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The effects of' hydrostatic pressure on radiative electronic transitions of impurities in solids are

analyzed in the adiabatic approximation. A procedure is established for. including the effects of
pressure on the adiabatic potential for each electronic state. From harmonic configuration coor-
dinates the effects of pressure on peak energy and half-width are determined classically for

I

broad-band, phonon-assisted, absorption and luminescent emission spectra. The conditions for
linear dependence of the peaks on pressure are clarified. The impurity is then considered quan-

tum mechanically, and the effects of pressure on vibronic transition energies and probabilities

determined. The pressure at which the zero-phonon transition becomes most probable is

predicted for some defects. Finally, the effect of anharmonicity on the pressure dependence of
vibronic transition energies is evaluated. From this study it is concluded that impurities with vi-

bronic structure can be understood in great detail from the application of the theory to experi-

mental pressure-dependent spectra.

I. INTRODUCTION

The adiabatic approximation is assumed to be valid
for the impurities and defects investigated. In other
words, for the electronic states involved in the radia-
tive transitions the orbital time for electronic motion
is assumed to be short compared to the period of op-
tical phonons and thus the stationary electron distri-
bution for each electronic state smoothly adjusts to
lattice displacements. The atomic motion is thus
governed by an adiabatic potential that depends on
the eigenvalue for each electronic state with its
parametric dependence on nuclear coordinates. This
is represented by the configuration coordinate model,
such as shown in Fig. 1. Radiative transitions are
usually assumed to occur vertically in accordance with
the Franck-Condon principle: classically, the transi-
tion energies are the vertical differences between the
adiabatic potential energies for the two electronic
states; quantum mechanically, transitions occur
between vibrational levels of the initial and final elec-
tronic states.

For those systems with well-defined modes, as il-

lustrated in Fig. 2, vibrational structure in the spectra
may be observed. For some molecular impurities,
e.g. , NO2 in KCl, the vibronic structure arises from
a well-defined local mode; for dopants with
effective-mass electronic states, e.g. , S, Zn donor-
acceptor pairs in GaP, optical-phonon replicas of the
individual pair transitions occur,

The emphasis in the following analysis is on the
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FIG. 1. Configurational coordinate model, with and
without effects of hydrostatic pressure.

changes in optical spectra due to changes in the adia-
batic potentials and in the configuration coordinate
with hydrostatic pressure. In the classical analysis of
broad-band, phonon-assisted spectra this leads to ef-
fects due to changes in the probability distribution of
configurations and to changes in the transition energy
for each configuration; in the quantum-mechanical
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FIG. 2. Configurational coordinate diagram, showing the
vibrational levels and representative wave functions.

analysis this leads to changes in the transition energy
and transition matrix for each vibronic transition.
Effects on the electronic transition matrix are includ-
ed implicitly in the adiabatic changes in the electronic
wave function with deformation.

The present analysis is limited to systems within a
pressure range with no phase changes and to the ef-
fects of hydrostatic pressure, not to effects of uniaxi-
al or other- anisotropic stress. Because we use a sin-
gle deformation parameter the analysis applies strictly
only to cubic materials for which the deformation is
isotropic.

Measurements of the pressure dependence of im-

purity spectra have become increasingly extensive
during the past two decades. Most of these experi-
mental studies have been on systems with broad-
band, phonon-assisted spectra (see for example,
Drotning and Drickamer'). A few experimental stu-
dies have been on systems with well-resolved vibron-
ic structure (see for example, Laisaar'). One of the
results of the analyses in the subsequent sections is
to show that prcssure-dependent spectra of systems
with vibronic structure can provide detailed informa-
tion on the electronic states of impurities and of their
coupling with the lattice.

Concurrent with the aforementioned experimental
work there have been advances in theoretical analysis
of the effects of hydrostatic pressure on impurity
spectra. The origina) basis for interpreting these
spectra was provided by Johnson and Williams3 with
the assumption that the main effect of pressure is to
change the occupational probability of any arbitrary
configuration of the initial electronic state; however,
their resulting formulas also reflect the direct effect

of pressure on the system to linear terms in the pres-
sure. Alers and Dolecek" advanced the theory by in-
cluding explicitly the effects of pressure on the final-
state configuration coordinate contour and also by al-

lowing for different coupling constants with the lat-
tice for the different electronic states. More recently,
Drickamer, Frank, and Slichter, Lin, Kelley, ' and
Munro' have made more general analyses of the
pressure dependence of the optical spectra of local-
ized systems in condensed matter; however, some ef-
fects appear to have been neglected (for details see
Curie and Williams9). For example, Drickamer
et al. ' do not include the effect of pressure on the
transition energy at an arbitrary configuration and
thus obtain different conditions. for a linear depen-
dence of the broad-band spectrum on pressure than
did Alers and Dolecek and Curie and Williams.

