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We examine the consequences of competition between charge and spin-density waves in im-

pure transition-metal dichalcogenides within the context ot a Landau-Ginzburg mean-field

theory, Magnetic impurities enhance a stable spin-density wave and stabilize an unstable one,

while tending at the same time to suppress the charge-density wave. The formation of the

spin-density wave is used to explain features of the magnetization, Hall-effect, resistivity, and

negative magnetoresistance data for iron-doped TaSe2. Randomness in the impurity position

leads to randomness in the phase and amplitude of the spin-density wave, giving rise to a novel

kind of spin glass, which we call a "spin-density-wave glass" and which, in this particular nsateri-

al, occurs against the background of a smeared charge-density wave.

I. INTRODUCTION

The physical properties of iron alloys of the layer-
structured transition-metal dichalcogenides are ex-
tremely sensitive to the iron concentration. Tran-
sport properties such as resistivity, magnetoresis-
tance, Hail-effect and supercoriductivity exhibit
anomalous and in many occasions dramatic changes
for iron concentrations in the 0—10% range. ' Sus-
ceptibility measurements' also reveal a high degree of
sensitivity to the iron concentration. In the case of
excess iron intercalated into 2H-TaSe2, the observed
anomalies include a low-temperature resistivity
minimum' and susceptibility maximum, negative
rnagnetoresistance, ' and anomalous behavior of the
Hall coefficient as a function of both the temperature
and the applied magnetic field. ' Superconductivity
has not been studied for 2H-Fe„TaSe2 due to the
very low transition temperature of pure 2H-
TaSe2(T, =0.2'K).8 Magnetic impurities, however,
rapidly suppress superconductivity in 2H-Fe„NbSe2,
which behaves somewhat similarly to 2H-Fe„TaSe2. '6

Pure 2H-TaSe2 has been studied both experimen-
tally and theoretically. The anomalous behavior
of its properties such as specific heat, resistivity, and
magnetic susceptibility has been attributed to forma-
tion of charge-density waves (CDW). '8 A charge-
density wave is a periodic variation in conduction-
electron density of wave vector p~ arising, for exam-
ple, from nesting of parallel portions of the Fermi
surface. If there is no vector or rational fraction of a
vector of the reciprocal lattice equal to p~, the
corresponding CD% is called incommensurate
(1CDW); in the opposite case, it is called commen-
surate. The new periodicity introduced by the CD%
breaks up the Brillouin zone and opens up gaps at the

new band edges. The occupied states move to lower

energies, providing the reduction of the electronic en-

ergy necessary to stabilize the distortion. The resis-
tivity minimum, the specific-heat peak, and the drop
in the susceptibility below the transition temperature
are associated with the opening of these gaps and the
corresponding reduction of the Fermi surface. The
trigonal prismatic 2H-TaSe2 undergoes a second-order
normal-ICDW phase transition at T„=122'K.
The temperature dependence of the susceptibility
above T„may be explained in this case as the
behavior of a narrow-band paramagnet (see, howev-

er, Ref. 17).
The picture is not clear for the Fe-doped material,

however. The low-temperature resistivity minimum
has been explained using the concept of the Kondo
effect. ' Negative magnetoresistance and anomalous
Hall-constant behavior have been explained using an
s-d exchange model. '" While a high Kondo-
temperature can explain the observed resistivity
minimum-at T;„, the Kondo effect alone does not
offer an adequate explanation for experimental find-

ings such as a resistivity maximum at a temperature
below T;„and a concentration dependent slope of
the reduced resistivity versus lnT curve. It is unlike-

ly that independent localized moments are responsi-
ble for such behavior for impurity concentrations of
5% or more.

