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The dielectric response of condensed matter belo~ microwave frequencies has been known to
depart from the Debye behavior, sometimes to the point of being unrecognizable and yet the
generally accepted interpretations of the departures have seldom deviated from the Debye philo-

sophy of simple relaxation phenomena in noninteracting systems. It was recently recognized,
from a synoptic view of the experimental data involving a wide range of materials, that there
exists a remarkable universality of dielectric response behavior regardless of physical structure,
types of bonding, chemical type, polarizing species, and geometrical configurations. This strong-

ly suggests that there should exist a correspondingly universal mechanism of dielectric polariza-
tion in condensed matter. The present work proposes such a universal mechanism associated
with the existence of some ubiquitous very-low-energy excitations in the system. These excita-
tions exhibit an infrared-divergent-like response to transitions of the polarizing species induced

by a time-varying electric field in the dielectric and give rise to the universal dielectric response.

I. INTRODUCTION

The dielectric response of solids and liquids has
been the subject of intense investigation over a long
period of time extending to this date, and pursued by
physicists, chemists, and engineers alike. A detailed
survey of the dielectric properties of a wide range of
solids has been given recently by Jonscher. ' lt was
observed' that the dielectric response functions in

frequency or in time depart strongly from the Debye
response for a large number of essentially dissimilar
materials and fall into a remarkably common or
"universal" pattern. In particular, the frequency
dependence of the dielectric loss follows the empirical
law

X (ro) ~ co", with 0 & n & 1

extending over several decades of frequency from
low audio and subaudio to co/2n —10' Hz. For some
dielectrics, a broad loss peak may be found at lower
frequencies. Genuine Debye behavior with the com-
plex susceptibility given by X(ro) o: (1+i&ur) is sel-
dom observed in solids. The empirical law (1) em-
phasized by Jonscher is implicit also in several other

empirical expressions presented in the past. These
include the Cole-Cole, Cole-Davidson, and Havliak-
Nigami forms and their expressions are, respective-
ly, 1/[1+i (cur)s]1/(1+, i cur)and 1/, [1+i(&or)s]'
In the co~ )) 1 limit these expressions all reduce to
the empirical law (1) of Jonscher. Examples of the
materials that obey the empirical law [Eq. (1)] in-

clude inorganic ceramics, ionic conductors, polymeric
materials, inorganic crystalline, and amorphous ma-
terials including glasses, insulating or semiconduct-
ing, and organic and biological systems. By way of
these examples we see that the frequency response

(1) is similar for systems with permanent dipoles and
with hopping charge carriers of electronic or ionic na-
ture. It is valid in covalent, ionic, and molecular
solids, in single crystals, polycrystalline, and amor-
phous structures; hence the behavior (1) is apparent-
ly independent of the particulars of the material. At
higher frequencies, 109 Hz and up, quantum effects
involving lattice mode excitations and/or electronic
excitations become prominent and, as is well known,
the response then differs from material to material,
and as such will not be of interest to us in the
present context.

The various types of dielectric response are sum-
marized in Fig. 1. This figure is taken from a short
summary of the present work published earlier. ' We
note the virtual absence of the pure Debye response;
and the validity of the ua. iversal law of dielectric
response, Eq. (1), in a remarkably wide range of phy-
sical and chemical situations, and over a very wide
range of frequencies. In some types of dielectrics the
universal response (1) is followed at low frequencies
by a loss peak referred to as n and P peaks, or by
another universal response with n typically between
0.1 and 0.3.

It is this state of affairs that has motivated us to
seek a renewed understanding of these phenomena in
terms of a common or "universal" characteristic
across the entire spectrum of materials and to associ-
ate such a characteristic with some physically simple
and "elementary" principles or properties. In Sec. II
we shall present several elementary principles which
when combined enable a derivation of the universal
law (1) regardless of the physical, chemical, and
geometrical properties of the solids, and also regard-
less of the nature of the electrically active species
responsible for polarization, whether dipoles, elec-
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FIG. 1. Schematic representation of the various observed types of dielectric response over the entire range of solids. The
upper set of diagrams represent the shapes of the logarithmic plots of X'(co) —chain-dotted lines, and X"(ru) —solid lines, ranging
from the ideal Debye through the e and P peaks and on to the universal dependence for charged carrier systems. The limiting
forms of behavior are represented by the strong low-frequency dispersion with small values of n and by the limiting case of
frequency-independent "lattice response" with n =1. The lower set of diagrams represent the corresonding complex X plots.
The various types of materials obeying the respective types of response are shown and the presumed polarization mechanisms
are indicated. This figure is taken from Ref. 2.

trons or ions. Then in Sec. III we discuss several ex-
amples of low-energy excitations expected in a host
of systems that satisfy these elementary principles.
In Sec. IV we consider the response of these states.
Next, in Sec. V we derive the universal response (I)
and the possible presence of a loss peak at lower fre-
quencies. Finally, in Scc. VI wc make some conclud-
ing remarks.

II. INFRARED DIVERGENCE AND
THE UNIVERSAL LA% X"(co) co"

Infrared divergence phenomena, although not com-
monly observed in physics, have been seen in several
instances. The most well-known case is in quantum
electrodynamics where the infrared divergence mani-
fests itself in a bremsstrahlung experiment' of a fast
charged particle. In the realm of solid-state physics4'
an example of infrared divergence is thought to be
provided by the peculiar shape of x-ray absorption
edges of metals. 6 In another context (unrelated to
the present work), Handel' has invoked also the in-

frared divergence principle to account for the origin
of I/f noise. He has considered in addition to pho-
tons, electron-hole pairs at the Fermi surface of a
metal, phonons, and spin waves. These examples are
by no means exhaustive but the subjects they cover
demonstrate that infrared divergence is not uncom-
mon. Excellent reviews on the subject are available. 4 5

The features common to systems exhibiting the in-
frared divergence phenomenon are (a) the sudden
application of a potential, or a sudden change of the
potential or the Hamiltonian; and (b) availability of
low-energy excitations of the system and its response
to the sudden potential change dominated by the
emissions of these low-energy excitations. In the time
domain the phenomenon is the transient responsea 9

of the system to that abrupt change of potential. In-
frared divergence occurs whenever the suddenly
switched on potential V excites some low-energy exci-
tations, with density of states % (E) for excitation en-
ergy E, which is such that V'(E) W(E) ~ E. In this
instance there is an increasingly high probability of
exciting decreasingly small energy excitations and this
causes a power-law divergence of thc response in the
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frequency domain. In the x-ray edge problem in me-
tals an x-ray photon when absorbed, suddenly
switches on a hole-core potential V for the conduc-
tion electrons. The low-energy excitations here are
the electron-hole pairs.

