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We make use of the calculation of Achiam and Kosterlitz and investigate the generalization of
the Migdal-type renormalization-group calculation to critical dynamics, by looking at the one-

and two-dimensional kinetic Ising model with no conserved magnetization. In the two-

dimensional case the dynamical critical. index Z~ (magnetic perturbation) =2.064 and ZE (ener-

gylike perturbation) =1,819 for scale factor A, =1. Z~ invaJves the static P/v exponent, while

ZE involves 1/v, and therefore, it is not surprising that Z~ is closer to the high-temperature ex-

pansion results, since P/v in the Migdal approximation for statics is much closer to the exact

value than 1/v. In one dimension we obtain Z~ = ZE =2, which is the exact result of Glauber.

I. INTRODUCTION

The understanding of the dynamical critical proper-
ties have recently been enriched by the introduction
of some of the renormalization-group techniques'
that have shed so much light on the static critical
properties. Following the extension of the 4-e-type
expansion to dynamics, ~ real-space renormalization-
group calculations are beginning to be applied to the
dynamical critical phenomena. In this paper we in-

vestigate the generalization of Migdal-type
renormalization-group calculations to critical dynam-
ics by looking at the kinetic Ising model in one and
two dimensions with no spin conservation.

It is well known that (at least in the static case)
Migdal's method is accurate only near the critical
dimensionality of the system, ' which is one in the
case of the Ising model. However, the results for the
static critical properties of the two-dimensional Ising
model are quite close to the exact results. If we as-
sume that the results for the dynamics are as good as
those of the statics, then in one dimension we should
get back the exact result of Glauber for the dynami-
cal critical exponent, z = 2. In the two-dimensional
case the error should be not higher than 25%. As we

shall see in our method this is really the case, name-

ly, in one dimension we get z =2, while in two di-
mensions we get zM (for magnetic perturba-
tion) =2.064 and zE (for energylike perturba-

tion) =1.819 if the scale factor is X 1. It is easy to
understand this difference between z~ and zE. Our
results in two dimensions can be written

r 1

zg=2 —6 +mE 5 =2 ——I
P

t

(2)

where m~ and rrE are calculated in Eqs. (43) and
(52). The static exponent d in Migdal's approxima-
tion is within 5% of the exact result, while b,

' differs
from the exact result by 25%. Our results for z~
compare favorably with the available high-tem-
perature series expansion results6 (z =2.13) and
Monte Carlo studies' (z =2.3 +0.3). If one puts the
exact values of A(=0.125) and 5'(=I) in the above
formulas, and uses the results of the Migdal-type cal-
culation only in m~ and vrE, then zg —z~=0.007.

The paper is organized as follows: In Sec. II
Migdal's static calculation will be briefly reviewed. In
Sec. III the dynamical model suitable for the Migdal-

type calculation will be set up. In Secs. IV and V we
derive and solve the recursion equations for the cases
of magnetic and energylike perturbations, respective-
ly. Finally in Sec. VI we discuss our results.
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II. MIGDAL RECURSION EQUATION FOR THE
STATIC PROPERTIES OF ISING-LIKE SYSTEMS

The renorrnalization-group transformation is de-
fined by a recursion relation connecting domains of
spins of different sizes. For definiteness we set up
the recursion equation for an Ising spin system on a

square lattice. We take a square domain in the lattice
whose linear size is L. We define for this domain a
normalized partition functional' O'L, as

WL(a.r) =

1

g eXp & Or irini
kT

exp H a'r oint
1

(~rl (~lnIl

(3)

FIG. 2. Smallest domain, with four spins denoted by (7&,

0 2 (73 and o.4.