We note that whenever a system develops a

charge-density wave, it is reasonable to presume that
the system may show at least an incipient tendency
towards spin-density-wave (SDW) formation. The
condition for instability against formation of a CD%
of wave vector q can be written

e(q, «)) =1+47rX(qo),) =0, , at &v=0
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where e(q, co) is the longitudinal electronic dielectric
function for wave vector q and frequency co and

X,(q, cu) is the corresponding susceptibility. Similar-

ly, the condition for an SDW instability can be writ-
ten

p, (q, oo) =1+4m X,(q, o) ) =0 at co =0,

where p, is the electronic-spin permeability tensor and
X, is the corresponding spin-susceptibility tensor. In
simplest approximation, ignoring spin-orbit coupling
and using the RPA, X, and X, are both proportional
to the same polarization propagator. Thus those
features of the band structure and wave functions
which drive a CDW unstable tend also to drive an
SDW unstable. This tendency persists in better ap-
proximations. We propose therefore that magnetic
impurities play a dual role in this material: On the

.one hand, they reduce the normal-ICDW transition
temperature and also smear the transition. " ' On
the other hand, they stabilize at the same time an
aperiodic modification of a periodic magnetic distor-
tion, a spin-density wave. The first of these two
roles is manifested in the susceptibility, for a 2% Fe
concentration, as a broadening and shifting to lower
temperatures of the sharp maximum seen in the pure
material; for a 5'/o Fe concentration this maximum
has completely disappeared. The second of the two
roles is manifested by an increase of the susceptibility
at low temperatures which, in the 5'/o Fe concentra-
tion, has developed into a pronounced maximum,
sensitive to the impurity concentration and the ap-
plied external magnetic field. While a Kondo-type
mechanism can be responsible for the resistivity
minimum, the origin of the maximum is quite dif-
ferent: It is the onset. of the SDW which is responsi-
ble for the rapid suppression of the spin-flip scatter-
ing and, therefore, the formation of a resistivity max-
imum. Since we expect the temperature derivative of
the SDW amplitude to reach its maximum value at
T»~, the temperature at which the SDW first ap-
pears, we associate Tsow with the temperature at
which the maximum slope in the resistivity versus
temperature curve occurs, Following this picture, we
expect the susceptibility maximum to occur at TsD
as well, because the presence of the SDW rapidly
reduces the existent uniform magnetization. The
temperature dependence of the susceptibility of the
clean metal above T„ is attributed in this picture to
an incipient SDW. The CDW is still the dominant
instability in this case, responsible for the transition
at T„because the SDW needs a finite concentration
of magnetic impurities to manifest itself.

In Sec. II we develop a Landau-Ginzburg model to
deal with the CDW' formation only. Following
McMillan' we study both the clean material as well
as the material doped with nonmagnetic impurities.
The first part of Sec. III deals with the formation of

an SDW by generalizing the formalism of Sec. II.
We make a random-phase approximation and, there-
fore, miss the random or spin-glass character of the
spin density. The second part contains a model cal-
culation of an impurity-induced SDW i'n the back-
ground of a smeared CDW. Section IV, finally, con-
tains the discussion of our results. In Sec. IV we re-
turn to the question of the randomness of the spin
density and discuss the interesting possibility of a
new type of spin glass associated with a random
sp&n-density wave.

II. CHARGE-DENSITY WA VE FORMATION

p(r) = po(r) ii + ~(r)i (2.1)

where a(r) is the real order parameter. It is more
convenient to express n in terms of the complex ord-
er parameter p, (r) and its Fourier components
around the CDW wave vector pi

~(r) =-, [P,(r) + P,'(r)l (2.2)

(2.3)

The transition-metal dichalcogenides form layered
crystal structures in which the basic building block
resembles a sandwich with a layer of transition metal
between two layers of chalcogen atoms. " The
layers stack to form the crystal with the metal atom
covalently bonded to six chalcogen atoms lying on
the corners of either a trigonal prism or an oc-
tahedron. These two basic layer forms combine in
several ways to form different crystal structures, such
as the 2H, with two layers of chalcogen-metal-
chalcogen in a trigonal prismatic coordination and al-
ternate stacking perpendicular to the planes. Each
layer is weakly bound to the next, thus forming an
anisotropic, mainly two-dimensional crystal. We,
therefore, work with a two-dimensional model of
charge-density waves (CDW) in one layer, first
developed by McMillan. ' We choose the electron
density as the order parameter and, following McMil-
lan, we write down a Landau-Ginzburg free energy in
powers of the deviation of the order parameter from
its normal value and of its gradients. . We perform
the calculation more carefully, allowing the amplitude
to be complex. Within the random-phase approxima-
tion (RPA) which we employ, we find that the
minimization of the free energy leads to a set of ex-
act self-consistent equations. We show therefore that
the RPA is specifically responsible for the sharp
first-order character of the normal to incommen-
surate CDW transition, as well as for the loss of the
impurity pinning mechanism of the CDW.

