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Macroscopic inhomogeneities and the magnetoresistances of the simple metals
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We have determined the effects of large-scale voids on the high-field thermal magnetoresistance of simple
metals, including the eA'ects of the lattice conductivity. The calculations were performed by a Greens
function approach and by a boundary-value method. We find that the presence of the lattice conduction
causes large deviations from the linear term evident in the electrical magnetoresistivity. The thermal
magnetoresistivity, both transverse and longitudinal, saturates in sufficiently strong fields. The deviation
from linearity occurs for 10(co,r (100 depending upon the magnitude ef k . The Righi-Leduc coefYicient is
determined and it is found that the voids cause a slight increase. The magnetoresistance anomalies of
potassium cannot be explained by the presence of voids.

I. INTROl3UCTION

It is well known that the electrical and thermal
magnetoresistivities of the simple metals are in
strong disagreement with the predictions of the
semiclassical transport theory. According to the
theory, the magnetic field dependence of the elec-
trical and thermal magnetoresistivity tensors
should be determined by the compensation and the
topology of the Fermi surface. ' For the simple
metals (uncompensated, with closed, nearly-free-
electron-like Fermi surfaces) the theory predicts
that both the electrical and thermal, transverse
and longitudinal magnetoresistances saturate, i.e.,
become magnetic field independent in strong fields
(upp». 1). Instead, the transverse electrical mag-
netoresistivity increases with field, usually as a
linear function of the applied field. ' ' In all of
these metals the Kohler slopes S (defined by
& p/p =St@,&) range from 10 2-10~, and vary in an
erratic manner with the specimen fabrication and
handling techniques. In the simple metals for
which the longitudinal electrical magnetoresistivity
has been measured, '-' it often is linear in field,
although a quadratic behavior has been observed. '

Recently, several articles have been published
Concerning investigations of the thermal magneto-
resistivity of potassium, the archetypical simple
metal. These investigations show that the trans-
verse thermal magnetoresistivity contains a term
quadratic in the applied field, along with the lin-
ear term. '-' The longitudinal thermal magneto-
resistivity appears to be strictly linear in field. '
In addition, the erratic behavior that is so evident
in the electrical case does not appear in the therm-
al case. The magnitudes of the thermal Kohler
slopes are of the same order as the electrical
Kohler slopes, but, fear specimens of similar pur-
ity, are four to five times larger. It should also
be noted that for both resistivities, the transverse
Kohler slopes are generally 30% to 50/p lower than

the longitudinal Kohler slopes.
A variety of explanations has been presented to

explain these large deviations from theory. " At
this time the issue is far from resolved and there
is no agreement as to whether or not the source of
the problem is intrinsic or extrinsic. The problem
is an important one; it is generally considered to
be one of the most important unsolved problems
in metal physics. In this article, we examine one
of the proposed extrinsic theories, that of mag-
netoresistance effects'due to sample inhomogen-
eities. In particular, we examine the effects of
the lattice thermal conductivity upon the distortions
in the thermal current flow which are created by
the presence of a macroscopic sample inhomogen-
eity.

As mentioned above, it has long been known that
the electrical magnetoresistivities of the simple
metals are highly irreproducible in the sense that
the magnitudes of the Kohler slopes vary in an un-
predictable manner with specimen handling and
fabrication techniques. Also, in potassium at
least, the behavior of the electrical magnetoresis-
tivity before the onset of the linear terms is ex-
tremely erratic; knees, quasisaturation, and neg-
ative magnetoresistance have been observed. '
Indeed, it is the presence of such behavior that
provides most of the rationale for the extrinsic
theories, that is, those theories which assume the
nonsaturation is spurious and due to external
causes, and is not a bulk property of the metal. Of
the various possibilities, two have received con-
siderable study: probe (geometry) effects and spe-
cimen inhomogeneities. Geometrical magnetore-
sistivity effects have been thoroughly investigated
by a number of authors. "-" Geometrical magnet-
oresistivity arises when the current distribution in
a conductor becomes dependent on the magnetic
field in a manner not solely determined by changes
in the bulk magnetoresistivity tensor. Distortions
in the current distribution always result in an in-
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creased dissipation in the specimen. However, in
certain circumstances, if the current is improper-
ly injected or extracted from the specimen, or if
the voltage probes are poorly placed, or if the as-
pect ratio is poorly chosen, these distortions can
lead to various spurious results including an appar-
ent reduction in the total resistivity, a linear mag-
netoresistivity, and even a negative magnetoresis-
tivity. These factitous results are easily avoided
by proper experimental techniques, including high-
impedance current injection and extraction, the
placement of voltage probes more than a speci-
men's width from the specimen's ends, and the
use of proper aspect ratios. It is worth noting
that, in potassium at least, a linear electrical
magnetoresistivity has been observed in both single
and polycrystalline specimens, in both long wires
and short "matchstick" specimens, and has been
observed in experiments which use probe and

probeless measurement techniques. The evidence
is overwhelming and indicates that the nonsatura-
tion is neither a probe nor a geometry effect.

H,ecently, a number of authors noted that the ir-
reproducibility in the data might be a sign of the
presence of macroscopic inhomogeneities in the
specimens. Such inhomogeneities can produce a
linear magnetoresistance. In particular, Samp-
sell and Garland, "Stroud and Pan, "and others"
have demonstrated theoretically that contraction
voids and highly conducting inclusions will gener-
ate a linear electrical magnetoresistivity. This
has been experimentally verified. " Thus the ques-
tion naturally arises as to whether the ultimate
source of the magnetoresistivity anomalies in the
simple metals is t;o be found in the effects of sam-
ple inhomogeneities on the flow of current in a
magnetic field. To obtain an answer to this Ques-
tion, we have calculated the effects of voids on
the thermal magnetoresistivity of a simple, free-
electron metal. Although a void is a rather gross
form of inhomogeneity, a consideration of its ef-
fects offers several significant advantages: the
calculations are simple and straightforward, the
results found for such inhomogeneities should be
representative of those for other forms of defects,
and the results are easily subjected to experiment-
al verification. Additionally, it is a realistic cal-
culation; contraction voids can certainly appear
in metals. If desired, the step to a consideration
of conducting inclusions is a simple one.