Equation (4) for the ferromagnetic Ising model has
to be solved with the initial condition (see Fig. 2)

4

X rr W.(-„)
((rc~) I~1

W2L(ar) =

( $ Q WL(ar, ))
(pc~I I-1

=82(WL) . (4)

In Eq. (4) ( ) means averaging over o r. The sub-

script 2 of R expresses that the scale factor in the
transformation is 2. yl stands for the boundaries.

where' o-r are spins on the boundary of the domain
(I' denotes the boundary) and a;„, are spins inside
the domain. Equation (3) implies that in the
numerator we average the Boltzmann factor over all
the internal spins. In this way WLtarl is a functional
of the spin distribution along the boundary. If we
combine four domains with linear size L (Fig. I) and
take all the spins along the boundary lines with half
weight, then upon averaging over spins along the
common boundaries (oca) we get an exact recursion

equation, '
namely,

h
exp —X cr; o;+1 + —. $ a;

K h
X eXp —X o.;a.;+1 +—$ o;
(cr,.l 2 I-1 2 I-1

Here a is the lattice constant E = J/kT, where J is

the exchange coupling and h is a dimensionless mag-
netic field.

Since Eq. (4) is strictly speaking a functional equa-
tion, there is little hope to solve it exactly. Migdal
proposed the following approximations:

(a) Low-temperature approximation. This means
that since we deal with ferromagnetic spin systems we

may assume that at low temperatures the spins along
a boundary line are almost all aligned. We replace
them with one average spin (Fig. 3). With this the
functional Eq. (4) is reduced to a simple equation for
functions of four variables.

(b) Factorization hypothesis. This means that we
use the following ansatz which is motivated partly by
symmetry considerations,

WL(o11rl ir2a2 ) FL(1r11rl ) L(ir2o2 ) (6)

It is worthwhile to mention that even if one starts
with the most symmetrical form for 8'L, , in the
course of the renormalization one would always ar-
rive at a system, where there is no coupling between
the different directions. '

When substituting Eq. (6) into Eq. (4) we get for

(F2) 2

F2L(o (r') =-

4

FIG. 1. Illustration of how four domains of spins are
combined to form a "super-domain". Here y1 indicates the

boundary of domain I, etc.

where

(F') = XF((r&)F(&~') . (g)
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FIG. 3. Schematic representation of one of Migdal's approximations. The boundary spins on each side are all assumed to be

parallel to each other and are represented by a single spin.

For a general scale factor A. and a general dimen-
sionality d instead of Eq. (7), we have

In the case of a nonzero magnetic field, Fq is taken'

(Fk) I
F),z(o o'') =

&«6.". )

In the case of the Ising model without a magnetic
field the most general form for FL can be written

I

EI Catty'

Fz( ') = —,[1+ 'tanh(Kz)] =„„.(10)
4cosh KL

h],L =A. "hg .

Equation (9) leads to'

(18a)

F; (oo') = . „exp[K"o o.'+ hL, (o. + o.')] (l7)
4cosh K"

and Eq. (9) is solved by linearizing in hz. From scal-
ing'

(Remember that Fz has to be normalized to unity. )
With this form the recursion Eq. (9) can be solved
exactly and for K&L, we obtain

tanh ~, =tanh (Kz), K, =K .&]L

In the two-dimensional case, X 1, the fixed point
value K'is

5 = + = 1+ (h. ' ~ —1)
v ink,

For, d =2 and A. 1

6 =0.119,

while in d =1+~

5=0(e '~').

(18b)

(20)

K' =—
T~ ln[tanh(K") ] =—

~
ln(2' ~ —1),

which is just Onsager's result. In d =1+e, the first
term in the ~ expansion gives

K'=—1

26

III. THE MODEL

The model we study is Glauber's kinetic Ising
model. '0 The master equation for the probability dis-

tribution is

Linearizing Eq. (11) around K" one obtains'

1 1
l

sinh(2K')
ink.

Slnh
)

d-1

(i4) (21)

ro —P([~],r) =—X w(~, )p([~;],r)d
dt I

+X w( —(r;)P((o,), o, r) . —

where v is the usual critical exponent. When d =2
and A. 1,

The transition probabilities satisfy the condition of
detailed balance and are chosen as

5'=1.246 .