If po( r ) is the charge density of the d-band con-
duction electrons in the normal state, the charge den-
sity p(r) is given by



COMPETITION BETWEEN CHARGE- AND SPIN-DENSITY. . . 233

with

Fc = F&c + F2c

Ftc= I d r[a„u (r')+c„n (r)]

(2.4)

(2.5)

F2c Jd——' r ( e„I [p,' + ( p, V ) '}y, ( r ) I

'

Within the context of a mean-field theory we consid-
er long-wavelength fluctuations only, that is, @,-ap-
preciably different from zero for q & (p i . The
CDW can have three possible directions p i because
of crystal symmetry. Thus, there are three possible
sets of values of @„and $,-which require the addi-

tion of an index if more than one set is nonzero.
However, a single CDW is studied at present, and
the free energy is expressed in terms of powers and
gradients of n( r ) or P, ( r ) . The free energy for the
clean material has the following contributions per
layer

For T ) T„, g, is positive and only $„=0 is a solu-
tion to Eq. (2.8). This corresponds to the normal
phase, above the transition temperature, with free
energy F~ =0. For T & T, however, the solution

I ~- I' = —2g./3

yields a lower free energy,

CD% 6 gc
1

(2.10)

(2.11)

making this phase stable. This solution corresponds
to the formation of a charge-density wave of ampli-
tude $„, the transition being second order. The
phase of the CDW is not determined and lies hidden
ln 4co ~

Doping the material with nonmagnetic impurities
translates in our formalism into adding an extra term
to the free energy to account for the effect of the im-
purit&es:

+ fco I pi x ~ e, ( r ) I'} (2.6) F,c „l d'r U——(r)po(r)-(r) . (2.12)

F~~ contains the usual Landau terms with a„chang-
ing sign at the temperature T„,

We expand the impurity potential as we did for
,(r),

a„=a, '(T —T„) (2.7) V(r ) = U( r )po(r ) = g uog( r —ri)
I

(2.13)

(g, + 3
I @-I

') 0- =0 (2.8)

where

gc = aco/cco (2.9)

The rest of the coefficients do. not vary with tempera-
ture near the critical temperature. The term F2c is

constructed in such a way that (a) the free energy
has a minimum when the CDW has the right wave
vector p~ and that (b) the free energy does not
depend on the direction of the CDW. This term
measures the energy it costs the system to distort the
charge density from its uniform value.

Using the Fourier expansion for P, ( r ) and keeping
small q terms only, we obtain the free energy per
unit area as a function of @„,the set ($,-„},and the

parameters a„, c„, e„, and f„. The fluctuations in

the doped material are thermal and impurity driven.
Therefore, each P,-has a random phase associated

with it. Thus, we can treat each @,—, as having a ran-

dom phase, an approximation which is self-consistent
in the presence of impurities, and keep only those
terms which would survive averaging over the ran-
dom phases, these' being the dominant terms in the
sum. The analysis is greatly simplified but we lose
the possibility of dealing explicitly with pinning of the
phase and amplitude of the charge-density wave by

the impurities.
Minimization with respect to the @,-'s leads to a

homogeneous system of equations which possesses
only the trivial solution @,-„=0. Minimization with

respect to $„gives

V(r) = Vo+(~) ' ' X' V e'o'" e ' +c.c. (2.14)

Minimizing again with respect to (@,—,} and P„we
obtain a set of equations which becomes exact in the
limit of infinite layer area, within the random-phase
approximation. This system is solved numerically for
each value of the impurity concentration and tem-
perature and the free energy of the normal, as well as
the ICDW, state is thus obtained. We find that the
transition temperature T, is suppressed with a
square-root-law dependence on the impurity concen-
tration q, (Fig. 1),

T, = T,. re(C,)'i', — (2.15)

2
'Oc &0

16mC„pt (e„fc,) 'r (2.16)

This rapid reduction of the transition temperature for
small impurity concentrations is expected, because
even a small number of impurities is enough to des-
troy the phase correlation of the CDW, thus drasti-
cally suppressing 7;. The specific functional depen-
dence, however, may not survive in a microscopic
calculation,