There are two approaches which may be taken
to determine the effects of voids on the resistivity
in a magnetic field; a boundary-value approach
and an effective-medium approach. The effective-
medium approach has a long history and, for the
zero-field case, has been studied extensively. "
Many of the methods developed for that case can

be carried over into studies of the magnetoresis-
tivity. In general, some sort of mean-field theory
is used to determine an effective conductivity ten-
sor, under the assumption that the inhomogeneities
are randomly distributed in the medium. This is
the approach taken by Stroud and Pan" (among
others) for the case of a conducting inclusion or
void in a metal. The boundary-value problem ap-
proach is also very straightforward. Laplace's

. equation is s'olved under the appropriate boundary
conditions and the effective conductivity deter-
mined by an integration of the dissipation over the
specimen's volume. This approach is of value for
the case of low defect density, where overlap ef-
fects can be neglected. In either case, the defects
are defined as spatial regions in which the conduc-
tivity tensor differs from that of the bulk (examples
of these, in addition to voids, might be disloca-
tions, strain fields, and differently oriented crys-
tallites). The general features of the current dis-
tortions due to an isolated inclusion have been dis-
cussed by a number of authors, including those
mentioned above. For the case of voids, the bound-
ary-value approach and the effective-medium ap-
proach yield identical. results: the two electrical
magnetoresistivities are linear in the applied mag-
netic field with Kohler slopes S= O(1)f, where f is
the volume fraction of voids. In addition, for the
case of spherical voids, the transverse Kohler
slope is about 30%.smaller than the longitudinal
Kohler slope. This is also seen in the experimental
data. To test these ideas, Beers et al."have in-
troduced cylindrical voids into pure indium speci-
mens, and found that the linear magnetoresistivity
was considerably enhanced by the presence of the
voids, and also that the theoretical predictions
were essentially correct. However, the total pic-
ture is still unclear, and the question of the source
of. the magnetoresistance anomalies is yet unan-
swered. To account for a Kohler slope as large as
10 ', a volume fraction f=10 ' is required, a quan-
tity which is not only extremely unlikely, but which
has not been found by direct measurement. " How-
ever, the presence of other forms of inhomogenei-
ties with such a large volume fraction is certainly
within reason, e.g., strain fields. In addition, the
problem presented by the thermal magnetoresisti-
vity must be investigated. In particular, can voids
(or other inhomogeneities) produce the large quad-
ratic term seen in the transverse thermal mag-
netoresistivity& Do the voids enhance the already
present quadratic term due to the lattice conduc-
tivity'?7 ' If, as has been suggested, the quadratic
term presents a separate problem, either wholly
due to the lattice conductivity'2. or, perha. ps due
to a probe effect or other measurement artifact,
can we account for the fact that the thermal Kohler
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slopes are four to five times. as large as the elec-
trical Kohler slopes? '

We have therefore investigated the effects of in-
cluding a magnetic-field-independent lattice thermal
conductivity in a free-electron thermal magneto-
conductivity tensor. We have performed the cal-
culation using both the boundary-value approach
and the effective-medium approach. The former
method has several advantages, primarily that by
calculating directly the fields and currents, and by
obtaining the entropy production per volume,
-Jo 0(1/T), the essential physics is observed
easily. However, the effective magnetoresistance
is tedious to obtain and requires a -lengthy computer
calculation. The effective-medium approach yields
directly the effective resistivity and the Hall co-
efficient. Thus the two methods complement one
another.

Our major results may be briefly stated. We
demonstrate that the presence of voids does not
enhance the quadratic term and that a nonzero lat-
tice conductivity substantially reduces the effects
of the voids in creating a linear thermal magneto-
resistivity, producing also a marked deviation,
from linearity at high fields.

The rest of this paper is divided into four sec-
tions. . In Sec. II we discuss the theoretical prob-
lem; in Sec. III we display the results for the var-
ious geometries; and in Sec. IV we discuss the
application to real metals.

II. THEORY

In calculating the effects of voids on the thermal
magnetoresistance, we use the complementary
methods of Sampsell and Garland, "and Stroud and
Pan." As mentioned above, the method of Samp-
sell and Garland directly produces the fields and
currents due to the presence of voids and presents
a clear picture of the distortions caused by them.
However, it is only after rather extensive machine
calculations that the effective resistivity of the
sample emerges. We still use the method of Strnud
and Pan to calculate the effective resistivity. The
combination of the two methods allows ease of
computation, physical insight, and application to
other problems, which otherwise would not have
been either possible or as complete. We will first
describe the calculations of the fields and currents
for various void geometries and field orientations,
leaving the full expressions for the Appendix. Next,
we will present a rather direct calculation of the
effective resistivity.

At the start, we make the assumptions that the
metal is described by a free-electron model, that
the mean-free-path of the electrons is much smal-
ler than the void size which is in turn much smal-
ler than the sample. These assumptions allow us

V',.K' & T=0

with T{x,y, z) the temperature distribution. We
have used the constitutive relation

(2)

whose inverse is written

&;T = —8';) J~@, (4)

where K'~ is the thermal conductivity tensor, and
S',.