In Secs. III—VI we shall argue that within a broad
classification of dielectrics, according to a scheme to
be outlined, there exist, states which, for conveni-
ence, we shall refer to as correlated states. Low-
energy excitation (and de-excitations) of the correlat-
ed states with excitation (de-excitation) energy E
consists of transition from one correlated state to
another and is the analogue of the electron-hole pair
excitation in the x-ray edge problem. .

The charged particles or dipoles responsible for po-
larization in the dielectrics undergo quantum transi-

tions, including changes in their positions (orienta-
tions), between preferred states in an abrupt manner

by hopping or jumping movements such that the time
I/t taken by the actual transition is negligible in

comparison with both (i) the time spent on average
in the respective preferred states, and (ii) the time
characteristic of the low-energy excitation of the
correlated states. The condition (i) is invariably sat-
isfied in solid dielectrics. That condition (ii) is also
satisfied will become clearer after we have considered
the nature of the correlated states.

Due the charged particle (dipole) transition a po-
tential is suddenly switched on which acts on the
correlated states. The low-frequency response of the
dielectric to this potential involves the emission of
low-energy excitations of the correlatred states. We
shall argue that the low-energy excitations of these
correlated states have a density of states N(E) ~ E,
and that the potential change V has little or no E
dependence. It follows that the conditions for an in-

frared divergent dielectric response of the correlated
states are justified. The mean number n of correlated
state excitations is then

b~
' E dE

E2

which diverges logarithmically, where E, is the upper
"cutoff" of the correlated state excitation energy
which can be considered as the energy above which
the correlated state excitations no longer have the
density of states ~E. The Fourier transform to the
time domain of the universal relation (I) is
i (t) ~ t ", i.e., the widely observed Curie —von
Schweidler law' of depolarization. It is interesting to
note that the infrared divergence problem when con-
sidered in the time domain as a transient response
problem does lead to the time decay of the
response function for large times as S(t) c t " The.
derivation of the complete dielectric response will be
deferred to Sec. IV, after we have discussed the
correlated states in a broad classification of dielectrics
in Sec. III.

III. CORRELATED STATES

In Sec. II we connected the "universal law", Eq. (I)
to an infrared divergent response of correlated states.
For this interpretation to follow it is necessary for
such states to be prevalent in dielectrics and have
characteristic response times long in comparison to
the switching of the Hamiltonian. In this section, we
discuss several examples of such correlated states
which can reasonably be expected to be present in
many dielectrics. Parenthetically, the purpose of this
section is to give enough insights into these correlat-
ed states and their excitations so that the reader can,
if he desires, have a better feeling for them. These
discussions are not the core of this work but serve as
useful illustrations. One should note from the onset
that although the examples that we will detail are
quite general, they are by no means exhaustive. Fur-
ther note that these correlated states are certainly not
familiar nor are their excitations "elementary".

A. Dielectrics with electron self-trapping states

The concept of local electron self-trapping largely
arises from the observation that by and large if a par-
ticular electronic state is singly occupied the atom or
atoms principally associated with this state will adjust
their positions in such a way as to lower the one-
electron energy level of this state relative to its value
when unoccupied. A traditional example is provided
by those ionic solids where strong local Coulomb in-
teractions between the electron and lattice consti-
tuents induce. a local lattice distortion leading possi-
bly to the self-trapping of the electron and the forma-
tion of a small polaron. This tendency is not simply
restricted to ionic materials but is much more gen-
eral. Well-known examples lying outside the usual
small polaron mechanism are provided by the recon-
struction of semiconductor surfaces' " and electron
pairing states in amorphous glasses. " The origin of
the self-trapping in former instance is essentially a
dehybridization energy' " arising from concepts in-
herent in covalency and stereochemistry. The
electron-lattice interaction may be strong enough to
make it energetically much more favorable to self-
trap electrons in pairs iather than singly and such
systems have been described by Anderson' through
a negative UHubbard model. Let us restrict our at-
tention for the moment to the negative U electron
pairing states which should be important due to the
prevalence of diamagnetic systems in nature. In this
instance several subgroups of possible correlated
states can be identified with properties leading to the
desired behavior in X" where, in each case, the
response time of these states is expected to be accept-
ably slow due to the lattice coordinates involved.
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As noted in the previous paragraph, in order to
develop further the idea of local distortion mediated
effective electron-electron attractive interaction
Anderson has employed an effective negative U
Hubbard-like term U;n;tn;~ to model the effect, where

is the number operator for an electron of spin cr

in a state centered at the "site" i; }ia). One should
keep in mind that i could well index the up and down
spin states associated with a group of atoms and not
just a single one. Let us describe a group of such
centers in contact with one another as well as alter-
nate states of the system (those with Ui =0) by the
simplified Hamiltonian

H = XEin, ~+ X'R&ai a& + X Uinilnii,
la ijcr

(2)

where Ujnjtnj~ is present to prevent double counting
of the interaction. The conditionally averaged
number of spin o- electrons at the site i is given by
the relation

n, = « Im —dE f(E)g; (E+),

with f the Fermi function and E+ denotes the
lim(E+is) as s 0+. Equation (3) provides a set of
generalized Hartree-Fock-like self-consistent relations
determining the parameters n; since the Green
functions g; entering these formulas are defined as
g, = (iir((z —H, i) '[iri) where

H, i
= X (E, + U, n; ) n, + X'Riia, t

a~
irr ljo

and hence depends on n; . For convenience Eq. (3)
can be recast as

dE f(E)
tE+—E; —Ujn;

where 4j is the usual self-energy and is a function of
(n, }, etc

To solve these self-consistent conditions we em-
ploy the long established coherent-potential approxi-
mation" (CPA) to obtain the self-energies 4;. This
entails defining an effective medium characterized by

where ajt, aj create and annihilate electrons of spin
o. in the state ~i o), and we take Rjas, R if i,j are
nearest neighbors and zero otherwise. The parame-
ters (E;}and {U;}are considered as random variables
obeying the joint probability distribution P(E;, U;)
which for the time being is left unspecified. This
model can be made to mimic many different situa-
tions depending on the choice of P (E;, U,).