We also find the transition to be first order, con-
firming M cM illan's result. ' The following new
features should be noted, however: (a) The assump-
tion of a real @„is unnecessary and restricts the
phase of the CDW. This phase cannot be defined ab-
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first on the SDW and ignore the presence of the CDW

m(r) = —,
' g, (r)+y,'(r)j, (3.1)

0.5
Fg = F)g+ F2g +F3++F4/

Fl,g= d I asom r +cs0 m

(3.3)

(3.4)

0 ~05

L
CDW ~. Ip )

l '~ I

O.l

with

a„=a, '(T —T„)
r

F2s= d rXJ(r —r()S( m(r)
I

(3.5)

(3.6)

FIG. 1. (a) Normal to ICDW transition temperature vs
nonmagnetic impurity concentration. C, is a dimensionless
quantity proportional to the impurity concentration.

3

F»= J"d" X (~,lb('+(r, ~)')y;(-r) ~'
i~1

+f,.I p(» y.'(r ) ('), (3.7)

solutely, because the mean-field and RPA approxi-
mations restore translational invariance so that the
free energy becomes independent of this phase. (b)
We emphasize the reduction of the transition tem-
perature with increasing impurity concentration, a
result which will prove to be important for the for-
rnulation of an impurity-induced SDW in the pres-
ence of a smeared CDW. (c) The treatment of the
CD% formation in the clean material can be general-
ized. , and it will be used in the analysis of the forma-
tion of an SDW.

+4s= ga„S(' .
I

(3.g)

J(r —r() =jog(r —r()

The following should be noted with respect to the
various contributions to Fq'. The terms Fjg and F3+
are not different from the corresponding terms previ-
ously considered. The term F2g describes the interac-
tion between the spin-density and the thermodynamic
variables SI describing the impurity spins. The in-
teraction J(r r() is—Fourier decomposed around the
SDW wave vector p~,

III. MAGNETIC IMPURITIES AND
SPIN-DENSITY-%A VE FORMATION

q

+c.c. (3.9)

In the first part of this section we examine the pos-
sibility for the development of a spin-density wave
(SDW), while in the second part we develop a model
calculation of an impurity-induced SDW in the back-
ground of a smeared CDW, and compare the avail-
able experimental data with our results.

A. Is an SD% possible?

The order parameter in this case is the spin density
m(r), a vector order parameter. We proceed by
generalizing the method of Sec. II to deal with such
an order parameter. We concentrate our attention

The F4g contribution, finally, is analogous to the con-
tribution of the usual magnetization in a magnetic
system. The calculation proceeds as for the CDW
case. The use of the RPA in obtaining the magnetic
part of the free energy destroys the correlation .

between the phase and amplitude of the spin density
and the positions of the magnetic impurities. The
impurity spin itself is a dynamic variable, too, since
its orientation is not predetermined. Both the spin-
density and the impurity moment change to find the
point of minimum energy.

Accordingly, the free energy is minimized now
with respect to both the impurity spin variables SI

and the Fourier components $,-, of the spin density.
This procedure leads to a homogeneous system of
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equations, which accepts only the trivial solution,
The free energy thus takes the form

Fs= —'(g, C)14,.1' + —', g,'. @,'. +2(0,. $,.)'I

(3.10)

where C, is a dimensionless quantity proportional to
the impurity concentration, q„

~ 2
'gsJO

s
2 Qsi Cso

(3.11)

and

gs = ttso/cso (3.12)

For g, —C, )0 the minimum free energy occurs at
@„=0,corresponding to the normal state. For
g, —C, & 0 nonzero solutions exist corresponding to
the SDW state, The condition g, —C, =0 connects
the transition, temperature T, with the impurity con-
centration q,

s so
Jo

asras
(3.13)

A similar calculation, second order in the $,-, 's, gives
at the minimum free energy

(3.14)

where,

e,-„= —,'g, + *'
Ipt' —[pt (pi+q)]')'

Cso

"(p, xq)
&so (3.15)

Equation (3.14) relates the susceptibility of the doped
material, X-, , to the susc'eptibility of the clean materi-

al, X-„and the susceptibility of the impurities, Xi,

with the CD% formation, where the wave is forced
to distort itself, adjusting to the impurity potential.
The more impurities there are, the more difficult it
becomes for the CDW to satisfy the local impurity
potential constraints, without raising at the same time
the kinetic energy. %e isolate here the origin of the
competition between the charge and the spin-density
waves. As the impurity concentration g increases,
there exists a critical concentration q" such that for

the CD% wins over the SD%, while for

q ) rt' it is the SDW that dominates (Fig. 2). The
role of the impurities is to destabilize the CD% while
stabilizing simultaneously the SD%.