&
is the thermal resistivity tensor. When the

conductivity tensor does not depend on the coordin-
ates, Eq. (2) reduces to

from which we see that the temperature distribu-
tion is determined solely by the symmetric part
of the thermal conductivity tensor. For the model
described above, the conductivity tensor takes the
form

0

-Py y+6 0 (6)

0 0 1+5

where Ko is the free-electron thermal conductivity
in zero field, 5 is the ratio of the lattice thermal
conductivity to the free-electron thermal conduc-
tivity, y = (1+P') ', P = &o,w,„, ~, is the cyclotron
frequency, and 7,„ is the mean time between colli-
sions catastrophic to thermal conduction. T does
not satisfy Laplace's equation in the original co-
ordinate system, i.e., Eq. (5) with the choice for
z'~ given by Eq. {6) is not Laplace's equation and,
indeed, is not so even when the lattice conductivity
is absent. It is always possible to find a coordinate
system in which T does satisfy Laplace's equation.
We let the original coordinate system be the un-
primed system. Then the coordinate transforma-
tion which reduces Eq. (5) to Laplace's equationhas
the Jacobian

to use continuum physics to describe the electrons.
We also assume that the temperature is sufficiently
low so that radiation effects may be neglected.
This ensures the same boundary conditions for the
electrical and the thermal currents and potentials.
Furthermore, we assume that there is a field-in-
dependent lattice thermal conductivity present.

Since there are no heat sources present, by con-
servation of energy we have

V, Jq =0,
where Jz is the thermal current. In the presence
of a magnetic field, this equation has the form
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1 0 0
i'

0 1 0

0 0 I l/2

where

r =(y+ V)/(1+ V) . (8)

The thermal conductivity tensor in the new system
is easily calculated,

p
K

iiji ~ ] /2 Bx
BX

jt
BX

Bx' K

I -z/2~K
0

0

1 0

0 i
where

y =y(1+ p), P=P(1+p) ~, and p =by

BX BX BT
BX BX BX

(12)

Bxi Bx"-Ji I 1/2 Jk
Bx"Bx'

where

ij BT Bx BJ ii ji BT
Bxj Bx' Bx' Bx' ' (i4)

and where K'j is the conductivity tensor in the geo-
metry prescribed by the voids. In this paper, as
mentioned above, we consider cylindrical voids
with the magnetic field perpendicular to the axis of
the void with a thermal current injected perpen-

We make yet another coordinate transformation to
a set of coordinates, the twiddled coordinates, x',
appropriate to the specific geometry of the void.
For the calculations in this paper, we choose ellip-
soidal cylindrical coordinates for the cylindrical
void, and oblate spheroidal coordinates for the
spherical void. In these coordinate systems, the
solutions to Laplace's equations are elementary,
the appropriate boundary conditions easily imposed,
and thus the temperature distributions uniquely
determined. The boundary conditions are that the
thermal current is injected uriiformly at a great
distance from the void, either perpendicular or
parallel to an imposed uniform magnetic field, and
that the component of the thermal current normal
to the surface of the void is zero. Having deter-
mined the temperature distribution in the twiddled
coordinates, T, we may now transform it and the
currents back to the original coordinates, accord-
ing to the following obvious relations:

(-v, 7') = w;" J~, .ij

and we must now determine (-7,T). &t t»s point,
if we assume that the inclusions do not interact
or, in other words, that the volume fraction of
inclusions is small, we need keep only first order
terms in f, and the calculation has been reduced
to determining the effect of a single inclusion.
This is easily done.

Following Stroud and Pan, we define

K "j in the inclusion,
Kij elsewhere, (17)

dicular or parallel to the field, and spherical voids
with current injected perpendicular or parallel to
the field. The expressions for the temperature
distributions and thermal current are given in
the A ppendix.

We should mention also that the formalism de-
scribed above can deal effectively with problems
considerably more complicated than those dis-
cussed here. Equation (5), combined with a choice
of v'~ [for example, expression (6)], displays the
physics of the model in as perspicuous a manner as
possible. As observed above, T is determined by
the symmetric part of Kij; antisymmetric modi-
fications of Kij do not affect the temperature dis-
tribution. The symmetric part of Kij may always
be diagonalized, and a rescaling of the coordinates
reduces the equation for the temperature to La-
place's equation. This was the result used above.

While the temperatures and currents are easily
derived; the effective resistivity of a sample is
obtained only after extensive numerical calcula-
tion; the entropy production must be integrated
over the volume of the sample. As an alternative
to this procedure, we have found the method of
Stroud and Pan" to be most efficient. The method
is easy to describe, easy to use, and, for com-
pleteness, we include the application of the method
to the problem at hand.

We begin by considering a solid of volume V,
with a thermal conductivity tensor Kij. The volume
is bounded by the outer surface BV and contains
a volume fraction f of ellipsoidal inclusions each of
which carries a conductivity tensor K "j. We im-
pose the boundary conditions that n,.J@=v; Joi on
BV, where Ji is a constant current vector field,
and n,. is normal to the surface BV. We now define,
following Stroud and Pan, the effective thermal
resistivity W'j" of the system by the expression

(-v,.T) = w;. ,". (z,'),
where the brackets are taken to mean volume aver'-
ages. Conservation of energy reduces Eq. (15) to
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(18)

and, upon applying the variation operator to Eq. (2),
we find that the effect of the inclusion on the temp-
erature distribution, 5T =T —T' = T —(&;T')x', is
determined by the equation

straightforward and we have

(sl)

(32)

(33)

K Vy5 T V i ~K VyT ~ (19)

Equation (19) has its Green's function, appropriate
for the boundary conditions of the problem, given
by

~p 1
6&x x'& =

41T(K&1K22K»)&l 2

(x —x')' (y —y ')' ( — ')'
K K K

For spherical voids, I(.
" =0, I",.