For d =1+~

(15) 8
w (rrj) =

Kq
' (22)

+eO(e '~') .
v

Here q is the number of nearest neighbors, which is
2 of d =1 and 4 for d =2. The choice Eq. (22) en-
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P( ) exp[ H (a, t))
Z (t)

where

(23)

sures that w(0 J) ~1. In the following we shall use
the linear response theory proposed by Achiam and
Kosterlitz. %e assume that

for magnetic perturbations and

K hp~(t)
H (0', t) =+—X 0 la/+p + X al al+p

i 8 i, 8
(25)

H(a, t) =+—Xo;a„a+he~(t) Xo,
i, 5 i

(24)
for energylike perturbations. %ithin linear response
theory (in h), Eq. (21) can be written

K
exp + X 0 JaJ+p

2 J
r —

p
P~ 2h(~)(t—) X w(0;)0,

t

(26a)

rp —Ps= hpE(t) X—w(a, )a, Xo.,+,E E
Ch 8

K
exp +—X aJaJ+p

2 J

Z
(26b)

respectively, for magneticlike and energylike perturbations. In Eqs. (26a) and (26b) w is given by Eq. (22).
Note that since P is given by Eq. (23), where H is given by Eqs. (24) and (25), we can omit the h dependence of
Z.

In order to arrive at such a form of the master equations (26a) and (26b) which is the most suitable for apply-
ing a Migdal-type method, we imagine Eqs. (26a) and (26b) to be valid for a domain with linear size L and as in
Sec. I, we average both sides over the internal spins of that domain. According to Eq. (3), and because of the
specific form of the w(ol)'s we obtain

rp —WP= 2hP(t) X 0;—X w(o;)
(ty. )

K
exp +—X O'JaJ+p

2 J

ZL
(27a)

r, Wp'= h—ill(t) X a; —$ w(al) Xal+p
6f

i EB Icr,.„,)

K
exp +—X aJoJ+p

2 J

Zg
(27b)

X,.ps means summation over the boundary spins. It
is clear that all the boundary spins have less neigh-
bors than the internal spins. This will have to be tak-
en into account when writing the recursion equation
for the right-hand sides of the above equations. Ac-
cording to approximation (a) in Sec. I, all the spins
along the separate edges (in d = 2) are assumed to be
aligned. Therefore, taking a specific edge we have

~s
i eB& {o,.„,} i E8& (~,.„,)

Here Bg denotes a specific edge. In d dimensions the
sum X,,a can be divided into 2d separate sums, each
one corresponding to one of the 2d average spins in-
troduced in the Migdal approximation. Each separate
sum contains L~ ' terms. If the expression
Xl, l [ ] were the same for all the L~ ' terms, then

we would have, instead of Eq. (27a) for example,

2d.,—WP= 2hP(t) r.' '-X a„0,(a-„),
1

K
exp X aJOJ+p

2 J
Qz(a„) = X w(0.„) — ' ' ' . (29)

I~in~~

By this we ~ould obtain an extra L ' factor which
changes the time scale of the system (without doing
any renormalization-group transformation). Physical-
ly this can be easily understood. If all the boundary
spins are the same, call it o., clearly there will be
L ' ways by which this configuration can be
changed —namely, by the relaxation of any one of the
L~ ' boundary spins. If any of those spins is relaxed,
the block spin 0 is flipped. Using approximation (b)
of Sec. I we can write, for example, in the two-
dimensional case (see Fig. 3)
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d —2hr. Lp
r0 —WP= [(a.1 + o 1')FL(a 2(r2') + (tr2+ cr2') FL(o1o.,')],

e L(4coshK )
—hEL E

r0 E ~ tr 1 1r1 FL ( tr2 tr2 ) + rr2 tr2 FL (tr 1 tr 1 ) l

e L(4coshK )

(30a)

(30b)

hl tp

PL
(31)

tp

and we see that in Migdal's approximation QL is real-

ly the same along an edge. Obviously the right-hand
sides of Eqs. (30a) and (30b) are the most general
functional forms one can write in the Migdal approxi-
mation. Here FL is given by Eq. (10). The denomi-
nator in the above formulas is the consequence of
the specific choice of the bare transition probability,
Eq. (22), and of the original normalization of P.
Note that the spins along the edges have only one

"nearest neighbor", that is why e ~ appears instead of
~K@

We can now define

quantities we will have to calculate

."= L.- " (."f = ) L r ")
rP=LrL (v„L ——)Lrgg, ) .

