease to diffract the incident electron wave.

Note, also, that the resonant behavior of the spec-
ular probability is contained in the curves represent-
ing the full multiple-scattering calculation but not in

the curves representing the single-scattering calcula-
tion (see Figs. 5 and 6). As discussed in Sec. III, the
single-scattering theory includes multiple scattering
between a single impurity and the unperturbed sur-
face potential but not multiple scattering between dif-
ferent adsorbed impurities. The resonance property,
therefore, is associated with multiple scattering
between adsorbate atoms.

To understand the resonant behavior in the specu-
lar probability, P, = ]R k ~', when a diffracted wave is

present, recall from Eq. (40) that the factor
I/(I —c[t(k)/a]S'] gives the modification in lI-„ that

arises when multiple scattering between adsorbed im-

purities is considered. It is this factor that is respon-
sible for the resonance effect. Putting S' =0 yields
the corresponding single-scattering result.

The sum S' is defined in Eq. (37) and may be in-

terpreted physically as a superposition at the origin of
all waves erriitted from the surface lattice sites of
coherent potential and their images as a consequence

i k]] ~ R
of incidence of the plane wave e ]] . Depending
upon the value of k

~~
(i.e., the angle of incidence, 8,

and the azimuthal angle, $, of the conduction-
electron wave) this superposition may or may not
contain a constructive interference term correspond-
ing to a diffracted wave. To see this explicitly we
may use Eq. (35) and exclude the term at the origin
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to form S' as

g tkR 2ikd2mi ~ 1 —e '
1.

e' +e'

(48)

At first sight, it may appear that S', in the form of
Eq. (48), diverges due to the singular term
limR Oe' /R. However, the singularity is cancelled
by the sum X (1/E ) which is also singular. Because
of this property, Eq. (48) is not useful in calculating
the sum S~, for which we used the Ewald technique.
But Eq. (48) does serve to point out the difference in
behavior of S' in the diffraction and nondiffraction
cases.

Consider the imaginary part of S'. %hen a dif-
fracted wave occurs, this is

4~ sin k„d 4~ sin E~d

For completeness, we mention twogroperties that
Figs. 3 and 4 also demonstrate in addition to the
resonance effect. These are general properties that
are, in fact, present in all curves of P, vs 8 given in
this work. First of all, at glancing incidence, the
specular probability is always unity. This is in agree-
ment with physical intuition (i.e. , thinking of electron
waves as similar to light waves reflected from a sur-
face), the Greene theories and also magnetic surface
state experiments. Second, at normal in-

cidence, the specular probability always has zero
slope. This follows from the equivalence (from sym-
metry) of incidence of the electron wave on either
side of the normal to the averaged surface. Thus,
the specular probability is an even function of the an-
gle (90' —tl) and gives a zero slope at 9=90'.

B. Multiple scattering versus
single scattering

(49)

For the case of no diffraction, this is

4m»n kid k+ sin2kdk„2d (50)

The above discussion shows that the sum S' has
markedly different behavior depending upon whether
or not a surface diffracted wave. is present. This
behavior is monitored by the factor
1/{1 —e[t(k)/a]S'] and accordingly yields a different
effective distorted wave incident at a coherent poten-
tial scattering center for the teo situations. In this

way, the resonance in the specular probability is pro-
duced.

For a given concentration of adsorbate, the charac-
terization of the resonance as a dent or a bump (or
both) in the specular probability curve depends upon
the values of the scattering parameter t(k) of the ad-

sorbed impurity, the Fermi eave vector, k, and the
surface lattice parameter, a. This dependence occurs
in a complicated manner.

In general, however, the resonance effect is greater
for higher concentrations of adsorbate since the mul-

tiple-scattering factor 1/{1—c[t(k)/a]S'] changes
more significantly as the diffracting mode is
transformed to the nondiffracting mode (i.e., as the
angle of incidence passes the resonance angle). This
is illustrated in Figs. 5 and 6.

Note that while the specular probability, P„ is al-

ways a continuous, smooth function of 8, the
conduction-electron probability of nondiffuse
scattering, P„d, suffers a discontinuity at the reso-
nance angle (reflecting the cutoff of the extra dif-
fracted wave that occurs there).

The difference in the specular probability as ob-
tained from either the multiple-scattering calculation

. [Eq. (40)] or the single-scattering calculation [Eq.
(40) with S' =0] is shown in Figs. 5 and 6.

For low concentrations of adsorbate the two

theories are in close agreement, as we expect. For
higher concentrations, however, the single-scattering
result deviates significantly from the multiple-
scattering result, as Fig. 5 demonstrates. This is par-
ticularly true in the case where resonance occurs
since the resonance effect is not predicted by the
single-scattering theory.

At concentrations of adsorbate approaching full

coverage of the surface the two calculations are in

strong disagreement. The multiple-scattering theory
contains a modification of the effective distorted
wave incident at a surface scatterer that is a function
of the concentration. Figure 6 demonstrates that in

the absence of this modifying influence, the predicted
specular probability may be in obvious error. For
high concentrations, the single-scattering theory may

yield a specular probability greater than unity. This
unwelcome feature is, in fact, contained in the
single-scattering Greene theories.