To obtain results from Eq. (2) we have developed'
a generalized mean-field-like method which entails
linearizing the many-body terms Ujnjtnj) as

A TT ™~

Ujn;~nj~ =
Z, ~;n; n; —U;n;tn;~

a single potential Xo which is energy dependent and
can be complex, in such a way that the
Gi~(E —Xp) = (g«(E)),„, where the brackets ( ),„
here and henceforth denote an average over the ran-
dom variables entering H, ~ and
Gi = (i o((z. H,«)—'

~
o i ) with H,«obtained by re-

placing the site-diagonal random potentials of H, t by
Xo at each site i and gl = Gl~+ Gl~t~~Gj~, where

ri = (Ei+ Uini Xo)—Ill —
(E. i+ Uini Xp) —Gi ]

The CPA is exact in both strong and weak scattering
(virtual crystal) limits and hence provides an interpo-
lation scheme for treating the intermediate cases.
The use of this method greatly simplifies the compu-
tations since its functional form of 4j can be easily
found using established techniques once the "lattice"
structure is specified. For example, if we assume a
simple chain then

6 = (E —X,) —[(E—X )' —4R']'i' .

The CPA equation defining Xo and hence 4 can be
written explicitly for the present model as

P(Ei, Ui) dEidUi 1""E' E U;n (E—, U) ——&(Xo)

We now have as inputs into the formalism some
specified temperature, T, and number of electrons
per site in the band, N, ~, as well as particular func-
tional forms for Gi (E) and P(E;, U;). The calcula-
tion then proceeds as follows: First we assume the
function n, (Ei, Ui) and then solve" the CPA equa-
tions using a modified Newton-Raphson technique to
obtain Xp(E) and hence 5(Xp). Having determined
6(Xp) we can then find the chemical potential p, of
the system from the usual relation

W„=- —ImJtdE/((e s" "+1)(E+-X,-~(X,)]},—
i

where in obtaining this condition, we have employed
the CPA equation. Note the CPA determined Xo sa-
tisfies the important sum rule

l-« 'Im„dEI(E Xo —d(Xo)] =—1. Having Xo(E )
and p„we than caicuiare a new iuiu. idion ni (Ei, Ui)
from Eq. (3) and this procedure is iterated until self-
consistency is established, i.e.,
n, (Ei, Ui) = ni (E,, Ui). If a continuous probability
distribution is assumed for the random variables, it
is of course not numerically feasible to establish self-
consistency at each point in (E;~ Ui) space. In these
instances we establish self-consistency at a grid of
points assuming that R, (E,, Ui) can be adequ'ately
represented for intermediate values by trapezoidal in-
terpolation. We have found for simple continuous
probability distributions that this procedure converges
very nicely' (well within the realm of numerical
feasibility) as the number of points in the grid is in-
creased. Note that usually more than one self-
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consistent solution exists and this will prove impor-
tant to our subsequent development.

Before detailing some of the examples that we
have treated, it is convenient to backtrack some~hat
and draw a relationship between electron pairing in-
teractions and covalency and in so doing motivate
these cases and further stress the generality of the

, pairing ideas.
As a prototype consider a simple dangling bond

such as one associated with an Si atom which is
bonded to three neighboring silicons leaving a dan-

gling hybrid. If we denote by xI, the displacement of
this atom from where it would sit if the dangling hy-
brid were constrained to be singly occupied with en-
ergy EI, then a "Hamiltonian" partially describing the
energetics of this atom" is

Hp = XpEpnp~ hpxp(npt + nest 1) +
2 cpxj,

where ~I, is the number operator for electrons of
spin o. in the dangling hybrid orbital ~h o). The last
term entering HI, is a backbond stretching energy and
the second is the so-called dehybridization ener-
gy. ' " If we have a group of such nonbonded states
interacting with one another then a simplified Hamil-
tonian describing the situation is

H = XE;"nI —X h;x;(n;I + n;I —1)

+ X —,
'

c,x + XR;Ja;t aj
i

%e can now view the displacements x; as parameters
entering the Hamiltonian to be determined self-
consistently by requiring the free energy of the sys-
tem to be stationary with respect to their variations.
This results in a set of self-consistent conditions
which can be used to eliminate the parameters x;. It
is then a simple matter to show that the resultant
Hamiltonian is essentially similar to the negative U
model (2) within the context of our mean-field ap-
proximation if we make the identifications:

2X /c, =
U&,

—E;"=E&+——, U;. Th—us we expect the

negative Umodel to incorporate the behavior of a
simple nonbonded orbital whenever A;2/cf )) UiQ

since the analysis of course is Dot limited to only the
Si dangling hybrid but applies whenever one has a
dangling bond associated with covalent backbonds
and hence is quite general.

Consider now as a first example of electron self-
trapping states with the desired properties those pair-
ing states associated with breaking the pair and "plac-
ing" the electrons in states associated with nonpairing
sites. Such a case could be physically realized, e.g. ,
with metal-semiconductor (Schottky) contacts where
one could envision transferring the electrons from
pairing centers in the semiconductor (say, nonbonded
orbitals) to the Fermi sea. A particular example
derived from the general model (2) is shown in Fig.
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2 where we display two different self-consistent solu-
tions to Eq. (3) obtained by using the previously de-
tailed formalism. We have taken as inputs in calcu-
lating these examples: T =0, %,I

=0.3, and G; ap-
propriate for a Cayley lattice. with each atom having
six nearest neighbors. The form of P(E;, U;) is
chosen so that

P(E;, U,) = (1 —x)5(U,)5(E; —Ep)

+x5(U; —Up) W(Ei),

where 'II( E)l/ 8=5 (8 is the unperturbed half-
bandwidth) for 0.1 ~ E,/8 ~0.3 and zero otherwise
and x (the concentration of pairing centers) =0.1

with Up/8 =—1.6. The solid line of Fig. 2 is within
our formalism the density of states corresponding to
the numerically determined lowest energy state of the
system awhile the dashed line represents a low-lying
self-consistently obtained excited state; a fact that we
have verified directly by comparing the energies of
the two cases. These two solutions differ from one
another by the transfer of electrons from the pairing
centers (which when occupied in this example form a
band of states —

2 Uo below EF, the "Fermi-level, " as

shown in Fig. 2) to the main band with the unoccu-
pied pairing levels now appearing —

—, Uo above Ep.