The formalism developed above includes the effect
of indirect impurity interactions. In the present cal-
culation the impurity spin variables S, were eliminat-
ed in favor of the Fourier components @, and these
in turn were eliminated in favor of @„. Alternative-
ly, the spin-density variables $,-and Q„could have
been eliminated in favor of the impurity spin vari-
ables SI. In that case the form of the free energy
would have emerged containing impurity spin interac-
tions, ultimately equivalent to Eq. (3.10). The in-
teractions, however, are indirect and intermediat d

by the conduction electrons. They do not include
direct interactions between the impurities which
would presumably be ferromagnetic in character.
These have been omitted because, as will appear later
in this section, we are concerned with compositions
Fe„TaSe2 for x ~0.1. At such concentrations, the
mean separation of the Fe atoms is too large for the
direct interaction to be important. At much higher
concentrations, around 30'/o, a ferromagnetic state is
indeed stabilized but we do not address that situation
here.

In order to examine the case where both a charge-
and a spin-density wave can form, we introduce an

X-0

q 2 01 rlsJO XIXq /c
(3.16) I.o

0.9

Thus, a direct consequence of the magnetic impuri-
ties is the enhancement of the susceptibility, as is
seen from Eq. (3.16). This enhancement is a max-
imum for q =0 and is the origin of the transition
temperature increase.

The enhancement of the transition temperature in-
creases with increasing impurity concentration. This
characteristic of the SDW formation is caused by the
dynamic character of the impurity moments. The
more impurities, the easier it is for the SDW to form,
because the local magnetic field orients the magnetic
moments creating a constructive feedback mechanism
that reinforces its buildup. This is to be contrasted

0.8
O

I- O.V

0.6

0.5

0.0 O. I 0.2 0.3 0.4

FIG. 2. Normal to ICDW and normal to SDW transition
temperatures vs impurity concentration, to demonstrate the
competition between the two instabilities.
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interaction term in the free energy

FrNr=g Jt d'ru'(r) m '(r) (3.17)

1. Clean material

8,. i@
Let @,', =P;e ' and @„=Re '. The minimization

procedure then leads to four possible solutions,
where R Wo and P; Ao, i =1,2, 3. Namely,

tI t = tI2 = t)3 = 4, , (a)

(b)

1
8) =82= &3+-m =@, (c)

1

Hi =82=83+ —m,
1

@,=tI)+ —rr (d)

I
I I

NORMAL

The calculations proceed within the framework of the
approximations already discussed. We examine two
physical situations

For each value of the temperature the free energy of
the normal, the COW, the SOW, and the CDWSDW
state is calculated, By varying the temperature and
the coupling constant g we obtained the phase di-
agram in the T gpla-ne (Fig. 3). This diagram deter-
mines the physically relevant range of values for the
coupling constant g, for no SOW is observed experi-
mentally in the clean metal.

2. Doped material

Magnetic impurities interact, in general, with both
the spin and the charge densities. The minimization
equations form, in this case, a highly nonlinear sys-
tem of complex equations, impossible to solve. We
examined the case of magnetic interactions alone and
the case of weak coupling between the Fourier com-
ponents $,-„and @,'-, , in which the solutions could be
determined numerically. The phase diagrams so ob-
tained revealed that the crossover indeed occurs, and
that the character of the instability changes as we
move past this particular point. Examples, in the T-

C, plane, are presented in Fig. 4. Thus, competition
between the two instabilities is possible, supporting
our physical picture.