In an important generalization of the effects of ap-
plied fields on optical properties of color centers,
Henry, Schnatterly and Slichter' also do not include
the direct effect of pressure on the transition energy.

In Secs. II—V we shall clarify the linear and qua-
dratic dependence of these harmonic classical sys-
tems, calculate the pressure dependence of transition
energies and probabilities of harmonic quantum-
mechanical systems with vibronic structure, and
evaluate some effects of anharmonicity.

II. PRESSURE DEPENDENCE OF IMPURITY
SPECTRA IN THE HARMONIC APPROXIMATION

In this analysis we shall separate the effects of
pressure on the occupational probability of each nu-

clear configuration, specified by R, of the initial elec-
tronic state involved in the transition from the effects
of pressure on the radiative transition energy at that
configuration R. In Fig. 1 the model is shown, with
the ground and excited electronic states characterized

by the force constants K, and K„respectively, equili-
brium configurations R~(0) and R, (0), and coupling
constants between the microscopic impurity system
and hydrostatic pressure A~ and A„which have the
dimensionality of an area. In the present analysis the
coupling constants are assumed to be independent of
pressure.

'

The effect of hydrostatic pressure on the harmonic
contours is to displace the minima of these curves
both in the energy E and in the coordinate R. We
shall let [R (P),E(P)] be the position of the
minimum, when the applied pressure is P, with ap-
propriate subscripts for excited (e) and ground (g)
states, see Fig. 1. The new contours are given by the
following three steps: (a) the determination of R (P)
by the condition that the total force is zero at the
minimum; (b) the determination of E(P) as the sum
of E(0) and the work done to attain the new equili-

brium (we will assume that this work is done adiabat-



20 THEORY OF THE EFFECTS OF HYDROSTATIC PRESSURE ON. . . 2325

ically); and (c) the determination of an R-dependent
adiabatic potential energy including the pressure,
U(R), which is zero at the new equilibrium position
and where the new contours are the sum of the R-
dependent term plus the energy of the new equilibri-
um. Implicit in this analysis is the assumption that
the inertia of the pressure apparatus is large com-
pared to that of the system undergoing the optical
transition. This allows for adiabatic decoupling, but
not complete decoupling, of the pressure apparatus
from the optical system.

The first step is

F}a a(p&= [—K[R —R(0)] —PA}~a a(p) =0,
which gives

R (P) =R (0) —PA/K .

The second step is explicitly
p a(r)

E(P) = E(0) + ( PA) dR—
4 R(0)

R(s)
=E(0) + J1 K[R —R (0)] dR,

which gives

E(P) =E(0) +P A2/2K .

Finally the R-dependent force in the harmonic case is

given by

SU(R)/SR =—F =K[R —R (0)] +PA,

bronic transition and of E(P) cause the change in the
vibronic transition energy.

The above results are easily understood on the
basis of the straightforward analogy which exists
between the luminescent system in the harmonic ap-
proximation, and the well-known problem of a spring
whose force constant is K: By an additional weight
mg =—PA we displace the equilibrium position to
R (P) = R (0) + mg/K, and it is easily seen that the
potential energy E depends on mg and R in the same
way as in Eq. (2). The equations for the system in
the excited states are the same except for a different
force constant, coupling constant, and equilibrium
position. From this analogy we confirm that the
force constants K~ and K, remain unchanged with
pressure in the harmonic approximation. In Appen-
dix 8 we further develop the spring analogy in order
to clarify the interconnection between electronic
states as affected by pressure.

The transition energy

AE(P) —= b E(P,R) = E, (P, R) —Eg(P, R),
occurring vertically in accordance with the Franck-
Condon principle, is thus given by the following:

PA, P2A 2

hE(P, R) = —K, R —R, (0) — ' +

1

1 PAg——K R —R (0)—

which gives for U(R)

U(R ) = —K [R —R (0)] + PA [R —R (P) ] + C,

where C is determined by

U(R(P)) =0,
which gives

C =—PzA2/2K .

PA ' +aE(0),
2K'

where bE(0) =E,(0) —E,(0). See, for example,
Alers and Dolecek. 4

The differential of hE(P, R) is
1 t

&ATE ~P BEE

R BR p

(3)

Combining the above results, for the ground state,
we get for the new contour

and thus the complete derivative of the transition en-
ergy with pressure is

Eg(P, R) = —Kg[R —Rg(P)] +P Ag~/2Kg+Eg(0) .

(2)

d AE 9hE BEE dR
dP BP „BR dP

(4a)

There is a corresponding equation for the excited
state given by replacing the subscript g by e. A spe-
cial case is analyzed in detail in Appendix A.