This is exemplified in Fig. 2 in going from the
ground to excited state by the slight increase in "EF",
as well as the decrease in the measure of the pair
band below the main band edge.

Further insight into this behavior can be gained by
considering a single pairing impurity in a tight-
binding lattice. The situation can be described by the
model Hamiltonian

H= X'Epn(~+ X'RIjaI aj + Ujnjtnjt+ XEjnj
le ije CF

which represents of course a special case of Eq. (2).
Approximating Ujnjtn&~ as before the free energy of

E/8

FIG. 2. Illustrates the effects on the electronic spectrum
due to transfer of electrons from pairing centers to a non-
pairing band. Note the vertical lines represent the position
of the highest occupied state at zero temperature.
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the system as a function of n& can be expressed as
1 t

F=E Un—i ——Im J dE f(E)
7r OO

(Uni+Ei) [BGJ(E )/BE] dE

1 —(Unj +Ej)G)(E )

~here E is a constant independent of n& and we have
used the up-down spin symmetry present for UJ (0
to replace n& by ni. The free energy F possesses a
double minimum as a function of ni when E&+ 2 UJ

lies in the vicinity of Ei: and Ui/8 is » I, as is
shown in Fig. 3. In arriving at these results we have
chosen for simplicity a rectangular density of states of
half-bandwidth B to model the main band, i.e.,

G (Z) =—(1/28) ln[(Z —8)/(Z+8)],
and neglected temperature effects which are unim-
portant at moderate temperatures for physically ex-
pected U, ; i.e., i U, i

& 0.1 eV. At the minima n, sat-
isfies the appropriate form of Eq. (3) and hence
represents the self-consistently obtained average
number of electrons of one-spin species at the site j.
The two minima hence correspond to distinctly dif-
ferent occupancy of the pairing center since in one
case n& -0 and the other n&

—1. That is, on one
hand, on the average almost two electrons occupy the
pairing levels which lie approximately at E&

—Uj,
while on the other, the pairing center is effectively
unoccupied and its associated states lie at -E&. One
can show that the two minima are separated for large

Ui by -iEJ+ —, U& Ezi and h—ence such a negative U

center can give rise to a low-lying excitation of the
system if its characteristic parameters are such that

O.IO

(F-K)/8

0OO i I i s & s I s s 1 a

0.0 0.5 I.O

FIG. 3. Shows the dependence of the free energy
(F K)/B, on the average elec—tronic occupancy, nj. , of a sin-

gle pairing center in a tight-binding lattice when i Uii/B & 1
1

and EJ +—UJ =EF. The zero of energy is taken at the

center of the unperturbed band and U/B = —1.6.
Ep/B =—0.794, EJ/B =0.2.

Eg + Uj Ep'. This is of course consistent with the
. 2

previously obtained results summarized in Fig. 2 and
is just a rather more specific case.

Although within the context of the present mean-
field-like approximation we cannot make a new linear
combination of the two states represented by the
essentially degenerate generalized Hartree-Fock self-
consistent solutions (associated with the minima of
Fig. 3) that reduces further the energy of the system
(there is an orthogonality theorem' ) such an effect
of course physically exists. The resultant intrinsic
matrix element connecting these states should itself
be a random variable because of the different allowed
choices of E;, U; sufficient to produce the same de-
gree of degeneracy. Such being the case, one expects
the density of the very-low-lying excitations at a par-
ticular E to behave as E and contribute an infrared
divergent dielectric response (I). We will postpone
details of this argument until Sec. III B.

The essentials of the present low-lying pair-state
picture should not be smeared out at reasonable tem-
peratures since although, e.g. , the details of Fig. 3
may be somewhat different at different temperatures
one still finds a double minimum in F(n, ) and the
corresponding low-lying excitations.

Another not completely orthogonal class of elec-
tron pairing states with the desired properties would
be expected to exist in systems where these are a
number of essentially equivalent pairing centers the
number of which exceeds the number of available
electrons. In these instances one can envision very
low-energy tunneling-mode-':like excitations
corresponding to different arrangements of the elec-
trons over these pairing centers and correlated states
of this type as we shall see in Sec. III 8 should exhibit
the correct infrared divergent behavior.

Next consider a situation, that may obtain in cer-
tain amorphous glasses, ' where the one-electron po-
tentials of Eq. (2), E;, obey a continuous probability
distribution P(E;) spanning the forbidden gap. To
model the resultant situation we have solved the
self-consistent equation (3) assuming
P(E;, Ui) = B(U; —Up) W(E;) where W(E)/8 =

2
for

—1 ~ E;/8 ~ 1 and zero otherwise and Uo/8 —3; 8 is
unperturbed half-bandwidth. Also we assumed that
T =0, N, I

=1 and employed as an unperturbed
Green function, 6, appropriate for a Cayley tree with
each atom having six nearest neighbors. In Fig. 4 we
exhibit the numerically determined lowest energy
state of the system (solid line), as well as another
self-consistent solution (dashed line) which
represents a low-lying excitation of the system. The
two solutions essentially differ from one another by
the transfer of electrons from one group of pairing
centers to another, and in this way, although there is
a large gap in the one-electron spectrum very-low-
lying excitations can be achieved leading to a gapless
pair-state spectrum. ' To understand this behavior-
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l.0

0.5

I

-3.0 -l 0
E/8 -—=

FIG. 4. Illustrates two different arrangements of electrons
over the pairing states with the dashed line representing a
low-lying excited state of the lowest-energy state {solid line).