CDW

o, =0.5
l;--0.4

t.5—

. I ( I

f

I

a, = 0.5

SDN/

DWSDW I

i.O

0.5-

NORMAL

CDW

a, =0.5
l.5- a, = 0.5

t, = 0.4
q

= 4.5

I.O SDW

0 0.5 COW

FIG. 3. Phase diagram for the clean material (C, =0), in
the temperature-coupling constant space. The symbols
CDWSDW1, CDWSDW2, etc. correspond to cases (a)
through (d) (see Sec. III A). To reduce the number of ex-
isting parameters, we take c« =c„,ap = a„/a«, and with

asap T Tgp asap Tgp asapt= tp=
ccp

'
ccp ccp

we have g, = t —t, and g, =ap(t tp). The coupling con-
stant g is also normalized with respect to c„.

I I

0.2 0.4

(b)

0.6 0.8 i.O

C

FIG. 4. Phase diagrams of the doped material. The mag-
netic interaction only is taken into account. The symbols
CDWSDW1, CDWSDW2, etc. correspond to cases (a)
through (d) (see Sec. III A). The normalization is the same
as in Fig. 3 and C, is a dimensionless parameter proportional
to the impurity concentration (see text).
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B. Model calculation of an impurity-induced SDW

We turn our attention now to developing a model
for the interpretation of the experimental findings on
iron intercalated into 2H-TaSe2(2H-Fe„TaSe2) based
on a CDW to CDWSDW transition. W'e know that
there is a CDW in pure 2H-TaSe2 which persists in

the presence of intercalated Fe impurities. We know
also that there are magnetic anomalies at low tem-
peratures which indicate that intercalated Fe
possesses a local moment and yet which differ from
what is to be expected from direct interaction among
the Fe atoms. We can argue that an unrealized or
suppressed tendency towards SDW formation can oc-
cur in pure 2H-TaSe2 on the basis of the discussion
in the introduction and the calculations of Sec. III A.
Accordingly, we propose that the Fe, acting as mag-
netic impurities, stabilize the SDW in the manner
described in Sec. III A and attribute the magnetic
anomalies to a CDW to CDWSDW' phase transition.

We have seen from our analysis in Secs. II and
III A that impurities tend to suppress the CDW,
whereas magnetic impurities enhance a stable SDW
and stabilize or induce a marginally unstable one.
This reduction of 'T, and raising of T, opens the
question of whether there is interference between the
two instabilities, which would complicate the analysis

given in this section. A careful analysis shows that
impurities destroy long-range order, causing the
smearing of the transition associated with the CDW
formation. "" Indeed, the temperature of the
normal-ICDW phase transition is reduced and the
transition smeared in the x =0.005 and x = 0.02 sam-

ples. In the 0.5% case the susceptibility maximum
occurs at T, = 116'K and is still relatively sharp,
The 2% sample shows a broad maximum at a tem-
perature between 100 and 110 K. We use this infor-
mation together with Eq. (2.15) to estimate the tem-
perature range for the development of the CDW in
the 10% sample, which has the largest iron concen-
tration studied. The normal-ICDW transition tem-
perature is estimated to be in the 95 'K temperature
region. Thus, the CDW is fully developed and its
amplitude is nearly temperature independent in the
temperature range in which the pronounced suscepti-
bility maximum occurs, for all concentrations of in-

terest. Its main effect, therefore, is to modify the
parameters of the free energy associated with the
magnetic variables in an almost temperature-
independent manner. Accordingly, we suppose there
to be no interference between the CDW and the
CDWSDW transitions and ignore the explicit contri-
bution of the CDW to the free energy.

The susceptibility curves exhibit also a dramatic in-

crease at low temperatures, even at 0.5% Fe concen-
tration. We attribute this increase to the onset of the
magnetic-impurity-induced SDW. We note that even
in the clean material the susceptibility shows a slight

increase as the temperature approaches zero, "which
is consistent with the existence of an incipient SDW.
Accordingly, we describe these systems in terms of a
Landau-Ginzburg free energy, which contains the
following contributions per layer:

F( = —a((T —T„)P'+ —b(P4+ a2M—21

+ —b2M + —cM P (3.I g)

JoF2= —$ (MS(+PS(cosp( r() (3.19)

F3 = $ S(2 +—* $ S(4
2A ( A (

FsH = MH ———x S(H
1

(3.20)