We should note the following: (a) in the harmonic
approximation the force constant is independent of
pressure, (b) the ground- and excited-state mini-
ma are displaced different amounts if A,'/K,
A A~/E~, and (c) the equilibrium configuration coor-
dinates of the two states are displaced differently if
A, /K, & A~/K~. The unequal displacements of R (P)
cause the principal change in the intensity of a vi-

The partial derivatives are obtained from Eq. (3)
and then substituted in Eq. (4a). Thus, we obtain for
the change in the maximum in the phonon-assisted
spectrum with pressure, which occurs at R = R, (0)

PA, /K, for em—ission,
1

' -A, [R,(o) -R, (o)]
Jm

'
e

P. (4b)
Kg
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TABLE I. Signs of do-/dP and (dhE/dP)~ are given for various combinations of the parameters
to terms of first order in P for both emission and absorption. (See Ref, 11.)

emission

dbE '

dP

absorption
d CF~

dP

dOg

dP

R, (O) & R, (O)

R, (O) & Rg(O)

R, (O) & R, (O)

R, (O) & R, (0)

A, /K, ) Ag/Kg

We note that for A, =Ag and K, =Kg then
(dhE/dP) is zero so that for this special case the
phonon-assisted spectrum is independent of pressure.

In addition to the pressure dependence of the peak,
we can also derive the expression for the half-width
pressure and temperature dependences from the
above considerations. If we use the usual derivation

I'

for the second moment of the emission, then we find

a, (T,P) = a, (P) [tanh(it«&, /2kT)] '

~here

,'(P) = 2K,'[R, (P) —R, (P))'(it, /K, ),
which gives

o, (T,P) = Eg . R, (0) —Rg(0) + — ' P
K, g

r

Ao)g

2kT

The results for the absorption band are gotten from Eqs. (4b) and (5) by interchanging the subscripts e and g,
plus a sign change in Etl. (4b).

The signs of do/dP and (dhE/dP) for both emission and absorption with various combinations of the param-
eters are given in Table I, up to terms of first order in P.

In Fig. 2 the vibrational levels are included in the model. The dependence of the vibronic transition energy e„
on hydrostatic pressure is given by the following:

A,'
e

A g P2
Kg

i/2

+k n+— K,
M,

' ]/2
1 g

f71 +—
2 Mg

+E(0), (6a)

A,

K,
A ' P' +.„„(0),

g
(6b)

where the first term arises from the difference
between the pressure-induced displacements of the
minima for the two states involved in the transition
and the second is the difference in vibrational ener-
gies for the levels before and after the transition.
The quantities M, and Mg are the masses of the vi-

brating system for the excited and ground states,
respectively. We note that the transition energies for
vibronic transitions are quadratically dependent on
pressure and are all displaced the same amount, in
the harmonic approximation.

The system behaves quite differently when a
uniaxial stress is applied instead of a hydrostatic pres-
sure, for except in very special cases the uniaxial
stress changes the symmetry of the system and thus

produces a mixing of the normal vibrational modes.
In other words, the effect of a uniaxial stress cannot
in the general case be described in terms of a simple
one-dimensional configurational diagram. Ho~ever
in a more sophisticated one-dimensional configura-
tional coordinate model, uniaxial stress is describable
in some cases. '

Now returning to the energy contours for any pres-
sure, P, we should note that the new equilibrium po-
sition is on the energy contour for zero pressure, and
that the position of the equilibrium is independent of
the way the pressure is applied so long as it is done
adiabatically.

We can show that the results are independent of
path by considering the following two paths of going
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from zero pressure to pressure P~ + P2, path one is
zero pressure to P~ and then to P~ + P2, and path two
is zero pressure to P~+P2. For path one the equili-
brium for pressure P~ is

r

P)A P]2A 2

[R (P)),E(P()] = R (0) — ',E(0) + 2'

and for the final equilibrium we get

[R (Pi + P2), E(Pt +P2)]

= R(P, )—,E(P,)+ 'K[R(—P, +P,) -R(O)]'
K

III. PRESSURE DEPENDENCE OF THE PROBABILITY
OF A VIBRONIC TRANSITION

In addition to the spectral displacements with hy-
drostatic pressure there, is a change in intensity of
each vibronic transition, principally as a consequence
of the change in phase of the two vibrational wave
functions X~„and X,„with respect to each other (this
is illustrated in Fig. 2) and also due to the changes in
the transition energy. The relative displacement of
the wave functions is, of course, directly connected
with the displacement of the minima for the two elec-
tronic contours with respect to each other. In the
adiabatic approximation the matrix element for the
radiative transition, M,r(n, m), is given to first order"
by

M~(n, m) =S~(nm) J, g, (r;R„)er ror(r;R„) d3r,

--,' K[R(P,) -R(O)]',

where the the balance of forces is given by

F
i n n (p, + p, )

=—K [R (P t + P2) —R (0)] —(P i + P2) A

where

S„(n,m) =„x,"„(R)x, (R ) dR .