0.0 I

-2.0 0.0

further consider two isolated pairing centers labeled
i,j in competition with one another for two electrons.
Then if U& = UJ it is not the magnitude of U that
determines the occupancy but rather EI, E~. For ex-
ample if E& & E~ then the site labeled i is doubly oc-
cupied and that labeled j is doubly empty in the
ground state. Thus, although the one electron states
lie at E&+ U& and E~, and are hence usually well
separated in energy ()0.1 eV), excitations of the
system that require only energy I Ei —Ejl which be-
comes vanishingly small as E~ E~ can be achieved
by removing the electron pair from the site i to the
site j. In the case 8„. 0, the density of pair-state
excitations is then -P(E;+

2 Ui) which is continuous

and slowly varying around EF and we have seen a
similar picture also applies if we assume some cou-
pling between the pairing centers.

Such a smooth distribution of self-trapped pair-
state excitations is expected to have a character suffi-
cient to produce an infrared divergence at very low

temperautres if we suppose that a field induced hop
introduces a coupling between these states largely in-

dependent of energy. This is so because the density
of states of low-energy pair-state excitations with en-

ergy E is -N'(EF)E, where N(EF) is the density of
pair states at EF. Furthermore, the fact that the pair
states are strongly self-trapped implies that their
response time can be much longer than the time
characteristic of the hopping or reorientation of the
charge species. Thus all conditions for an infrared
divergent dielectric response are apparently satisfied.
This behavior, however, will be completely smeared
out at experimental temperatures unless we suppose
that the energy barriers between pairing states is suf-
ficient to prevent thermally assisted tunneling. Thus
the system at finite temperature is presumed locked
into a metastable state and this could happen for
large enough negative U. %'e mention this case only
for completeness and because it is complementary to
our previous examples where it is supposed that each
tunneling mode (TM) has equal probability of being
in either of its two states. Note that the possibility of
low-lying excitations which are thermodynamically
inaccessible over at least the time of a specific-heat
measurement has already been pointed out' and in

amorphous materials metastable states may persist al-

most indefinitely. Further note though that in this
metastable regime the response of the system should
depend on its history.

Thus, we have detailed several rather general ex-
amples which illustrate how electron self-trapping can
provide correlated pair states with characteristics suf-
ficient to produce the universal law; Eq. (I). Further
examples can be found in those instances where the
Coulomb repulsion dominates, favoring single self-
trapping of the electron. In these cases, various sub-

groups of correlated states can be identified com-
pletely analogous to the bipolaron ones outlined
above. Intermediate subgroups can a'iso be defined
where, e.g. , one envisions very-low-energy excita-

, tions which entail disassociation of a bipolaron into
two singly self-trapped electrons or vice versa.
Although we have phrased our discussion implicitly
in terms of amorphous systems where one expects an
appreciable number of weaker (stronger) bonds, lone

pairs, etc. , to be present giving rise to the self-
trapping states, it is also reasonable to expect that
such low-lying excitations occur and are important in

more nearly crystalline covalent solids since the
remaining self-trapping centers in these materials
could partially pin the Fermi level in their vicinity.
Another point that should not be overlooked is the
probable presence of an appreciable density of self-
trapping centers effective in determining the electron-
ic structure of various interfaces such as oxide-
semiconductor, metal-semiconductor, etc. This fol-
lows since these interfacial regions are expected on
the whole to be disordered giving rise, e.g. , to weaker
(stronger) bonds. Indeed the presence of such
centers can be used to understand some of the more
puzzling electronic behavior of the localized inversion
layer regime of metal-oxide-semiconductor field-
effect transitors (MOSFET's)" where one is dealing
with an oxide-semiconductor interface in contact with

a quasi-two-dimensional electron gas. Furthermore,
recently' we have carried out an analysis of the ori-

gin and role of such states at metal-semiconductor
(Schottky) interfaces and the resultant picture has
been found to be consistent with the so-called

. covalent-ionic trend. '9 Thus, although interface or
contact effects are usuaBy ignored we expect that
such systems should also exhibit a dielectric loss
obeying the universal law and a systematic study of
the details could provide a powerful probe of the in-

terfacial structure.

S. Dielectrics with atom-atom or molecule-molecule
or ion-ion or dipole-dipole interactions

New concepts and ideas on low-energy excitations
in real glasses and spin glasses have been recently in-
troduced by Anderson et aI. , Phillips, 2' and by
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Anderson. ' They propose the existence of a statisti-
cal distribution of localized tunneling levels and/or
modes. A tunneling mode in a real glass is realized
by an atom (or group of atoms) which has an energy
E(x) as a function of its generalized position coordi-
nate x which exhibits two local minima of energy
difference 4E separated by a barrier. Similarly in
spin-glasses spins are considered as classical dynami-
cal quantities with a potential energy surface that is a
function of the simultaneously specified orientations
of all the spins (i.e., a W-dimensional configuration
space); local minima in the energy correspond to me-
tastable states of the spin glass associated with dif-
ferent spin configurations. A tunneling mode for
spin-glasses' is defined in spin-configuration space
as two local minima separated by a quantum-
mechanical energy barrier. Tunneling between one
local minimum and another, if it occurs, involves the
rearrangement of several spins. The linear specific
heat observed in real glasses (spin glasses) comes
from tunneling modes whose energy barriers are suf-
ficiently great so that resonant tunneling of atoms
(spins) between local minima does not occur, but
sufficiently small such that tunneling between the
two levels can take place during the time span of the
specific-heat measurement. Tunneling modes that
contribute to the low-temperature linear specific heat
have a density of levels N(hE) per unit b,E which is
nonzero, smooth, and continuous for AE & kT.
Those tunneling modes that contribute to the low-

temperature linear specific heat compose only a small
subset' of the total density of alternate states or
modes with level splitting b,E.