(3.21)

F = F)+F2+F3+Fs~ (3.22)

SI =S&+S2cosp& r, (3.23)

We thus have a four order-parameter model, these
being P, M, S(, and S2 (note that S( also goes to zero
as H goes to zero). We employ again a random-

phase approximation when evaluating the terms that
contain powers of cos (p( r(). The free energy is

then minimized and the resulting equations are
solved numerically to determine the four order
parameters. We calculate in this way the total uni-

form magnetization ST = M + qS~, q being the im-

where P is the amplitude of the SDW, M the uniform
magnetization induced by the applied magnetic field

H, SI the impurity spin variable, and A the area of
the layer. We choose T„, the transition temperature
associated with SDW formation, to be negative be-
cause no SDW is observed in the clean metal: either
the SDW is unstable or it is suppressed by a repulsive
interaction with the CDW. In either case the effec-
tive transition temperature for the development of
the SDW is negative in the absence of magnetic im-

purities.
When the SDW develops, a substantial mean mag-

netic moment also develops for each impurity atom.
While it was sufficient for the location of phase
boundaries to ignore the fourth-order terms in the
impurity spins, it is necessary to include them and

the temperature dependence of the impurity spin sus-

ceptibility in the present section in order to describe
the system below the magnetic transition tempera-
ture. In their absence, it is a trivial matter to elim-
inate the impurity spins S( in terms of M (r). In
their presence, the mean-field equations become so
difficult to solve that it is necessary to abandon hope
of describing the polarization of the SDW accurately
and keep only that component of each spin order
parameter parallel to the applied field. Since we are
not concerned with the pinning of the wave, we ex-
tract the q =0 and q =p~ Fourier components from
the impurity spin variables
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purity area density and both the differential bulk sus-
ceptibility X = (BSr/rIH)/(ph) and the ratio
X'= (Sr/H)/(ph), where p is the density of the ma-
terial and h is the height of the unit cell, measured
with the same unit length.

For II =0 the transition temperature for the onset
of the SDW can be calculated analytically

.
&12

Ts(H =0) = —,
' T„+ (—,

' T„)'+ " '
. (3.24)

a&a,

The difference between Eqs. (3.24) and (3.13) arises
from making the Curie-like temperature dependence
of the impurity spin susceptibility explicit by the use
of a, Tin —Eq. (3.20) in place of a,i in Eq. (3.8).

For negative T„, T, (0) is positive for any finite
impurity concentration. When the magnetic field is
turned on, this temperature decreases (Fig. 5), be-
cause the field tends to orient the impurity spins in
its direction, thus reducing their oscillatory orienta-
tion. The Sr/H curves (Fig. 6) reveal the following:
(a) the magnitude of the maximum decreases with
increasing magnetic field, (b) the temperature T,„
of the maximum also decreases with increasing H,
and (c) there is an asymmetry in the susceptibility
above and below T,„, i.e., the susceptibility drops
much faster below T,„ than it does above. All of
these features are observed experimentally' and can
be understood in terms of SOW formation: The
maximum occurs at the onset of the SDW, which
forces a reduction of the uniform magnetization. We

identify, therefore, T„,„with T, (H) and explain in

this way the suppression of T,„with increasing H.
The steep slope of the SDW amplitude, as a function
of temperature, near T, (H) is reflected in the fast
drop of the Sr/Hvs Tcurve, below T,„Sin.ce we
eliminate the spatial randomness of the impurity
spins by employing the RPA and ignore the possibili-
ty of randomness in their orientation and in the
orientation of the spin density, it is not surprising
that the calculated curves have a cusp and not the
observed rounded maximum, for finite H.

For high temperatures and low fields the bulk sus-
ceptibility becomes

X = — +1 ~(i -J,/a, )'
pha2 a,ph [T —(gjo /a2a, ) j

(3.25)

The high-temperature susceptibility obeys, therefore,
a Curie-Weiss law

Cl
X =Xp+

T —0
(3.26)

2
W;jX ff

3K.p
(3.27)

where W; = q/h is the impurity concentration. This
moment in turn can be expressed in terms of the
free-impurity moment pp,

Jp
IL&ff = pp 1 ——

02

with Xp, C~, and 8 appropriately defined from Eq.
(3.25). The constant Ct can be rewritten in terms of
an effective magnetic moment p, ,ff,

P

0.2

%e have fitted Eq. (3.26) to the high-temperature re-
gion of the susceptibility data for the x =0.05, 0.08,
and 0.10 samples. Table I contains the results of
these fittings. Our model predicts that 8 should in-
crease linearly with increasing impurity concentration
and that p,,tf should be concentration independent.