Here P, (r;R) and $~(r;R) are the electronic wave
functions for the excited and ground states in the adi-
abatic approximation and

=0 R„=„lX,„(R)RX (R) dR/S, (n, m) . (10)

I

Simplifying the expression for E(P~+P2) gives

E (Pt + Pp) = E (0) + (P ) + P2) '3 /2K,

which is just the expression we would have gotten us-
ing path two, as is the expression for R (P~ + P2)
given in Etl. (7). Therefore, as it should be in the
adiabatic approximation, the position of the equilibri-
um is path independent.

%e should emphasize the unique position of the
zero-pressure contour, that is, all the equilibrium po-
sitions are located on this curve. The zero-pressure
curve differs from the non-zero-pressure curves in
that this contour represents only the effects due to
the crystal forces when R is changed, whereas the
non-zero-pressure contour includes the effects due to
the external pressure. That is, changes on the non-
zero-pressure contour represent the work done
against internal forces plus the external pressure.

M~(n, m) is pressure dependent mainly because
Sr(n, m) and R„are pressure dependent, the latter
being involved in the electronic matrix element.
These effects arise because of the pressure depen-
dence of the relative displacement of the two con-
tours which make S,~(n, m) pressure dependent and
because R„can be obtained as a linear combination
of the S (~n', m').

In this section we analyze the dependence of
S,~(n, m) on pressure. The notation to be used is:
~n;K„R,(0):P) is the nth vibronic wave function of

. the excited electronic state when a pressure P is ap-
plied to the system ~hose harmonic contour is
parameterized by K, and R, (0). A similar notation is
used for the ground electronic state with g's replacing
e's. In this notation S,~(n, m) is

S,~(n, m) = (n;K„R,(0):P~m;K~, R (0)r: P) .

Note that the transition probability, W,~(n, m), is
given by

2

W~(n, m) = [e„~(P)] ~S~(n, m)
~

e J @, (r;R„)rgr(r;R„)d r

S,~(n, m) is found to be

S, (n, m) = e'[I'(n +1)I'(m +1)]'"(—~)""(—p)~"
'f 2min(n, m)

x
cx jx

1

H„, —,
&

H, »~
I'(r +1)I"(n —r +l)I'(m —r +1),

(12)

(13)
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where'4

M, ~, —M gag l M, cv, —Mgcug
CX =

2 Mg QJg + Mg Cog ~ 2 Mju o)g + Mg oJg
jx =

&)/p '

[R,(p) -R, (t )] .
AM, o), M, o), + Mgcog

t J i

8=-=y
2

2(M, M~ui, co~) 'i
y=ln

M, o), + Mgcog

2

AMgo)g

Kg
ope ~ and QJg

e

[R,(R) —R, (p)],g 8

[R,(P) -R, (p)]'
2A M~cd~ + M cog

(14)

Two of the authors have given this result in an earlier work. "Similar results have been obtained by W.
Heinzel'6 and also by S. Koide. ' Note that only P, v, and 5 are pressure dependent in the harmonic case. We
can rewrite S,~(n, m) as follows:

S~(n, m) =
I I'(n + 1)I'(m + 1)]' ~(—0)" ~(—p)

M, o), + Mgo)g

min(n, m) (e27/ ) r/2

K„(r:P),I'(r +1)I'(n —r +1)I'(m —r +1) (15)

where

(r:P) =exp—
r

2it
M™eM2k M, cu, +Mgcug E,

M, Mgm, cog

M~Mgo), o)g

[ tMguiu (M,'ru ~ —Mgt rug') ] '~~

R, (0) -R, (0) +P Ag

K, Kg

1

Rg(0) —R, (0) +P
iL

We should note that the principal pressure dependence in S,~(n, m) is the exponential term which is quadratic
in pressure, having the form exp[ —AB'(P —Po)'], where

M, Maui, rug A, Ag R (0) —R (0)

This exponential factor is bne when P = Pa and decreases with a quadratic dependence on (p —Po). Note pa can
be negative or positive.

We now give some special cases of S,~(n, m) [Note .since S,~(n, m) =S~, (mn) as is , evident from detail bal-
ance, we need only consider one of the pair S~(n, m) and S„(m,n)].