The spin-glass system and the resultant spin-spin
interaction models can often be transcribed to anoth-
er physical models with nonspin interactions.
Well-known examples include the Ising model
equivalence to a lattice gas and to a binary alloy. A
lattice gas is a collection of atoms (molecules) whose
positions can take on only discrete values which form
a lattice. Each lattice site can be occupied by at most
one atom. In general the potential energy of the sys-
tem of atoms corresponds to a gas. in which the
atoms are located only on lattice sites and interact
through a two-body potential v(~ r; —r&~). The
correspondence between the lattice gas and the Ising
model is seen by identifying occupied sites with up
spin and empty sites with down spin and the nearest-
neighbor atom-atom interaction eq& with —4J», where

J& is the Ising interaction between spins. A binary al-

loy in a lattice model corresponds to sites occupied by
A or 8 atoms (molecules). Let s», a&s, and ass
represent the interaction energies between the atoms.
A site occupied by an atom A is identified with an up

'
spin and a site occupied by an atom 8 with a down
spin. The quantity 4 (2~as —Cga —&ss) then

corresponds to J in the Ising model.
Consider dielectrics where atom-atom, molecule-

molecule or ion-ion interactions are important. In
the lattice gas and/or binary alloy modeling of dielec-
trics with random interactions, the equivalence to the
spin-glass Ising model implies a dielectric state
corresponding to the spin-glass state exists. Such
dielectrics will have, in analogy to spin-glasses, tun-

neling modes. In direct analogy to a tunneling mode
in spin-glasses which corresponds to several spins
turned over, in these dielectrics a tunneling mode
corresponds to the change of the atomic (molecular
or ionic) occupancy of several sites to get from one
energy minimum to the other. The essential point is
the existence of very-low-energy tunneling modes in
these dielectrics. This class of tunneling modes will

be shown in Sec. IV to again satisfy the criterion for
infrared divergence and hence yields the universal
law. The lattice-gas and biriary-alloy model should be
good representations of many dielectrics including the
class of solid-state ionic conductors or solid electro-
lytes such as AgI, CaF, and Na P alumina. In fact
ionic conductivity for these solids has been calculated
in the lattice-gas model. " In the case of Na P alumi-

na, there is the repulsive interaction among the
diffusing sodium ions and also the attractive interac-
tions between the ions and their randomly distribut-
ed, compensating defects. These properties imply a
lattice gas with random interactions. There is indeed
ample experimental evidence ' 6 for the existence of
tunneling modes in alkali P alumina as well as Ag P
alumina. In particular there is an excess low-

temperature specific-heat contribution which is
nearly linear in T as in the case of spin-glasses.

For completeness, we mention again that it has
been pointed out' that there are also a large number
of tunneling modes having small 4E which have their
two alternate states inaccessible to each other because
their energy barriers are too large for tunneling to oc-
cur. Those pairs of levels are practically not connect-
ed, and some of them contribute to the zero-point
entropy of the glass. - Indeed experimental measure-
ments of fused silica ' and glycerol has shown that
the zero-point entropy is finite for both. Such tun-
neling modes can also produce an infrared divergent
response although considerations of thermal histories
become important.

To conclude this section, we note that the apparent
arbitrary division of dielectrics (implicit in this sec-
tion) according to whether electron self-trapping in-

teractions or ion-ion interactions, etc. , dominate the
behavior of the dielectrics is quite natural. Ions have
closed atomic shells and molecules are usually co-
valently bonded. In both cases electron self-trapping
interactions have already gone to completion,
although the origins of the pairing interactions in the
two cases are entirely different. The residual interac-
tions are then the ion-ion or the molecule-molecule
interactions, which then should play the important
role in providing correlated states and their excitations.
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IV. INFRARED-DIVERGENT RESPONSE
OF CORRELATED STATES

Let us examine the transient response of the tun-
neling modes to sudden potential change caused by
fast quantum transition of some charged species.
Tunneling modes whose alternate states are such that
tp/2w ) 10 GHz can be eliminated from the outset
for consideration of infrared divergent response. Our
interest is in the low-fretluency dielectric response
where ~ is smaller or much smaller than 10 GHz. It
may already be noted by the reader that many of the
examples of.correlated states presented in Sec. III
have some common characteristics although the iden-
tity of the correlated states can differ drastically from
one.example to another. Correlated states can be
electronic in origin, paired electron states in bonds,
lone pairs, or arise from defects and impurities; or
single-electron self-trapping states; or even be associ-
ated with extended, electronic states. Correlated
states of atomic or molecular origin can be the atomic
(or molecular) configuration state of a set of atoms
(molecules); or spin-configuration state of a set of
spins; or the configuration state of a cluster of ions
or a group of dipoles. Excitation (de-excitation) of
correlated states consists of the transfer of occupancy
of state of lower (higher) energy to another of higher
(lower) energy. For succinct discussion we shall
focus on the case of an atomic-configuration state and
spin-configuration state where excitations are the
conventionally called tunneling modes. However, we
emphasize again that the discussions in the remainder-

of this section hold as well for the electron self-
trapping tunnelinglike modes detailed in Sec. III.

The very low LIE of the tunneling modes guaran-
tees contribution to the dielectric response at
corresponding low frequencies pi = hE/IL This class
of tunneling modes should exist. Since the config-
urations of the atoms (spins) is random, there must"
be very many locations (of order N, the number of
atoms or sets of atoms) where there are two possible
configurations of very similar energies Eq and E2. If
E~ and E2 are independent random variables, then
the probability p(b E) of finding LEE =

I E2 —Eil is

finite as hE 0. But physically this is not true be-
cause it is possible to tunnel between the two alter-
nate levels with a tunneling matrix element T~2 even
though it is small. The energy-level separation will

be at least AE ) I Ti2I, the off-diagonal matrix ele-
ment between the alternate levels. For this class of
very-low-energy inaccessible tunneling modes (i.e.,
(10 GHz) the physical energy difference 4E is
determined by the off-diagonal matrix element
~E=IT„I.

It has been argued by Anderson, ' that T~2 being a

complex matrix element acts like the x and y com-
ponents of the random field that prevents the actual
level splitting hE going to zero even though

IEi —E2I 0 unless Ti2 0 also. For low-frequency
dielectric response, wc arc particularly interested in
the hE =

I Ti2I 0 limit. Ti2 consists of two random
variables since it has real and imaginary parts. The
probability that the mode energy hE lies in the interl-
val I TI and I

T
I
+c I T I is proportional to I T I"I T I.

Hence the density of states of very-low-energy, tun-
neling modes N(d E) is proportional to hE. Now the
sudden potential change that induces transitions
between the two alternate levels should not depend
on hE. Hence, for atomic- and spin-configuration
states the condition I Vi2I'N(hE) =nE for infrared
divergence of the response through correlated state
excitations (i.e., tunneling modes here) is satisfied.
This statement applies also to cases in which other
types of correlated states are concerned. This will

lead to the desired functional dependence in, X" of
Eq. (1) as well as the loss peaks, as will be disucssed
in Sec. V.

