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For solids in the diamond structure there is a close resemblance between the true bands, the
nearest-neighbor linear combination of atomic orbitals (LCAQ) bands, and the free-electron
bands. Making use of the similarity of the last two we have derived universal LCAO parame- -
ters for the interatomic matrix elements between s- and p-like states. They are all of the form
7 (#2/md?), and for the diamond structure they are in good agreement with Harrison’s earlier
empirical results. For more closely packed structures the n coefficients deviate from Harrison’s

values.

INTRODUCTION

The description of the electronic structure of solids
in terms of linear combination of atomic orbitals
(LCAO) theory has proven extremely useful.! The
main problem in carrying out this approach is the
determination of the parameters (matrix elements)
that enter, and for an accurate description of the
bands they are usually adjusted by matching the

LCAO bands to the bands obtained by other methods.

Harrison? has found that an approximate fit can be
obtained using universal parameters. The s- and p-
state energies, so and po, are taken equal to the
Herman-Skillman atomic-term values.® (The nota-
tion follows Koster and Slater.*) The interatomic
matrix elements are taken to be

2

where

Nsso =—1.40 , mp,=3.24, Q)

nspa=1-84 B T’pp1r=_0.81 .

d is the nearest-neighbor distance, and only the
nearest-neighbor matrix elements are included. So
far this has been an empirical finding. It is the result
of considering the numbers obtained from detailed
LCAO fits to the bands by Chadi and Cohen.® We
will, however, now show that the same result can be
derived theoretically by matching the LCAO bands to
free-electron bands.

I. DIAMOND STRUCTURE

Figure 1 shows the energy bands of germanium to-
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FIG. 1. Energy bands for germanium. Part (a) shows the bands as determined by Chelikowsky and Cohen (Ref. 6) using an
empirical-nonlocal-pseudopotential scheme. Part (b) shows an LCAO fit by Chadi and Cohen (Ref. 5) using only nearest-

neighbor matrix elements. Part (c) shows the free-electron bands.
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TABLE 1. LCAO and free-electron expressions for band
energies.

Point LCAO bands Free electrons
r 5o +4(sso) 0 (arbitrary)
I; sg—4(sso) 271-2-i

2 0 8 mg2
4 8 9 3
I po—5po) =5 (ppm) e
25 073 3 3 mgz
4 8 3 3
Tys po+5(ppa) +5(ppm) 3 27
so+p po—s0 )2 12 "
otpo  |1Po—So 16 2
X, ~5— 5 +3 (spa)
iﬂ.z_hi_
. 8 m‘g2
4 4 3 13
X4 po—3(ppa) +5(ppm) 71r27
m

nearest-neighbor coupling. Also shown are the free-
electron bands. The LCAO bands provide a good
description of the-true valence bands, and they both
resemble the free-electron bands. This suggests the
possibility of obtaining the LCAO parameters by fit-
ting the LCAO bands to the free-electron bands
directly. There are different ways of doing this, so
we choose to equate the bands where they resemble
each other the most, i.e., at the points of highest-

symmetry I' and X. We need six points to determine
J

the six parameters (see Table I). The LCAO energy
levels are taken from Chadi and Cohen.’
Solving for the parameters we obtain

(ss o) =—%w2mi;—=—1. 9;’7;—2, 3)
(spo) = 3‘6/F m? r:z; -1.79 ”ZZ : @)
(ppa)=-§;—w2—’7dz—2= 24 mﬁ;z , (s)
(ppm) =—§2-n2—mf;—2=—0 93 r:;z : ©)
po—s0=%72;57=7.40 ”f;z . ™)

The parameters from Eqgs. (3)—(6) are in excellent
agreement with Harrison’s earlier empirical results.
We have obtained the correct functional dependence
as well as the numerical coefficients.

In order to obtain the correct band gaps, however,
we have to disregard the expression, Eq. (7), for
Po— So and return to the atomic-term values. Only
the parameter (sp o) depends explicitly on this differ-
ence, and it is useful to determine (sp o) in a dif-
ferent way. We will set the effective mass at the bot-
tom of the s band (A;) equal to the free-electron
mass.

The energy along A is given by*

E(A) —ET)) =%[p0—s0——8(ssa) +4[(ss o) +-;—(ppcr) +%(pp1r)] cos-%

- [[po—So—4[(ss¢r) —+(ppo) — 3 (ppm)] cos NG

Expand this for small &
32

2 1/2
kd 64 . o kd
—_ +—3—'(spa)zsm273—l ] . (8)

(sp 052

~1|_4 -
E(A]) —E(Fl) 2 [ 3 (SSO')

9 po—so—4l(ssa) = +(ppo) — > (ppm)]

kd? . 9

Equate this to #2k?/2m and substitute for (ssa), (ppa), and (ppw). Solving for (spo) we find

1/2

372 {|3 8 |13 Po—So i
=—=——|— 4+ .
RALIT: [2 n‘z ”4 w2 w2 fmd? || md®
When we substitute Eq. (7) for po—sg, we get
(sp o) 97’ 116 " 188 #?
o= 32 | 3a? md>  md®
(11)

(10)

r

in good agreement with our previous result. We will
use this last method to determine (sp o) for the other
structures. In Fig. 2 we show the energy bands for
C, Si, Ge, and Sn obtained using atomic-term values
for so and po and our values for the remaining-
parameters.
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FIG. 2. LCAO bands for C, Si, Ge, and Sn using univer-
sal parameters and atomic-term values. Energies are in elec-
tron volts.

II. OTHER STRUCTURES

We can fit LCAO bands to free-electron bands for
other structures just as we have for the diamond
structure. The calculation is straightforward and we
only give the results. For both the simple cubic and
the fcc structure we match the bands at I and X and
set the mass at the bottom of the s band equal to the.
free-electron mass. For the bcc structure we use the
symmetry points I', H, and N. This gives

Do =— 3w’ =—1.23,
Ngo=5m(zm?—DV2=1.90 ,
s¢ 1 12)

Nppr = T‘Tr =-1.23,

3 2
7,,,,,,,=%=3.70,

2
po—so=m? —1— 7 =987
md

Mo =— e’ =—0.62, mMpo=1m =247,
Npo =1l (a2 =112 =233,
fce 1
77pp1r=0 s (13)
_ 5w m 2
Po— So= 4 __mdz =12.34 ol
2 2
Moso= =22 =093, mpo=13T-=4.63,
nqu 3‘” [ [———— ]] —1 75
bec (14)
Ny = —-3—2———0 93,
po—so= ST B _
O Yy 2 T md?

We note that even though the functional dependence
on d~? is the same, the coefficients depend on the
structure. Harrison’s coefficients agree best with
those obtained from the diamond structure. This is
not surprising since his were obtained from solids in
this structure. The deviation increases with the
number of nearest neighbors. More distant-neighbor
matrix elements and additional atomic states must be
included to reproduce the free-electron-like bands of
the closed-packed structures. Of course the larger set
of matrix elements can be chosen to reproduce the
correct free-electron-like bands but the 5 coefficients
will differ from those obtained with a nearest-
neighbor fit.

It is also clear that the d~2 dependence for
nearest-neighbor matrix elements breaks down at
large separations. Since the atomic wave functions
fall off exponentially, the matrix elements must have
the same behavior in this limit. However, the d~2
dependence is valid near the equilibrium separation
and can be used to calculate properties such as the
volume dependence of gaps and susceptibilities.!
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