For the zero-phonon transition

t2 )/g '1/2
(M, Mg m, uig)

M, co, + Mga)g

r r 'i

Q
T

For the relaxed phonon-assisted emission

2 Mgo)g + Mgcdg MgQpg + Mgcog

where
1
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We now look at the conditions for S,g(o, m) having
a maximum when m is fixed and the pressure is
varied and also when P is fixed and m is varied. First
consider the case of fixed m: Let P be the pressure
at which S,g(o, m) has an extremum, then P must
satisfy

Let mM be the value of m at which S,g(o, m) has
the maximum value for a given P, then mM must
satisfy

m"„, lH. , (BC(P-P,))l

Letting

S,g (0,m)
P P

(20)
lH (BC(P —P )) l

1/2

„, lH- „(BC(P Po—))l (23)

M, Mgo), o)g

[ AMg (og (M2rp, —Mg2ppg2) ] '~2

then Eq. (20) becomes

H. , (CB(P —P,))
H (CB(P —Pp))

AB (P Po)

(21)
where H t(x) =0. The P given by Eq. (21) can be
either positive or negative, and therefore in some
physical system it will be impossible to maximize
some or all of the vibronic transitions. That is, the
maximum obtainable value for S,~(o,m) is obtained
at zero pressure, whenever PM is less than or equal
to zero. In particular, in the case of the zero-phonon
transition, it is maximized at

P, = [R,(o) -R, (o)]
1Ag A,

Eg E,

Pp is positive in those systems for which

sgn[R (0) —R, (0)] =sgn Ag A,
g '

Kg Ke
2

where

(22)

' R,(o)- '
R, (o)

R, (Pp) = RE(Pp) =
Ag A,

Kg K,

For any system in which condition (22) is met, we

can increase the zero-phonon line intensity by the ap-
plication of pressure, and therefore if condition (22)
is met for a system which shows no zero-phonon
lines, then by the application of pressure we should
be able to cause zero-phonon lines to appear.

We should note that for the harmonic case there
are a total of seven parameters that specify the sys-
tem. They are ~„~g, M„Mg, A„Ag, and
Rp(0) —R, (0). Alers and Dolecek have shown that
for broad-band emission and absorption rneasure-
ments, where only peak transition energies and their
dependences on pressure are used, only four of
the parameters are determined. We, therefore, want
to indicate some other measurements that can be
used to gain and/or correlate information about more
of the parameters of a given physical system.

Note a similar condition holds for mM as for P .
That is, if mM is negative then the most intense real
peak would be the zero-phonon peak. Also note that
these conditions only specify complicated regions in
the parameter space. On the other hand if we consid-
er the equality signs, then the dimensions of these
regions are reduced, that is, placing more restrictive
conditions on the parameters of the system. If we let
P and P+ be the pressures for which the left and
right hand equality signs hold, then given these
values and mM, we can further determine the param-
eters. It should be noted that it will not be possible
in all cases to obtain a pressure so that either equality
sign holds; then we must deal with the less restrictive
conditions of Eq. (23). The pressure P corresponds
to the case when the peaks mM and mM —1 have
equal intensity, and similarly for P+, .the peaks mM

and mM+1.
It should be noted that Eqs. (22) and (23) are con-

ditions for maximizing S,g (0, m) but not Wg (0,m) .
Wg(o, m) changes with m and P because of three fac-
tors: The principal change is due to S,g(o, m), the
second factor is [op (P)] 2, and the last factor is the
electronic matrix element which depends on m and P
through Rp .

We consider the change in Eqs. (22) and (23) due
to the factor [op (P)] '. Equation (22) is replaced by

H (CB(P —P ))

where

P
B DP„—mo)p+opp(0)

1

I A, Ag

2 K, K

(22')

and Eq. (23) is replaced by

H i(CB(P —Pp)) 2 H„(CB(P—Pp))

l p, l o..„(P)+~. .. „(P)
H~ p)(CB(P —Pp)) '2

p, M

porn (P) rog

(23')
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IV. EFFECTS OF ANHARMONICITY ON

THE PRESSURE DEPENDENCE OF
IMPURITY SPECTRA

on the system is

F =-K [R -R (0)] 3P-[R -R (0)]'
—4ag[R —Rg(0)] —PAg . (25)

By methods similar to those used for the harmonic
approximation we can analyze the more general case
including anharmonicity. We choose for the zero-
pressure ground-state contour

E,(O, R) = ' [R —R (0)]'+P,[R —R (0)]'

Assuming that the first and last term of Eq. (25) are
the largest terms we can solve Eq. (25) approximately
for R4(P) To th.ird order in P, R, (P) is