V. LOW-FREQUENCY INFRARED-DIVERGENT
DIELECTRIC RESPONSE

Having argued that dielectrics with diverse interac-
tion types should have invariably some very low-

frequency excitations that respond in an infrared
divergent manner to fast transitions of polarizing

species and contribute a time dependence of the form
t "at large t to some correlation function, we embark
on the derivation of the dielectric response function
and examine its properties. The total dielectric polar-
ization P induced by an electric field E (t) can be cal-

culated by standard methods' 0 of linear response.
The interaction of the. polarization with the electric
field is given by

0;„,=—P E(t),
where P is the operator of the polarization. The per-
turbation 0;„,induces a polarization density

ft
(P ) = (P )p+ ' alt(t t') ' E(t') Ct, (6)

where ill(t —t') =—((P(t)P(t'))) is the dielectric po-
larizability tensor, and (P )p is the polarization densi-

ty in the equilibrium states as E 0, which can be
nonzero for some dielectrics such as ferroelectrics.
For simplicity consider the dielectric tensor ill to be
diagonal. In the case when classical statistical
mechanics suffice (as often is the case for dielectrics
at finite temperatures), the response function simpli-

fies to the time correlation function

where ( . )p denotes averaging with the equilibri-
um distribution function, p= I/ksT, and P, (t') is the
derivative of P;(t') with respect to t'.

If P, (t) takes on either of two values +pp and
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makes transitions from one value to the other, as in
the case of a system of particles with a dipole mo-
ment or the case of a charged particle that can occupy
one of two alternate sites, then p;; can be readily cal-
culated by generalizing the method to take into ac-
count a time-dependent jump transition rate W(r).
Rewriting t —t' as ~, we wish to calculate

p„(r) =—P(P;(t)P;(t —r))0, where the derivative is

now with respect to v. Doing this we obtain the
result

'r

y;, (r) =2Ppp'W(i) exp —2 J W(r) dr (s)

for the time dependence of the dielectric response
function. The task that remains is to calculate W(r)
including the possibility of an infrared divergence of
correlated states excitations. Let $(r) describe the
time response of the correlated states to the sudden

jump of the electron (dipole) from one position to
another.

The form of $(r) in our notation is

~E
$(r) =, Vo &(E)[1 cos(Er—)] dE/E',

and is different from the form normally given. 4 5

The difference is the appearance of the cosine term
instead of exp( —iEt), and is due to both excitation
and de-excitation of correlated states that now must
be taken into consideration. We have seen in Sec. I~
that there exists some class of correlated states in the
dielectrics we considered so that V02%(E) —= bV02E is

proportional to E and satisfies the condition for'in-
frared divergence in the number of these low-energy
correlated-states excitations. The integral, $(r), can
be evaluated and yields

$(r) = bVO Re[y+in(iE, r) +E~(iE,r)],
where y =0.5722, and E~(ix) is a standard integral
which vanishes at large x. The jump transition rate is

Consider the case when either the infrared divergent
correlated states do not exist or the coupling Vo of
the hopping charges (dipole) to the correlated states
is vanishingly small. Then in either case $(r) 0
and

y„(r) = (Pp02/rp) exp( —r/ro),

whose Fourier transform is X;;(co) =Ppo2(l+iraro) ',
which is the classical Debye susceptibility. Recaptur-
ing the classical Debye laws by turning off the low-

energy correlated-state excitation is of course no
surprise. The interesting point is that dielectrics or
dielectric interfaces in nature seldom obey the Debye
law which implies there should exist some low-energy
correlated-states excitations which are coupled to the
carriers (charges, dipoles) of the dielectric.

The dielectric response function for E,7 && 1 is

y;;(r) =(/3p02/ro)e "'(E,r) '

xexp[ —e "'r' "/(1 —n)roE,"],
where we have put n —= bVO and assumed n & 1. By
inspection one can observe that although the (E,r) "
term may initially determine the r dependence of P;;,
for sufficiently large values of r, P;; will be dominat-
ed by the exponential function. This occurs roughly
at

[(1 a) enyEnr ]11(1-n) (12)

The Fourier transform of f;I(r) of Eq. (11),.xs(co),
can be obtained numerically. Several representative
results for representative values of n are sho~n in
Fig. 5. A peak in X"(co) exists and its location is

W(r) = Woe &'~ where Wo is time independent. On
defining a time ro by 1/ro =2 Wo and combining
equations, we obtain

pr
Q;;(r) = (Ppo /ro) e ~ ' exp — e & ' dr/ro . (10)
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FIG. 5. Behavior of X', X" in the present theory for several different values of n. Note the peak shape is independent of
a —= e "~/(I —n) 70E," but strongly dependent on n. The slope m of each of these log(X") vs log(cu) plots varies continuously
from zero to one for log(~) & log(cvz), where cu& is the post-peak position. m for a fixed decrement of log(~), i.e, at a value of
~ with log(~/~&) (0 and fixed, decreases as n increases. In view of this property one should not take the asymptote of the
lowest available frequency measurements of X"(eo) and attach a universal meaning to the slope of that asymptote but rather
analyze the local slope m at a fixed decrement below the post peak.
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close to the value of tp~ = I/r~. This post I/co' " peak
may be identified with the a or the P peaks common-
ly observed in dipole systems such as polymers,
liquids, p-n junctions, ferroelectrics, liquid crystals,
cryogenic polymers, and' some glasses. The approxi-
mate peak position

[(I n)engr En]1/(n —1) (13)

is a decreasing function of increasing ~0 and E, and
depends sensitively also on the infrared divergence
exponent n. In general ~0 is temperature dependent
and usually has a clearly defined activation energy
Eg'. Tp(T) = r exp(Eq/ks T). This alone introduces
a temperature dependence into

tp~ cc exp [—Eq /(1 —n )ks T] (14)

with an apparent activation'energy E„ofEq/(I —n)
Increase in temperature will cause a lateral shift of
the universal law and its post peak along the frequen-
cy axis.