~ has the non-
vanishing components

Z' —[(1 $)i~2(sin-i/i~2)/q'~~ 1](ii»q)-i

z„=z =--,'[z +(~ii"ii»)-'"sin-'&'i']
(34)

(38)

with e = 1 —ii" (ii") '. Using these expressions in

Eq. (28), we find

w;if=w„+f[(1+1', K ) +(z, ii")']-

After integrating by parts and taking a gradient,
we arrive at the result that the thermal field inside
the void satisfies the equation and

&& [(1+r„~")w„-r „~"w„], (s8)

(3'I)

T"=v To.+ r, (~ .i'- ~'")v T'",
t ij

where

(21) +f[(1+ Z' &~&)2 + (Z' &&2)2]-&

&& [(1+r„~-)w„-r„~"w„].
(' sG(x, %')

~ f o

~X
(22)

A discussion of the expressions derived in this
section follows.

and the integral is over the surface of the inclu-
sion. The effective thermal resistivity may now

be determined as follows. Defining

we have

W,'& within the inclusion,
W,~

elsewhere, (23)

(-&;T)=v ' fw;,.J~qd'x, (24)

= w P+f(w —w )~ '~,T'",

and using Eq. (21), we find

(—&;T}=[W;; fw;, (ii'i' —vi')N— , W~]J, ,

where

(N-1)i f i r (~ hami ~mi)j fm

(25)

(27)

We have now' isolated the effective thermal resis-
tivity and it has the form

III. RESULTS

In this section we describe the results of the
calculations of Section II. Consistent with the
conditions imposed on our calculations (low temp-
eratures and the hydrodynamic limit), when we set
the lattice conductivity to zero, our results are
equivalent to those obtained by Sampsell and Gar-
land, and Stroud and Pan for the electrical case;
in the following discussion, our comments on the
thermal resistivity for 5 =0 apply with equal force
to the electrical resistivity. These authors have
given a thorough explanation of their results; in
the discussion to follow, for completeness, we
will briefly summarize the key points of their ex-
planation. Our discussion is divided into three
parts; we start with the transverse thermal mag-
netoresistivity, follow with the longitudinal therm-
al magnetoresistivity, and end with a brief discus-
sion of the Righi-Leduc (thermal Hall) effect.

Weiiji = W;i jw;„(ii'"'-—ii~')N, W i . (28)
A. Transverse thermal magnetoresistivity

For cylindrical voids, ~'" =0, the evaluation of
the integrals in (22) yields

r-=[r ~ +('") '«'-~) ' (29)

(30)

with e = 1 —ii"(x") ', and all other integrals equal
to zero. These are essentially identical to the re-
sults of Stroud and Pan for this geometry. The
construction of the effective resistivity (28) is

When the lattice conductivity is set to zero, a
strong magnetic field will cause the thermal cur-
rent flow to be severely distorted in the vicinity
of the void. Significant distortions of the current
streamlines extend to distances of the order
~ Tgo in directions parallel to the magnetic field
(R, is the radius of the void). The distortion in
directions perpendicular to the field decreases
as the field increases, so that in very high fields the
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current lines do not "feel"the void until they enter its
"shadow". [See inset, Fig. 1(a).] As indicated by
Sampsell and Garland, a current sheet (for a
cylindrical void) or a current shell (for a spheri-
cal void) is formed in the void's shadow (see Figs.
1, 2, and 4, in Ref. 16). These current sheets
(or shells) flow nearly parallel to H, up one
side of the shadow and down the other. They
are regions of intense dissipation; in fact,
this dissipation is the major source of the ex-
tra resistivity which produces the linear term
in the electrical magnetoresistivity p„„.

In the thermal case, lattice conductivity has a
dramatic effect on these current sheets and shells.
We may see this by examining the volume entropy
production as a function of the distance from a
spherical void, Fig. 1. In this figure, we plot the
volume entropy production versus the distance
from the void along a line parallel to the x axis,
perpendicular to H, at a height z =R, [see inset,
Fig. 1(a)). Figure 1(a}shows the volume entropy
production (or joule heating for 6 =0) and is simi-
lar to Fig. 3 of Sampsell and Garland. Figure l(b}
shows the entropy production for 5 =10~, a real-
istic value for the simple metals. These plots
are normalized to unit volume entropy production

(or joule heating) at distances far from the void
and in low fields (+,7„„«1). (Additional curves
for these cases were presented in an earlier Let-
ter 2')

At small +,7,„, the magnetic field and the lattice
conductivity have very little effect and the current
distortions are due primarily to the obstructive
effect of the void. We notice also that for small
~,7„„, the bulk conductivity tensor [Eq. (6)] is
nearly isotropic. The maximum entropy produc-
tion occurs at x=0, where the current streamlines
are bunched together as they pass around the void.
For 6 =0 [Fig. 1(a)], as ur, 7 increases, peaks ap-
pear near x =M, . These peaks become more pro-
nounced and narrower as m,7 increases. The size
of the peaks indicates an enormous dissipation in
the void shadow. For 5w 0, at large w,r,„, the
peak amplitude is slightly reduced and becomes
less significant relative to an increasingly import-
ant background entropy production. The background
entropy production represents the increased therm-
al magnetoresistance of the bulk due to the pre-
sence of lattice conduction. " The electronic therm-
al conductivity is sharply reduced as (0 7 th in
creases [~(~p,„)-'], phonon conductivity becomes
more significant, and the bulk resistivity in-
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FEG. 1. Volume entropy production, —J+'V(l/7. '), as a function of the distance from a spherical void along a line z =Ho
(see inset), J~&H. The entropy production is normalized to unity far from the void and in zero field. (a) 6=0. The
large peak indicates the area of intense entropy production in the void shadow (see inset). Note that these curves can
also be interpreted as the volume power density, J E, for the electrical case. (b) 6=10 . Notice the increase in the
entropy production in the bulk and the disappearance of the peak (see text).
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creases. At sufficiently large fields, phonon con-
ductivity completely dominates the conductivity
tensor, the thermal conductivity tensor is again
isotropic, and little or no change in the dissipa-
tion occurs with increasing field. The voids again
act simply as obstructions to the current flow. The
above discussion holds for all values of 5, and a
similar behavior is observed for the cylindrical
voids ~

The effects of the excess entropy production due
to the presence of the void on the thermal magneto-
resistivity is displayed in Figs. 2 and 3. These
are Kohler plots of the "extra" thermal resistivity

8 N th where

~W,„„. W,.),(H, T) —W,o,a«(H, T) —W,„,„. (39)

For this equation, 8'„„is the thermal magneto-
resistivity as calculated from Eg. (31) or (36).
W(H, T)„„,« is the free-electron thermal magneto-
resistivity in the absence of voids, W,„„,is the
added resistivity in zero field due to the presence
of the void, and W, =1/y, . (We do not normalize
to the zero-field thermal resistivity in the presence
of voids since we are only interested in effects
which are first order in f.)