' 1/2

Rg(P) = Rg(0) — —2&3e g P'A '
g

+ ag [R —Rg (0)]'+ Eg (0), (24) 4n '(6e " l)P'A-'.
K„4

(26)

where ng & 0 and where

2 -2
v'3

This form is chosen so that Eg(O, R) has a single
minimum at Rg(0) and is asymmetric about this
minirnurn. Using the three steps given in Sec. II, we
can find the contour at any pressure, P. The force

P Ag 4 ng+ — e PAg.
2Kg 3 Kg5

(27)

And finally the R-dependent term of the contour, to
the same order in Pis

The work done adiabatically, W, by the pressure is to
third order in P

U(R) = [R —Rr(P)]~+Pr(P) [R —Rg(P)] +at(P) [R —Rg(P)]
2

where

&/2
-2 2 3 1/2

2

Kg(P) =Kg —443 e PAg+ (I —2e )P Az~+3243e (2 —3e )P Ag,
g,

— '(P)
Pe(P) = e " [ag(P) Kg(P)]'~',

(28)

(29)

(30)

ag(P) =ag,

Kg

3 t 1/2

+2043
Kg'

&/2 -3
(e —I)PAg +30 (e g —e "g)P~A ~

g

2 ~ 2

(7 —IOe '+9e ')P'A 3 .

(3I)

(32)

Combining Eqs. (27) and (28), we find for Eg(P, R)
— '(p)

Eg(P, R) = [R —Rg(P)]~+ e ~ [ag(P)K~(P)]'~~[R —Rg(P)]'

+ (P) [R —R (P)]4+ +—,e gP3A 3+E (0), (33)

where

2 i/2
(P) Vg 0! 16o.2 —2y2

[a (P)K (P)]' '= (a K )' ' —4 PA —843e P'A' — (6e
" —l)P A'. (34)

K ' K' ' K4
g g g

We note that as a consequence of the anharmonicity the effective force constant, K, (P), and the asymmetry con-
stant, 7~~(P), are pressure dependent. (If we had included terms in E4(O, R) of higher order than the fourth in

[R —Rg(0)] then ag would also have been pressure dependent. ) This results in a nonuniform displacement of the
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vibronic transitions with pressure, as is evident from
substituting the pressure-dependent force constants
K, (P) and Kg(P) into Eq. (6). In other words, the
nonuniform displacement of the vibronic transitions
with pressure is an additional measure of anharmoni-
city.

In addition, it is now clearly seen that when anhar-
monic forces are taken into account, then a linear
displacement with pressure in the position of each vi-

bronic line, including the zero-phonon line, occurs.
This is shown by substituting the effective force con-
stants given in Eq. (29) into Eq. (6a), and then ex-
panding the square roots keeping linear terms in P.
Equation (6b) for the dependence of the vibronic
transition energies on pressure becomes

e„(P)
' 1/2

~ i/2

A' A' p+ ' — ' + ~„„(0), (35)
EC, Eg 2

!

including the effects of anharmonicity in the change
of the contours with pressure to first order in pg and

p„but not including the anharmonicity on the
energy-level splitting. Note that the linear term in
the pressure in Eq. (35) depends only on the
second- and third-order coefficients of Eq. (24), that
is on the K 's and p's. Also note that if we included
the anharmonicity in the energy-level splitting and as-
sumed the anharmonicity to be small, then the ad-
ded pressure dependence would be of an order of
magnitude smaller than the linear term already in-

cluded.

V. CONCLUSIONS

For impurity systems whose electronic states have
harmonic adiabatic potentials, and pressure-
independent coupling constants, " the peak energy for
broad-band phonon-assisted transitions is shown to
have a linear pressure dependence if Kg/K, W Ag/A,
and a quadratic dependence if E, & Eg or A, & Ag

[see Eq. (4b)], and vibronic transition energies have
no linear dependence and have quadratic dependence
if Kg/K, & Ag2/A, 2 [see Eq. (6a)]. These conditions
are corrections of some in current use. In the har-
monic approximation, the peak positions for emission
and absorption are displaced in opposite directions,
while the bandwidths are both simultaneously in-

creased or decreased, to first order in the pressure. It
is proven that the equilibrium configuration coordi-
nate for each state is independent of the way the
pressure is applied so long as it is done adiabatically

and that the zero-pressure adiabatic potential is quali-
tatively different from all non-zero-pressure adiabatic
potential curves.

The principal change in the transition matrix with
hydrostatic pressure is a consequence of the change
in phase of the two vibrational wave functions with

respect to each other due to differential displace-
ments in the adiabatic potentials for the two electron-
ic states. The transition matrix is evaluated to first
order for the zero-phonon transition [see Eq. (18)]
and then for the most probable transition [see Eqs.
(23) and (23')]. The types of centers for which hy-

drostatic pressure ~ill enhance the zero-phonon tran-
sition are predicted [see Eq. (22)]. The parameters
of impurity systems with vibronic spectra can be
determined by applying the results of the theory to
experimental spectra measured with different hydro-
static pressures.