(33a)

(33b)

IV. MAGNETIC PERTURBATION

d~M
tL —

K II M

dt e L(4coshKL)

2h
(34)

In this case the master equation to which we apply

the renormalization-group operator is

As we have emphasized the t's defined above are
not the physically interesting quantities. In Migdal's

approximation we deal with "clusters" of L aligned
spins. t is the relaxation time of such a system of
clusters. In order to obtain the physically interesting

Here II~~ is given by the square bracket in Eq.
(30a). Below we shall work out the recursion equa-
tions in detail for d =2 and X =2. The generalization
to general d and A. is straightforward. Let us combine
four blocks of linear size L and integrate over the
spins on the common edges. Since (see Fig. 4)

X X X X wp(s) wp(ss) wp(sss) wf(sv)
$) $2 $3 $4

(XX X X wL(l) WL(ll) WL(lll) WL(sv))
$$ $2 $3 $4

R2(WL)

(R2( WL))
(35)

on substituting this into an equation similar to Eq. (34) but corresponding to a cluster with linear size 2L, and

differentiating each factor in the numerator of Eq. (35) we obtain

II~=c" X IIL(s) w, (a) w, (as) w, (sv)+" + w, (s) w, (ss) w, (al)II/(sv) .
$)$2$3$4

In the above Eqs. (34)—(36) Wp contains h~, but
8'q is taken at h~=0. This can be done because of
the linear response theory we are using. C~ in Eq.
(36) is given by

point let us take the first term in Eq. (36).
From Fig. 4 one sees that

II (l)= (s3+ 02)FL(at's2) +(s2+ at')FL(s3tr2) . (38)

T 2Lhfe 2L cosh(K2L)

r" fhq~qe L cosh(KL)
K

1

(RWL)
(37)

It is easy to see however that Eq. (36) cannot be the
correct recursion equation for II. To clarify this

Because of the specific form of the transition proba-
bility, s3 cannot be coupled to its nearest neighbors,
which in our picture are cr2 and cr2', and so s2 cannot
be COupled tO cr~ and 0.~'. When aVeraging OVer S3

and s2 in the first term of Eq. (36) we should obtain
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block of size A. L we find

'rAL L e-M~M "a.

rL ue +L

~

) (d-1) /2

gd-1 1 —tanh'KL

1 —tanh'2KL
. (40)

Using Eqs. (11), (18a) and (33a) for very large L, ac-
cording to dynamical scaling,

$
M

gd-h
N
L

I'

1 —tanh K'
K'

1 —tanh2

~(d-1) /2

(41)

FIG. 4. Illustration of the construction of the recursion
relation for HL in Eq. (36). Here s3 is a spin on the
common boundary of domain 1 and II, etc.

Eq. (41) is valid for d & 1.
For zM we get

zM =d —5+aM,
where

(42)

0. Therefore, in Eq. (36) instead of Eq. (38) we can
use

) d-1
mM= ln

ink.

coshK'
t

K'
cosh

) d-1

fir, (I) = a2Fr(cr)'s2) + a)'Fr(s3o2) . (39)

The recursion equation, when taking only the first
term in Eq. (39) can be illustrated schematically as is
shown in Fig. 5(a), where each dashed line
corresponds to an FL factor. Note that o-2 is not cou-
pled to its "nearest neighbors". Now s1 is the
"nearest neighbor" of o-2, If we put o-2 = o-2 then s1
becomes the "nearest neighbor" of o-2 as well. Hence
s~ and o2(=o2) should not be coupled to each other
and the recursion equation should take the form il-

lustrated schematically in Fig. 5(b). Performing the
actual calculation for general d and A. and requiring
that Eq. (34) had the same form when written for a

For d =2 and h. 1, using Eq. (12) one gets

mM =0.183

and finally using Eq. (19)

zM =2.064 . (45a)