The results are shown in Fig. 2 for the cyclindri-
cal case and Fig. 3 for the spherical case. (For
these figures, f is chosen to be 0.01.) For 5 =0,
we obtain a linear thermal magnetoresistivity with
a Kohler slope S =1.00f for the cylinder and 0.64f

103

10

for the sphere, in agreement with Sampsell and
Garland, and Stroud and Pan. 'When 6 is not zero,
the extra thermal magnetoresistivity is no longer
a linear function of the field. For each value of 5,
there is a departure from linearity at a relativity
low value of co,~t„; at very high fields, the thermal
magnetoresistivity increases rapidly and then
saturates at a value ~1/5.

The departure from linearity occurs when the
field is large enough so that phonon conduction is
a significant fraction of the total conduction, or
when 8 = 0.1y. The very high field saturation value
represents the "extra" resistivity due to the ob-
struction of the current flow. This region is
reached when the electronic thermal currents are
negligible. In the intermediate region the behavior
is a result of the complicated interplay among com-
peting conduction mechanisms.

B. Longitudinal thermomagnetoresistance

As shown in Refs. 15 and 16, spherical and cylin-
drical voids have the same net effect upon the long-
itudinal electrical magnetoresistance. We will
discuss the more interesting case of the spherical
void, where the current lines develop a pronounced
circulation (see Fig. 4 in Ref. 15). For an electric
current injected parallel to the magnetic field,
the off-diagonal conductivity tensor elements be-
come important when the perturbing effect of the
void is sensed by the current. This produces a
strong circulation. The current "corkscrews"
toward the void in an expanding helix until it passes
over the void and it repeats this behavior on the
other side of the void, with a circulation in the
opposite sense. Since the zz component of the con-
ductivity tensor is relatively large in a magnetic
field, these distortions persist to large distances
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FIG. 2. Kohler plot of the extra transverse thermal
magnetoresistivity (see text) vs a~7't„ for a cylindrical
void. For 6 =0, the extra resistivity is linear in II for
co~7't~ 910; this may also be interpreted as plot of the
electrical magnetoresistivity, ~popo.
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a small increase in the entropy production local-
ized to regions very close to the void, where the
current streamlines are squeezed together. This
is again a simple obstruction effect. For 6 =0, as
w,T increases, a large peak forms, indicating a
large increase in the entropy production. This
region of increased entropy production is confined
to the cylindrical void shadow. As (d,7. increases
further, the peak height increases enormously and
the distortions to the current lines produced by
the void are seen farther and farther from the
void, along the field direction. At the same time,
the width of the shell decreases. The distortions
and the increased entropy production persist to
distances on the order of ~,7R, .

The lattice conductivity has a very strong effect.
As ~ r increases [Figs. 4(b) and 5(b)), the peak in
the entropy production still forms, indicating the
presence of the current sheets. Eventually, how-
ever, a maximum amplitude is reached and further
increases in co,~,„have no effect. The entropy
production far from the void remains unchanged
since the lattice conductivity does not create a
bulk longitudinal thermal magnetoresistivity as it
does in the transverse case. In the electrical
case, the increasing dissipation in the void shadow
as ~p increases yields an increasing electrical
magnetoresistivity; we thus expect to see satura-
tion in the extra thermal magnetoresistivity. Fig-
ure 6 shows the extra contribution to the thermal
magnetoresistivity for the two cases. These are
Kohler plots of W,„„,(H, T), as defined from Eq.
(39) using Egs. (32) and (37). These curves show
a smooth departure from linearity and a smooth,
steady rise to saturation. The saturation of the
longitudinal the rmal magnetoresistivity displayed

here is due to a different mechanism than that
which produces saturation in the transverse case.
In the transverse case, the electronic part of the
thermal conductivity tensor, e",", decreases as
1/H, leading, in very high fields, to a bulk therm-
al magnetoresistivity proportional to 1/5. The
saturation value of (nW, „„,/W, ),„,„, is simply that
value due to the obstruction of the current by the
void.

In the longitudinal geometry, there is no electri-
cal or thermal magnetoresistivity in the absence
of the void; the only effect of the lattice conduc-
tivity is a slight change in W„[=1/»" =1/(1+5)].

C. Righi-Leduc coefficient

Stroud and Pan show that spherical voids have
a small effect on the Hall coefficient RH. The
change is an increase of O(f), and R„ is essential-
ly constant at high fields. Cylindrical voids have
no effect on R„ in high fields. In the thermal case,
the results are similar. In the bulk metal, lattice
conduction produces a large deviation of the Highi-
Leduc coefficient from the constant free-electron
value, "R„L=1/L, Tne. The presence of cylindrical
voids causes no additional effect. For spherical
voids there is a low-field enhancement of about
2e/o (for f=0.01, Fig. 7) which rapidly decreases
with increasing m,7,„and then rises to a constant
value at high fields. These effects are, however,
quite small.