We note that because the adiabatic potential curves
are now pressure dependent the Franck-Condon prin-

ciple must be generalized to include the condition
b P =0, in addition to the usual conditions hR =0
and AR =0.

Anharmonicity is shown to result in pressure-
dependent force constant and asymmetry constant
and thus is responsible for different energy displace-
ments of different vibronic transitions, including the
zero-phonon transition. The effect of anharmonicity
on the pressure dependence of transition matrices
remains to be calculated.

The present work assumes that the configuration
coordinate associated with the Stokes shift or with

the vibronic structure is the same as, or is simply re-
lated to, the deformation occurring with pressure.
The relationship between these coordinates and its
effects on spectra w'ill be considered elsewhere.

Consideration of the pressure dependence of the
envelope of the theoretical vibronic spectra, with and
without anharmonicity, clarifies the origin of the
pressure dependence of broad-band, phonon-assisted
spectra. Analyses of the experimental broad-band
spectrum and its pressure dependence result in a less

complete determination of the parameters of the im-

purity system than is possible with the analysis herein
developed for spectra with vibrational structure.
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APPENDIX A

I

The questions we want to answer are: What is the
final-state energy in an optical transition from the re-
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laxed initial state and how do you find this energy?
We will give answers to these questions for the case
of absorption, where the final state is the excited
state for the simplest possible system that incor-
porates the essentials of the problem. The system we
consider is one in which

and

R (0) =0, E (0) =0, A, =A =A,

where the first term corresponds to the elastic energy
and the second term corresponds to the constant
pressure P. Now the work done by this force in go-
ing from RI to R, (P), the latter being where the
force is zero, is

+ R,(p)
W = J (

—K [R —R, (0)] —PA ] dR
1

=—[R) —R, (0)] +PA [R, —R, (P)]

——[R,(P) —R, (0)]' .

Note that this work involves a change at constant
pressure. Now the energy of the excited state for the
configuration R ~, when a pressure P is on the sys-
tem, is equal to the energy of the excited state for
the configuration R, (P) plus W. We can find the en-
ergy of the configuration R, (P) by finding the work,
8'~, done by the system, when it is in the excited
state as the pressure is removed adiabatically plus the
energy of the configuration to which it goes, which is
the excited-state zero-pressure equilibrium, R, (0).
This work, W~, is just equal to the work done when

K =K =K.e g

We know from the balance of forces that
R~(P) =—PA /K, and the corresponding energy
E~(P) = P'A'/2K when the pressure is applied adia-
batically. Therefore, the initial state for the transition
from the relaxed ground state is the state whose en-
ergy is P2A2/2K and whose configuration is
R =—PA /K. Note that the excited-state equilibrium
is not at the same configuration as the ground-state
equilibrium, when a pressure P is on the system, ex-
cept accidently, and therefore, we need to find the
energy, not specifically for the excited-state equilibri-
um configuration, but for an arbitrary configuration.

Let R~ be some arbitrary configurational coordi-
nate, then we can ask what is the energy of the excit-
ed state for this configuration. We can determine
this energy by finding the work done when changing
from configuration R ~ to some configuration Ro, for
which we know the energy. We will choose Ro to be
R, (P), the relaxed configuration for the excited state
when there is a pressure P applied to the system.
The force on the system in the excited state is

F = K[R —R, (0)—] —PA,

we apply a pressure P adiabatically to the system
when it is in the excited state. That is,

W = P2A2/2K .

If, when we remove the pressure, we did not go to
the zero-pressure excited-state equilibrium, whose
energy is E,(0), then: (a) If the state we went to had
a higher energy, then we could let the system relax
and then reapply the pressure coming to a state of
lower energy than we relaxed to with the pressure P
on the system. This contradicts the definition of the
state at R, (P) to which we relaxed as being the
equilibrium position state. Or (b), if the state we
went to had a lower energy, then we have an incon-
sistency with the definition of the configuration at
R, (0) being the equilibrium configuration for the ex-
cited state with zero pressure.

Now the energy of the excited state when the pres-
sure P is on the system to which we make the optical
transition from the ground state when the system is
in the configuration R~ is

E = W + Wi + E,(0)

=—[Ri —R, (0)]2+PA [R t
—R, (P)]

——[R,(P) —R, (0)]'+ + E,(0)
K PA
2 2K

which can be rewritten

E =—[R,(P) —Ri]2+ +E,(0),K PA
2

' 2K

which is just Eq. (2) for this special case.