C. Nordheim dependence of the diffuse

probability on the concentration

In our model, which contains the simplifying as-
sumptions of an uncorrelated surface impurity and a
smooth, nonreconstructed metal surface, we expect
that the electron probability of diffuse surface
scattering, P&, should vanish for a perfectly ordered
surface (i.e. , one with either no adsorbate or a full

monolayer of adsorbate). Experimental data on resis-
tivity of thin metal films measured as a function of
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concentration of adsorbate has been obtained by Lu-
cas for gold atoms adsorbed onto a presumably
specular gold surface and by Geus' for hydrogen
molecules adsorbed onto an iron surface. Both of
these experiments reflect the above mentioned ex-
pectation as an initial increase in resistivity (more dif-
fuse scattering) as the clean surface begins to be con-
taminated followed by a decrease in resistivity (less
diffuse scattering) as the contamination approaches
full coverage. Note, however, that other experi-
ments' measuring film resistivity versus adsorbate
concentration for different adsorbate and metal sur-
face contaminations do not yield this behavior. This
may be attributable to the formation of complicated
surface compounds (which may depend on the pres-
sure, temperature and even the concentration of ad-
sorbate), the formation of superlattices, or the ab
sorption of the impurity atoms. Recently, ho~ever
Pariset and Chauvineau, ' fo, the case of iron atoms
adsorbed onto gold films, have obtained a maximum
of resistivity in the vicinity of half a monolayer of

coverage. Furthermore, they have effectively argued
that this behavior is attributable to an increase in the
diffuse surface scattering of the conduction electrons,
since surface compound formation and absorption of
the impurity atoms has been shown, in this case, to
proceed only after the formation of a monolayer of
adsorbate.

Here we show that the multiple-scattering theory
yields the expected decrease in Pq as the surface be-
comes more ordered. In particular, we find that Pq
has a c(1 —c) dependence on the concentration.
This is analogous to the well-known Nordheim ap-
proximation' in the theory of bulk electron scatter-
ing in substitutionally disordered alloys.

The diffuse probability, for the general case where
a specular and diffracted wave is present, is given by

k k K)
X

Using Eqs. (40) and (41), we obtain

r t

16vr»n k d
I t(k) t(k)Pg= c Im — +c ImS'

A k-

r t t

64~2 sin k„d 2 t(k) sin2k„d sin'Ittd
+

kx o, ' kx E
t(k) S,

Substituting for ImS' from Eq. (49) gives

Pg=

2'
161r sin k d

I t(k) t(k)cIm +Ck„o, A

I — t(k) S, 2

sin2kd
2d

The definition of t(k) [Eq. (11)]combined with the equation Imfk = k
~ fk~ (i e. , the optical theorem) yields

r

t(k) t(k)
k I sin2kd

a o. 2kd

thus

Pg=

1 II

16m (I )»n kid t(k),
k

sin2kd
A k„n 2d

t(k) S, ' (51)

Equation (51) exhibits the Nordheim property for
conduction-electron scattering by the contaminated
surface. It describes both the cases where a diffract-
ed wave may arise. (assumed above) and where only
a specularly reflected wave is present. The different
angle dependence in these cases occurs through the
factor S'.

Note that the multiple-scattering parameter, ImS',

provided the cancellation of terms that produced the
c(1 —c) dependence. This result is not obtained in
the single-scattering theory.

Figure 7 illustrates the Nordheim property for the
situation where no diffraction occurs. Here the spee-
ular probability is closest to unity for the lowest and
highest concentrations of adsorbate.
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VI. SUMMARY AND CONCLUSIONS

%e have examined the probabilities for specular
reflection and diffraction of conduction electrons due
to contamination at a smooth metal surface. Our
most striking result has been to show that inclusion
of multiple scattering between adsorbed impurities
yields an unanticipated resonance effect in the specu-
lar probability that is associated with the occurrence
of a surface diffracted electron wave. Although the
diffracted wave occurs for angles close to glancing in-
cidence, its scattering amplitude is small at such an-
gles and vanishes for glancing incidence. Thus the
presence of a diffracted wave at small angles is not in
disagreement with previous theoretical"~" and ex-
perimental" ""results that show that the specular
probability approaches unity as the electron strikes
the surface at angles approaching glancing incidence.

%e have also shown how a multiple-scattering cal-
culation and the inclusion of evanescent waves at the.

surface modulates the effective wave incident at a
surface scattering site so that the specular probability
never exceeds unity and tends to its lowest value
when the surface is most disordered (when the con-
tamination approaches half coverage) in agreement
with experiment. " As noted by Greene and
Malamus' and Greene and O'Donnell, ' their single-
scattering theories break down in this regard (for
high concentrations of adsorbate) essentially because
of their use of the Born approximation, which
neglects multiple scattering. Similarly, our own
single-scattering calculation, used for comparison, has
been shown to break down for high concentrations of
adsorbate.
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