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The subband structure of electrons in a space-charge layer on (111) Ge has been evaluated
self-consistently in the local-density-functional formalism. The results show that several sub-
bands are filled at readily accessible inversion-layer densities and thus support the interpretation

of experiments performed in this material.

I. INTRODUCTION

In a metal-insulator-semiconductor structure an
inversion layer can be formed near the insulator-
semiconductor surface when a voltage is applied
across the insulator. This space-charge layer has now
been studied in many different semiconductors.!
Most widely studied and best understood is Si, in par-
ticular n-channel inversion layers on (100) surfaces.
In the latter case the effective-mass approximation
works very well. From a theoretical point of view an
n-channel inversion layer on (111) Ge is expected to
be very similar, but only recently have experimental
investigations given good results on the subband
structure.? It is thus of interest to carry out a
theoretical calculation of the subband energies and
compare it with the experiment. The most interest-
ing qualitative difference between Si and Ge is that
whereas it is difficult to occupy more than one sub-
band in Si at low temperatures, several subbands are
readily filled in Ge.

II. THEORY

The effective-mass approximation applied to (111)
Ge surfaces was described by Stern and Howard?®:
The valley which has its longitudinal mass perpendic-
ular to the surface gives rise to one ladder of sub-
bands denoted 0,1,2, etc., whereas the other three
valleys give rise to another, higher lying ladder of
subbands 0', 1', 2', etc. In Table I the parameters
relevant for our calculation are listed and, in analogy
with the theory for Si,* the subband energies E; and
envelope wave functions {; are described by the
Schrédinger equations
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where Viep(z) = €2Nyepz /€5 is the depletion potential,
Vy(z) is the Hartree potential from the electrons
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determined by Poisson’s equation, and
Vin(z) = (e, — €;) €2 /16me; (€5 + €,) 2

is the image potential. The effects of exchange and
correlation are taken into account through the local
exchange-correlation potentials V. and V. They
depend on the local densities of electrons in the
unprimed 7 (z) and primed n'(z) subband systems and
directly on z because of the different permittivities of
the insulator and Ge. zis in the direction perpendic-
ular to the surface, and the origin is at the interface.

A self-consistent solution is then found by filling
all states below the Fermi energy Er keeping the total
density of electrons N in the inversion layer constant
as expressed by the following equations:

N=ENI+ENI" y
Ni=(Er—E)O(Er—E)n,my/mh?® ,
Ny =(Er— E)O(Er— Ep)nymg/mk? |
”(Z)=2Ni|§i(2)|2 ,
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and iterating until the potentials and density distribu-
tions have converged.

For the exchange-correlation potentials® we have
used the exchange-correlation contributions to the
chemical potential of a homogeneous gas of density
n +n'. The electrons have 2 spin and 4 valley de-
grees of freedom. Thus the valley which has its long-
itudinal mass perpendicular to the surface is filled
with #n electrons, and V,. is the exchange-correlation
contribution to the chemical potential of these elec-
trons, while the other three valleys contain each %n’

electrons and V. is the exchange-correlation contri-
bution to the chemical potential of those electrons. It
is assumed that intervalley exchange processes can be
neglected compared with intravalley processes be-
cause of the large momentum transfer required, so
the procedure outlined here is a natural extension of
the spin-density-functional formalism.® Technically
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TABLE I. Notation and values of parameters used in the calculation. ¢ is the permittivity of vacuum and my the free-

electron mass.

Permittivity of semiconductor €5
Permittivity of insulator €;
Longitudinal effective mass of Ge m
Transverse effective mass of Ge my
Effective mass perpendicular to interface m3
m;
Subband density of states mass my
mg
Subband valley degeneracy n,
ny
Depletion layer density Ngepi

16 €p
3 €
1.6 mg
0.08 mq
m 1.6 mg
9m,my/ (m, +8my) 0.089 m,
m, 0.08 my
[m,(m, +8m)) /91172 0.338 my
1
3
2.5 %1010 cm—2

we have calculated these potentials in the plasmon-
pole approximation’ with an electron-electron interac-
tion modified as suggested by Ando* to describe ap-
proximately the effect of the different permittivities
of insulator and semiconductor. Furthermore, the
anisotropy of the mass was neglected, as is usual
practice in electron-hole drop calculations.® For the
results presented here the conductivity mass

3m ' =2m," +m ! was used; the results do not
change significantly, if the density-of-states mass
mdos = mlmy is used.