APPENDIX B

In order to clarify some of the effects of hydrostat-
ic pressure on radiative transitions of luminescent
centers describable by a harmonic adiabatic potential
we present here an extension of the spring analogy
introduced in Sec. II, with and without pressure, for
the ground and excited electronic states. For simpli-
city we shall consider the case for which the force
constants for the two states and thus the spring con-
stants are equal, K, = Kg, and the coupling constants
to the pressure are equal, A, =A~. Thus, the only
difference in the two electronic states which exists in
this spring analogy is the equilibrium positions,
R, (0) W Rg(0); the difference in the electronic ener-
gies of the two states should be kept in mind but is
not evident in the spring analogy.

If we assume that displacements of the right-hand
end of the spring correspond to the configurational
coordinate R then for springs of equal length the
left-hand end of the spring must be fastened at dif-
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l g
E (O, R)

~pAy& P=O
K

0 D Rg {0)

(c)

E (P, R)

~p- ~P
K

0 D Rg(P)

R ~

E (O, R)

{b) ~mrrrm P= 0
K

0 R~{0)

Ee(P, R)
]

(d) wgyggg~ ~ P
K

0 . R (P)

FIG. 3. Spring analogy to luminescent center for ground
and excited states, without and with hydrostatic pressure.

ferent positions for the two different electronic states
corresponding to R, (0) A Rg(0). Let us designate
this difference by D = Rg(0) —R, (0). Then the
spring analogy for zero pressure is shown in Figs.
3(a) and 3(b), respectively, for the ground and excit-
ed states. Changes in energy with displacement in R
from equilibrium are illustrated by the parabolas at
the right-hand end of the springs.

With applied pressure P the equilibria are displaced
to Rg(P) and R, (P) for the two electronic states,
respectively, as shown in Figs. 3(c) and 3(d). For
these, the right-hand side of the spring experiences
the spring force plus the force from the pressure; the
force constant for the spring remains unchanged with

pressure as proven in Sec. II; the D which in this
analogy is the difference in positions of the left-hand
end of the spring for the two electronic states
remains unchanged with pressure because it describes
the difference in crystal interactions alone for the two
states;

We now consider optical transitions satisfying the
Franck-Condon principle, that is b, R =0 and hR =0.
For the transitions at P =0, the most probable ab-
sorption corresponds to the difference in the parabo-
las for the two states with R = Rg(0) on Figs. 3(a)
and 3(b); the most probable emission, with
R =R, (0) on the same pair of subfigures. Similarly,
for the transitions at pressure, P, the peak absorption
occurs at R =Rg(P) on Figs. 3(c) and 3(d); the peak
emission, at R =R,(P). The Franck-Condon princi-

pie is thus generalized to include an additional condi-

tion, AP =0.
Some authors, for example Drickamer, Frank, and

Slichter, ' have obtained the dependence on hydro-

static pressure of the most probable radiative transi-
tions by calculating the change in the most probable
configuration of the initial state with pressure but
neglecting the change in transition energy at any arbi-

trary configuration R with pressure. For absorption
this corresponds in our analogy to a transition
between Figs. 3(c) and 3(b) at Rg(P); for emission,
between Figs. 3(d) and 3(a) at R, (P). These transi-

tions violate the condition 4P =0, and thus do not
include the effects of pressure on the dynamics for
the final state of the transitions.

A recent analysis of Tompkins'9 of experimental
tests of the Drickamer, Frank, Slichter model "... re-
vealed that the tests fail to verify the model, even
qualitatively. "

Several additional observations can be made by

considering process'es occurring between the subfig-

ures of Fig. 3. The application of pressure to the
crystal in its ground state corresponds to the adiabatic
compression of the spring from Rr(0) to Rg(P) as
shown from Figs. 3(a) to 3(c). After the previously

described radiative transition from Fig. 3(c) to 3(d),
there is a spontaneous relaxation from Rg(P) to

R, (P) on Fig. 3(d) during which work at constant
pressure can be obtained from the system. The sys-

tern then luminesces as previously described from

Fig. 3(d) to 3(c), which is followed by relaxation
from R, (P) to Rg(P) on Fig. 3(c), during which

work at constant pressure can be obtained.
The extension of the model to K, & K~ and

A, A A~ is straightforward. The simple case, with

only R, (0) & R~(0), illustrates that the system in the

two electronic states responds differently to pressure
and the effect of pressure on the final state of the
transition must be included in a complete theory. We
emphasize in general: (a) a luminescent center in

each electronic state is a distinct system with unique
characteristics; (b) the connection between the center
in its different electronic states is given by. a single
configuration coordinate diagram; and (c) the effects
on optical spectra of perturbations of the luminescent
center must include the effects on both the initial and

final electronic states, particularly taking account of
the connection between them.
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