Formula (43) has a very interesting property. The
value of mM as A. 1 is independent of the factor
A. '. If we forget about this factor, we get the same
duality property for mM that is characteristic of the
static formula of Migdal. Namely, Eq. (43) will be
invariant under the transformation X' = (1/A.), P' = Ph. .
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FIG. 5. (a) Schematic representation of the recursion equation for the first term in IIL (I) before putting cr1 = cr1.
(b) Schematic representation of the recursion equation for the first term in IIL (I) after taking cr1= cr1.
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This was the reason why Migdal took the A. 1 limit.
In Kadanoff's bond shifting formulation of the Mig-
dal approximation, the A. 1 was necessary in order
to restore the original isotropy of the system. Yet
another argument can be given for taking the A. 1

limit. We would like our renormalization-group
transformation to have the group (actually semi-
group) properties, that is we would like the relation-
ship

using the arguments of Sec. IV, we obtain

zE =d —4'+~E . (50)

tanh&'
mE = n 3r + ln

ink.
tanh — „,gd-1

(51)

When deriving Eq. (50) we have used h fL,
= h. '~"hLS.

Here ~E is given by

R„,[R), (W2)] =R„),,(WL) (45b) The value of mE at A. =1 is independent of the factor
8 ' in 2r3r [i.e., Eq. (43)l, and if we neglect it

to hold. It is easy to show [taking for example Eq.
(11)] that the transformation has this property only if
A. 1

=1+E1 and A2 =1+e2 with e1 and e2 very small.
W'e can now calculate vxML for d =1. We will do

this in the limit when d =1+e. However in this
case, using Eqs. (13) and (16) and scaling for the
correlation length (L

1mE= ln
ln A.

For d=2, A. 1

mE =1.065 .

sinhK'

K'
sinh

(52)

(53)

This together with Eq. (15) gives

zE =1.819 . (54)

2KL
=lim 1+,

e~o

2K
e ~ (46)

Therefore, in Eq. (40) we have the factor

a'u,
e xL g-1/2

Using this, and taking into account that h(d =1) =0,
we get

Obviously Eq. (52) also possesses the property of du-

ality discussed in Sec. IV.
Qne expects zM =zE. That this is not so is very

likely due to the large deviation of 5' from the exact
value. This conjecture. is supported by the fact, that

when we use the exact values for 5 and 5',
zE —zM =0.007.

In d =1, analogously to the results of Sec. V we

obtain zE =2, if we use the definition of the critical

index v given in Ref. 11, namely g
—(e2x)" [when

v=1, i.e., Eq. (46)].

3 A.
" '

zM = —+lim ln
ink

coshK'
2 (47)

K'
cosh gd-1

V. ENERGYLIKE PERTURBATION

In this case the master equation to which we apply
the renormalization-group operator is

„E dS'LE —
AL

TL K L ~

e ~(4coshK )
(48)

IIL(I) = $30'2', (rr3 $2) + $201 Fg ($30'2) (49)

Performing the calculation for general d and A. , and

where IIL is given by the square bracket in Eq.
(30b). The recursion equation for IILS is constructed
analogously to that for IIL, Now instead of Eq.
(38) we have

VI. DIS.CUSSION

Applying a Migdal-type recursion method to the
two-dimensional kinetic Ising model we have ob-
tained a result for the dynamical critical index which
lies withiri the range of previous estimates obtained by
high-temperature series expansion and Monte Carlo
calculations. Our method is very similar to that Mig-
dal used for the statics. However, the approxima-
tions introduced in the static case have more serious
consequences in the dynamical case and care has to
be exercised to apply them correctly. Because of the
relative simplicity of this method, a whole vista of
possibilities is opened up for applying the above
method to other systems.

It is well known that the Migdal method gives very
good results in the case of continuous spin systems,
like the Heisenberg and xy models in d =2+ e di-

mensions. Although the dynamics of the dual of the
two-dimensiona1 xy model has been looked at, ' the
effect of vortices on the dynamics of the two-
dimensional xy model has not been clarified. It
would be interesting to apply the above ideas to such
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systems. Another interesting possibility is the class
of Blume-Emery-Griffith's models in both two and
three dimensions. M igdal-type renormalization-group
calculation seems to provide reasonable results when
compared with experiments of submonolayer cover-
age of krypton on graphite. " Yet another area ~here
the extension is quite straightforward is the study of
the dynamics of spin glasses. The above are just a
few of the potential applications of the direction
which we are now taking.
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