III. RESULTS AND DISCUSSION

In Fig. 1 we show the subband energies and the
Fermi energy as functions of inversion-layer density.
Compared with the results* in (100) Si two features
are significantly different. Firstly, the density of
states in the unprimed subbands is smaller because of
the smaller transverse mass of Ge and the lack of
valley degeneracy. This means that the Fermi energy
increases much.faster with inversion-layer density, so
that the first excited subband starts to be occupied
below Nj,, =3 x 10'! cm™ and the second below
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FIG. 1. Subband energies and Fermi energy as functions
of inversion-layer density. Ej is very close to Eg.

10'2 cm™2. Secondly, the large mass anisotropy and
thereby the smaller value of m; pushes the 0’ sub-
band higher up in energy: In Si the first excited and
the 0’ subband are very close in energy. Here E; and
Ey lie very close. In fact E;3 > Ey below 10'2 cm™2,
E3; < Ey for 1012 cm™ < Ny < 2.4 X102 cm™2, and
E; > Ey, for larger densities, but they lie so close that
for clarity E3 has been left out of the drawing. In
general the subband separations in the unprimed set
are smaller than in Si because of the larger longitudi-
nal mass of Ge.

In Fig. 2 is shown the number of electrons in each
subband as a function of total inversion-layer density.
Clearly a substantial fraction of the electrons goes
into higher subbands at easily accesible densities.
Quantitatively it is remarkable that in each subband
the number of electrons increases very linearly with
Ninv except for the change in slope whenever a new
subband starts being occupied.

Also shown are the subband occupation numbers
determined experimentally from Shubnikov—de Haas
oscillations.? Certainly the calculation supports the
interpretation that the oscillations originate from sub-
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FIG. 2. Calculated population of subbands as a function
of total inversion-layer density. Also shown are the meas-
urements by Binder et al., Ref. 2. Single points: Lacquer
insulator. Broken line: Mylar-foil insulator.
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band states 0 and 1. Quantitatively the agreement is
not perfect, however. The main problem is that,
even if one allows for some uncertainty in determin-
ing the threshold voltage, not all the carriers that are
induced are seen in the Shubikov—de Haas oscilla-
tions, and it is not known where the remaining elec-
trons go. The ratio No/N, is roughly constant over a
fairly large range around N, =2 x 102 cm™2. Exper-
imentally No/N,; = 3.2 is significantly larger than the
theoretical value of 2.4. This shows that the remain-
ing carriers cannot simply be trapped in strongly lo-
calized surface or insulator states: That would only
reduce the actual number of electrons in the inver-
sion layer and not affect the inversion-layer potential
in any other way. Furthermore, it is unlikely that
they are in the second excited subband because their
number is so large and their mobility expected to be
even better than in subband 1 that they should be
observable in the Shubnikov—de Haas experiment.
The best suggestion is probably that the 0' subband
lies lower than calculated in the present theory.
Binder et al.? have argued that the large density of
states in that subband makes observation of
Shubnikov—de Haas oscillations from the remaining
carriers improbable, even if they all go into that sub-
band. It is not unexpected that our theory should
predict a too large Ey, since it is assumed that the
energy barrier between insulator and semiconductor
is abrupt and infinitely high, so that the wave func-
tions are equal to zero at the interface. Stern® has in-
vestigated what happens to the subband energies in
Si, if the energy barrier is finite and if the barrier is

not abrupt but increases gradually over a transition
region, so that the wave functions penetrate into the
insulator. The strongest effect found was indeed a
reduction of Ey — E, relative to the infinite barrier
case and a much smaller reduction within each sub-
band ladder. The trends of his calculation all indi-
cate that the effect should be even stronger for the
system discussed here: Basically the difference
between the primed and unprimed subbands ori-
ginates from the condition that the probability
current or m;! d{/dz be continuous at the interface.
Since the mass anisotropy ms;/mj is almost four times
larger in Ge than in (100) Si, the reduction of Ey is
enhanced. Also it is certain that the interface is
much less perfect than the Si-SiO, interface. This
corresponds to a larger transition region and thereby

. a stronger.reduction. In Stern’s model the reduction

of Ey — Ey is characteristically between 5 and 15
meV, so it is quite conceivable that Ey is moved
down to or below E, in our case. The low mobility
of the electrons in the lowest subband is also con-
sistent with a strong effect of the transition region at
the interface. However, in view of the very limited
knowledge of the properties of the insulator and the
real interface we have not attempted to model this ef-
fect for the Ge space-charge layer.
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