IV. DISCUSSION

In this section we discuss the results of Sec. III.
We make comparisons to real metals, discuss how
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mal magnetores:stivity (see
text) vs u~7&h for (a) cylin-
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cal voids. For 6=0 the ex-
tra thermal resistivity is
linear in fieM for ~~w&h ~10.
This curve may also be:in-
terpreted as the longitudi-
nal electrical magnetore-
sistivity Ap /po vs ~ 7'.
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the results compare with experimental data for the
simple metals, and we offer suggestions to test
the model.

Before discussing the results in detail, we ad-
dress ourselves to two important questions: (i)
How well does a free-electron model approximate
a real metal'? (ii) Since a void is a very gross
inhomogeneity, how valid are the results discussed
above, insofar as real metals are concerned?

The first question may be answered simply. The
free-electron model provides an excellent approxi-
mation to the magnetic-field dependence of the con-
ductivity of a real, simple metal in the high-field
limit. Consider a cubic simple metal (for con-
venience) with the magnetic field parallel to a
symmetry axis and z. According to the semiclas-
sical theory, ' either of the two conductivity tensors
can be written as

a""(T,c).
H2

ne

a""(T,c)
H2

0

0 (40)

0 0 a"(T, cg

The coefficients a" are independent of the magnetic
field but dependent on temperature (T) and purity
(c). At any particular temperature, the a" are
constant, and the conductivity tensor is essentially
free-electron-like for &p» 1.

The second question is much more difficult to
answer. Contraction voids can certainly exist in
a metal, especially in those metals, such as the
alkalis, which have large thermal expansion coef-
ficients. However, the evidence is against there
being large numbers of such voids in the speci-

mens. ' One must also consider surface effects.
As pointed out by Sampsell and Garland, "surface
roughness and indentations can act in a manner
similar to voids and produce a linear electrical
magnetoresistivity, and a very rough surface will
provide a high "void density". Thus, at least for
the alkalis, where smooth surfaces are difficult to
obtain, the "void" model is meaningful. What of
other forms of inhomogeneities? A useful approach
is to examine the behavior of Eq. (28) in the oppo-
site limit to that of a zero-conductivity inclusion,
that is, to consider a highly conducting inclusion.
There is a wide variety of possibilities. For ex-
ample, in the electrical case, we might have a
large field-independent conductivity in the inclu-
sions, with the Hall terms similar to the bulk, or,
we could allow the inclusion's conductivity to be
field dependent. There are obviously other per-
mutations possible, and, in each case, we must
consider the thermal magnetoresistivity with the
added complication of the field-independent lattice
thermal conductivity. We have examined Eq. (28)
in the light of these possibilities and reached a
number of conclusions (some of which have already
been noted by Stroud and Pan")

For the electrical case (i) Any sp.heroidal de-
fect (and probably any shape of defect) leads to a
linear transverse electrical magnetoresistance if,
in the defect, either (i) a'"* and o"' are field inde-
pendent, or (ii) o'"' is proportional to 1/H and sub-
stantially different from 0"'.

(ii) Only a defect of strictly zero conductivity
leads to a strictly linear longitudinal electrical
magnetoresistivity. Otherwise, saturation even-
tually occurs.

(iii) For either case (voids or highly conducting
inclusions), the Kohler slopes are a constant of
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O(1) times f.
(iv) The fractional change in the Hall coefficient

is never more than O(f).
Fox the thermal case. (i) All defects, conducting or

nonconducting, result in an extra term in the trans-
verse thermal magnetoresistivity, which deviates
from linearity at some value of v,&,„(which de-
pends on 6), and then increases to saturation.

(ii} All defects, whether conducting or noncon-
ducting, create an extra longitudinal thermal mag-
netoresistivity which saturates. The point of de-
viation from linearity depends on 5, and the extra
resistance increases to saturation as a smooth,
concave downward function of &,7'.

(iii) In the linear region, the Kohler slopes are
identical to those of the electrical case.

(iv} The presence of voids changes the Right-Le-
duc effect at most to 0(f).

Based on the above points, we reach a simple
conclusion: The system we have considered,
voids randomly distributed in a uniform back-
ground, appears to be representative of the ef-
fects of all types of inhomogeneous systems on
the magnetoresistivity tensors. Furthermore,
as mentioned above, the simple case of voids is
amenable to experimental verification.

Comparisons between the predictions of the theo-
ry and experimental results in real metals reduce
to comparisons with potassium. This is true for
a number of reasons, the most important of which
is that it is the orily ~.mple metal for which all
of the electrical and thermal magnetotransport
coefficients have been measured. (In the other
simple metals, the experiments which have been
done either are measurements of the transverse
electrical magnetoresistance and the Hall effect
or do not extend to sufficiently strong fields. ) The
situation in potassium is ambiguous. However,
the experimental data can be interpreted in a man-
ner which appears to eliminate the inhomogeneity
hypothesis.

As mentioned above, it was the behavior of the
linear transverse electrical magnetoresistivity of
the simple metals which first prompted the inho-
mogeneity hypothesis. Voids or inclusion concen-
trations of f- 10~-I scan explain most of the
electrical data in potassium. However, the large
concentration of voids or inclusions needed to ex-
plain a Kohler slope of 10 is unreasonable. Fur-
therm'ore, direct measurements of the lattice
parameter of potassium at 4 K indicate that voids
do not exist, at least to within one part in one
thousands' However, as indicated by Sampsell
and Garland, "a rough surface constitutes a
series of laterally displaced voids and, as such,
can create an additional linear magnetoresistance.
In potassium the surface could be rough enough to

yield an effective f-10-', particularly when com-
bined with internal defects. (Such surface rough-
ness is, however, unlikely in indium of aluminum. )
Also, it is reasonable to expect a substantial den-
sity of conducting defects, such as strain and dis-
location fields, grain boundaries, etc. , in the
specimen. Taken together, all of these could ac-
count for the large f that is needed to explain the
data. The longitudinal electrical magnetoresis-
tivity data, which should show saturation in the
presence of conducting defects, does not provide
us with any assistance. Although saturation is
not observed, the experiments are ambiguous. "
They indicate pac8" with 1- z & 2 and do not extend
to sufficiently strong fields.