A wide range of dielectrics have associated with
them the presence of charge carriers of electronic or
ionic nature. These charge carriers are also evidentl„'
responsible for dc conductivity. Thus one expects
that charge carrier hopping transitions, under excitai-
ton by a time-varying electric field, do not necessarily
involve only two preferred sites. Consider the charge
carriers that do not jump randomly between two
states/si. es, then the dielectric loss is simply propor-
tional to the probability of exciting low-energy
correlated-state excitations. With the same time
response function of the correlated states $(r) as
displayed in the preceding paragraphs,

VI. SUMMARY AND DISCUSSIONS

C

In this work we have broadly and arbitrarily classi-
fied dielectrics according to the type of interaction or
correlations inherent in all materials. We have found
that independent of the type of correlations, a dielec-

X"(~) ~ „dt(i r~) exp[ —P(r)] .

For E,r large, $(r) can be approximated by
n y+ n In(E, r). The approximate dielectric loss
X"(tp) is then proportional to I/tp' " which is identical
to the universal law' and the absence of a loss peak.
This predicted type of dielectric response is indeed
observed in a very wide range of dielectrics of all

physical and chemical characteristics, and interesting-
ly they are always associated with the presence of
hopping charge carriers (Fig. I). A second universal

law (tp/tp, ) ' will follow a first (tp/tp, ) ' on de-
creasing eo if there are available two types of correlat-
ed states that can contribute to infrared divergences.
From sum rule considerations on X"(cu), we expect
nq & n~ which is also observed (Fig. I).

tric in general has gapless "correlated states" whose
density of states is continuous. These correlated
states have response times much longer than the
time taken by the hopping between sites of charged
particles or jumping between orientations of dipoles.

.Hence the hopping or jumping movements can be
considered instantaneous as far as the correlated
states are concerned and they experience a sudden
change of the potential induced by the charged parti-
cles or dipoles. The transient response of the system
is the emission of low-energy excitations of the corre-
lated states which cause the response to have a t "
time dependence or an infrared-divergent-like I/co' "
frequency response of the dielectric loss. We have
thus arrived at a fundamental mechanism for the em-
pirical tp" ' dependence (accompanied sometimes by

a peak at low enough tp) of the dielectric loss obeyed
by nearly all dielectrics and the mechanism is opera-
tive independent of the type of physical structure and
chemical bonding in the materials, and whether the
polarization is associated with permanent dipoles or
hopping charge carriers of electronic or ionic nature.

This arbitrary classification of dielectrics according
to the present scheme is quite general. The classifi-
cation is based on the type of dominant correlations
and the correlated states they render. Detailed
developments of the electron pairing correlations and
of the ion-ion correlations have been given. Corre-
lated states are identified in both cases. Types of
correlations other than those between electrons or
between ions could conceivably lead to some sort of
correlated states as has been demonstrated explicitly
for the cases of electron pairing correlations and the
ion-ion correlation. These correlated states although
they may have very different physical origin and in-

terpretations dependent on which class of dielectrics
share some common important properties. The very
low-energy excitations of these correlated states have
an infrared divergent behavior, and lead to the low-

frequency dielectric response obeying a universal law,
X"(tp) ~1/tp' ", with sometimes the appearance of a

post peak at low enough ~. The Debye law holds
only in the probably seldom realized cases where the
correlated-state excitations are either nonexistent or
ineffective because of weak coupling to the hopping
charges (dipoles) that contribute to the Debye sus-
ceptibility. The invariable deviation from the Debye
laws in most dielectrics is taken to imply that the ex-
istence of very-low-energy correlated-state excitations
are often the rule rather than the exception. We em-
phasize the importance here of not only the recogni-
tion of the Curie —von Schweidler law as an infrared
divergence phenomenon but also the subtle task of
identifying the (correlated state) excitations that are
responsible for it. There is an important difference
between the present case and the Cherenkov (or
bremsstrahlung) radiation on the x-ray edge singulari-

ty problem, since energies in the present regime of
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interest are so low that for these cases, the spontane-
ous photon or electron-hole pair produced infrared
divergence is entirely smeared out at finite tempera-
tures. This is not the case here for the particular
correlated states responsible for such low-energy
dielectric response singularities. The infrared diver-
gence is retained at finite temperatues even 10 6Hz.
In all infrared divergence problems, an upper cutoff
E, of the excitation energies E is needed either to in-
sure convergence at large Eor simply because we run
out of these excitations as E increases, or
~
V~2K(E) ~ Eno longer holds for E )E,. The

universal law X"(co) ~ 1/i@' "may be modified at low

enough frequencies in dipolar dielectrics by the intro-
duction of a peak, and this may or may not occur
within the frequency spectrum scanned, dependent
on the magnitude of E„ the upper cutoff of the
correlated-state excitations, and- the value of ri. The
occurrence of a post peak in some classes of dielec-
trics and the nonoccurrence in other classes can be
correlated. Order of magnitude estimates of E, are
possible for certain classes of dielectrics and the
post-peak frequency predicted seems to be consistent
with experimental data. The temperature dependence
of the post-peak position is also consistent with ex-
perimental data.

In addition to bulk dielectrics we have considered
also the interfaces of a dielectric with another dielec-
tric or a semiconductor or a metal. Another interest-

ing example of these interfacial systems is the ther-
mal oxidized Si-Si02 interface in metal-oxide-
semiconductor (MOS) device structures. The present
authors have investigated the local electron pairing
interaction at dangling bonds and weaker (stronger)
bonds" (a concept also introduced by Anderson" )
and the resultant electronic structure of the Si-Si02
interface. ' Both dangling bonds and the weaker
(stfongef) bonds can give ftse to pair states which are
strongly self-trapped and have the interesting dynam-
ic character when, e.g. , electrons are excited in pairs.
In particular, correlated states of this type at the in-
terface give rise to electron pair excitations with arbi-
trary low energies and hence should produce an in-
frared divergent dielectric response. %e wish to
point out that low-frequency dielectric response
measurements of the interfacial region could be a
powerful and novel tool for the charcterization of
devices. These measurements may have the potential
of yielding more in-depth understanding of interfaces
when coupled with conventional measurements such
as capacitance versus gate voltage.
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