The Hall coefficient data also requires a rather
large f for an explanation, R„has been found to
be nearly 6% too large, " requiring f- 6x 10-'.

Thus, to say the least, the situation is unclear.
On the evidence, the inhomogeneity hypothesis is
a highly unlikely explanation but cannot be definite-
ly ruled out. We now turn to the thermal data
which ought always to show saturation. In potas-
sium, the lattice thermal conductivity K, has
been found to be'4

3.3 x 10-2g 2

and for the electronic thermal conductivity (in
zero field) we may use"

g, = [(5 x 10~)/T+ 1.5 x 10-'T2 j '

(41)

(42)

W„„(H& T)T = Wo(0& T)+AH+ 136

Both the linear and the quadratic terms are pre-
sent to the highest fields used, with no sign of
saturation. The presence of the quadratic term

as being representative for a specimen with a
residual resistivity ratio of 6000. This yields a
6 which varies between 2 x 10-' and 2 x 10~ in the
temperature range 1-4 K. (Fletcher' has reported
the possibility that Kg may be four to five times
larger than the above value. )

In this temperature range, values of ro,~,„as
large as 350 are easily reached in a potassium
specimen of this purity. From Figs. 2, 3, or 6,
we see that deviations from linearity should cer-
tainly be observable at ~,v,„-100for both the
transverse and the longitudinal thermal magneto-
resistivity.

Extensive measurements of the transverse ther-
mal magnetoresistivity exist'-' and preliminary
measurements of the longitudinal thermal magneto-
resistivity are available. In neither case is satur-
ation observed. The transverse thermal magneto-
resistivity is found to increase linearly and quad-
ratically with field,
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may be construed as evidence that the inhomogen-
eity hypothesis is incorrect. There is no addition-
al quadratic field-dependent thermal magnetore-
sistance due to the presence of the voids, see Figs.
2 or 6. Note that a quadratic term is expected in-
dependent of the presence of the voids P4 This
term, a result of the intermixing of magnetocon-
ductivity tensor elements when x, w0, has been
shown to be too small to account for the data. "4
To fully explain the quadratic behavior in that man-
ner, an unreasonably large" w is required. Thus,
the presence of the quadratic term would seem
to indicate that the inhomogeneity hypothesis is
incorrect. Again, however, the s'ituation is not
clear. It has been pointed out that the quadratic
term might be a subtle form of measurement arti-
fact, '" and thus not part of the problem at hand.
However, if that were true, we would still be left
with a, linear term in the transverse case and in
the longitudinal case, with no sign of saturation, to
values of m,7,„=350. The thermal Kohler slopes
are four to five times larger than the electrical
Kohler slopes, indicating the need for even larger
concentrations of inhomogeneities. Finally, the
measured Righi-Leduc coefficient is nearly in
agreement with the free-electron value and, if
anything, is smaller, "not larger than R„L. We
therefore conclude that it appears very likely that
the magnetoresistivity anomalies in the simple
metals (at least for potassium) cannot be explained
by the inhomogeneity hypothesis. It will however
be useful and instructive to extend the longitudinal
measurements to much larger fields and measure
the various transport coefficients on the same
specimen.

As mentioned above, Beers et al. ' recently
measured the electrical magnetoresistivity of a
high-purity indium specimen containing cylindrical
voids. They essentially verified the above results
for the electrical case. Such an experiment is
clearly possible for the thermal magnetoresistivity
and would be useful in verifying our results.

6 =&.(1 —1")'"=& [(1-r}/(1+6)l'" (A4)

with

+Ccosg e-'" ~o'), (A6)

and

& = (1+p)(1+ J3') [(1+p)'+ P'] ',
& =P(i+I')[(1+p)'+P') ',
C =R,[y(1+ 6)(1+p)] '~',

sinhp, =[1/(1 —1)]'~'.

(A6)

(A7}

(AB)

(A9)

The currents due to (A5) are given by Eq. (12) and

have the forms

J@=Zo(l —e " "0'[(y +6)/(1 —y)]' Q}, (Alo)

~'=« """-[r/(r+6)]'"~ (All)

J=-J, e"0[(1+6)/(1-y)]'~'sing cosg C, (A12)

where

and

8=(sinhp cos'8 —coshp. sin'8)C,

4 ' = (sinh'p, cos'8 + cosh'p, sin'8) .

(A12)

(A14)

The thermal gradients are immediate from Eq.
(12),

~

z, (r+6)(l+P')
I,xo (1+p)'+ P'

&& 1 ( P ~ r — -&~- 'e (A16)(1+p}' 1 r-
9 T — (A16)(1+p)'+P' '

(X',g', x') =(p, v, g} .
The appropriate solution of Laplace's equation for
the temperature distribution is

T(g, v, 8) =-(Z, /~, }(Aa cosh p, cosg +By

APPENDIX A: CYLINDRICAL INCLUSION ( Jo l 8) 0& e»
V,T = — —')( }„,(- }„,sing cos84. (Ai'r)

Let the cylindrical void of radius 8, have its
axis in the y direction, and let current be injected
uniformly from infinity in the x direction, with
magnitude J,. The coordinate transformation to
the twiddled system is defined by

APPENDIX B: CYLINDRICAL INCLUSION (J )i H)

For this case, we have the same geometry as
above with the incident current and the field in the
z direction. Here the temperature distribution is

x' =x = ~ cosh@, cosO, (Al) z,) r'"a,
T(p, y, g) =- —'

~

' sing
~,& y(l+ p

&( [(1—1') sinhp, + g-&v-vo ~] (A18}

z'=x" =o. sinhp, sin8, The currents and the thermal gradients are eval-
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uated as above and have the forms

Jq =-Jc[(y+6)/(1-y) J'~' eDo sing cosg 4, (A19)

J:=-[P/(1+ f )]J,", (A20)

JAq =Jc(1+[(1+6)/(I —y)]' 'e 'D "c'8), (A21)

and
J t y+Q ~~2 e+0

V„T= —singe osg 4, (A22)
«.» y -y(1+V)

are oblate spheroidal coordinates. The appropriate
solution of Laplace's equation for the temperature
distribution is

T()7, 8, (f ) =(J,/«, ) sing[A cosh)7(cos(f)+ p sin(f))

+ q', (i sinhq)

x (C cos(f)+D sin(f))], (A29)

where
V,T =0, (A23)

J t 1 1+g&&~2
V,T= —'~ 1+ -

~
e " '()'8 . (A24)

&o) 1+5 1-y)

A=-~[y(1+1)] ',
r la&2

D =—
~

P r'" q,'(i smhq, )
y 1 —I]

(A3O)

APPENDIX C: SPHERICAI INCLUSION (Jo I H )

Let the spherical void have a radius Ro and let
a uniform current of magnitude J, be injected along
the x axis far from the void. The field is uniform
and taken along the z axis. The coordinate trans-
formation to the twiddled system is defined by where

("„" )' 9"(C,t )'„
d '

[P Z'~'q'(i sinhq )] 'D
dq 1 0

Qo

(A31)

(A32)

x' =x"= n cosh' sing cos(f),

y' =x"= n cosh7i sing sin(f),

z' =x"=5 sinhg cos0,

c =R,(1 —r)'~2,
and

(X', x', x') =(q, g, y)

(A25)

(A26)

(A27)

(A26)

Q', (~) =("-1)'"d,q, (~), (A33)

q, (z) = —,'z 1n[(z+ 1)/(z —1)]—1 . (A34)

The currents and the gradients have the forms

with Q, (z) the associated Legendre function of the
second kind given by

Jo = -(J y/nZ){sinhqsin'8 cos(f) [A(N+ pO) sinhq+ CP+ DR]+ cosh' cos'8 cos(f) [A(N+ pO) cosh'+ Q,'(CN+ DO)]

—cosh' sing sin(f)(AF +BG+ CH +DI)'I, . (A35)

Jo)' = -(Jcy/nZ)(sinhq sin'8 sin(f) [A(N + t)O) sinhq+ CP+ DR]+ cosh' cos'8 sin(f) [A(N+ pO)cosh)7+ Q,'(CN +DO)]

+ cosh@ sing cos(f)(AF +BG+ CH+DI)), (A36)

Jo =-(J,y/aF' 'ZI)[ schoq (CP+DR)- sinhg Q,'(CN+DO)] sing cosg,

VT= —'( A(cos'9+9s(oh cosh)Ds(Coos'9+Dsin9cosh) 'sinhhsin9+C', coshV cos'9)JC dQ',

nZ dn

1 Jo sing sin(f) [coshqA(P cos(f) —sin(f))+ Q', (D cos(f) —C sin(f))],
0 V

1 Jo dQ',
V V= —" A(sin9coss+9sin'9)hs(Ccos9s (nhssinn'9) 'sinhhsin'9+C'coshh cos 9)~Z

(A36)

V T=—

with

1 Jo—' sing cos(f)[cosh@A(P cos(f) —sin(f))+ q', (D cos(f) —Csin(f))],
QX ff(

sing cosg ' cosh)7 —Q,'sinhg (Ccos(f)+D sin(f)),n~ Vo dn

(A39)

(A40)

X =cosh' sine,

2 = sinh'g sin'8+ cosh'g cos'0,

(A41)

(A42)

N = cos(f) —p sin(f),

0 =sin(f + p cos(fi,

(A43)

(A44)



20 MACROSCOPIC INHOMOGENEITIES AND THE. . . 236l

P =
d

' cos p —P Q,
' tanhq sing,

8 =
d

'sing+ pQ', tanhqcosp,

(A45)

(A46)

F = P t—anhq sinhq sing cosP

—P cosh@ cotg cosg cos@

—ZX~ cosh@ sing sing,

G = -P tanhg sinhq sing sing

—P coshqcotgcosg sing

+ ZX 'cosh@sing cosQ,

(A47)

(A48)

- dQ,'H=-P 'tanhq sing cosQ —PQ', cotgcosg cosQ
d7j

—ZX 'Q', sing sing,

(J0 Mv„r=i —'
Eg y(1+ p)

sing cosg cosQ UN,

Jo Ip T 0

~, y(1+p) sin8 cosg sin&f& UN,

(A55)

(A56)

with

(1 —MPU r-»'),
~, y(1+p) (A57)

-( g )
z a(1-r)'"

y(1+ p)

x [MQ, (isinhq) —I'~'sinhq]cos8, (A51)

jo JP——I sing cos8 U[cosg+ P(1+p)-' sing]V, (A52)

Z~o= J,M sing cos8 U[sing —p(1+ p) 'cos-Q]&, (A53)

J~o= Jo(1 —MPUI' ' ~2) (A54)

and

and
1

I= —p ' tanhq sing sin&]& —PQ', cot8 cos8 sing
d17

+ ZX-'Q', sing cosQ . (A50)

M =smhq (A58)

N = Q, (i sinhq)cosh' — '
d sinhq, (A59)

dQ, i sinhq)

APPENDIX D: SPHERICAL INCLUSIONS (J i( H )

Let the spherical void have a radius B,0 and let
a uniform current of magnitude J0 be injected
along the field which is chosen to be in the z direc-
tion. The temperature distribution, the currents,
and the gradients have the forms

~
't slnh7jP = ' cosh' cos28
A/

+ Q, (i sinhq) sinhq sin'8,

sinhq, = [r/(1- r)]'~',

U-' = sinh'g sin'8+ cosh'g cos'8 .

(A60)

(A61)

(A62)
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