O. I

0.0
0.0 0.05 Q. I 0 O. I 5

2.5

FIG. 5. Temperature dependence of the amplitude of the
SDW, The free energy is scaled so that all quantities in-

volved are pure numbers. The numerical values of the
coefficients are:

a& ——0.8, a2 =0.6, a, =1.5, b, =0.4,
b2 =0.8, b, =0.6, c =0.6, Jp =0.8

2.0

I.5
0.0

I

0.05 O. IO

I

O. I5
I

0.20

q =0.2, T„=—0.2

The magnetic field is symbolized by H.

FIG. 6. Temperature dependence of the ratio S&jH. The
conditions of Fig. 5 apply also here.
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X X (10~ emu/g) Pea'(Ha)

0.05

0.08

0.10

0.62

0.62

0.79

2.87

2.94

3.61

1

7

20

While 8 does increase with increasing Fe concentra-
tion, its dependence on the latter deviates from
linearity. Similarly, p,,ff sho~s a weak concentration
dependence. In both cases the values extracted from
the fittings are smaller than the predicted ones. This
is a consequence of the presence of the smeared
CDW, which is left out of our model. The back-
ground susceptibility contains many contributions,
which become a source of ambiguity in determining
the parameter a2. This parameter contains the Pauli
contribution only and does not take into account such
contributions as the Landau diamagnetism, the Ta
and Se cores diamagnetism, and the Van Vleck
paramagnetism. Nevertheless, ignoring this and us-

ing the Xp value extracted from the 10% data, we get

200—

I I I I
l

I I 1 I
l

I & ~ I
l

~ I I I
l

I I I I
l

i I

l50—

~ experiment

theory

TABLE I. Values of the parameters Xp, petr, and 8, ob-

tained from the high-temperature fittings of the susceptibili-

ty data of Ref. 7.

RH = R p+4rrR, [Sr(H)/H j (3.29)

where Rp is the normal Hall coefficient, R, the spon-
taneous Hall coefficient, H the applied magnetic
field, and Sr(H) the total magnetization 3'3'

M. eas-
urements of the temperature dependence of the Hall
resistivity and Hall constant indicate that, their
behavior is very much like that of X'.2 We have ap-
plied our model to obtain the field dependence of the
ratio Sr/H The results . are presented in Fig. 8. They
show the characteristic nonlinear behavior of the ex-
perimental data. '

At this point, we employ our model in order to
understand the observed anomalies in the resistivity

for the free-iron moment pp =4.3 ps, compared to
4.9 pa for the spin part of Fe2+ (pa is the Bohr
magneton). The value of p, o increases as we increase
Xp, which suggests that the Pauli contribution is
indeed larger than the Xp we get from the fitting.
Since p,,ff is smaller than the magnetic moment of ei-
ther ferrous or ferri ions, we conclude that Jp is posi-
tive, which implies an antiferromagnetic coupling
between the impurity spins and the spin density. We
have also used our model to fit the susceptibility data
of the 10% sample, in both the high- and the low-

temperature regions. The results of this fitting are
presented in Fig. 7. The quality of the fit is quite
good, considering the limitations of the mean-field
and RPA approximations and the simplifying as-
sumptions introduced in the course of developing this
model.

Hall-constant measurements show remarkable non-
linear dependence on the applied. magnetic field and
temperature, ' reminiscent of the extraordinary
component observed in ordered magnetic systems
and in spin glasses. 9 ' In the presence of an inter-
nal field the Hall coefficient R~ is given by

l00

E

X

I I . I I
I

I 1 I
. I

I I

0
0 50 IOO I50

T ('K)
200

I I I I I I I ' I T I

250

FIG; 7. Numerical fit of the 10% susceptibility data of
Ref. 7. The estimated parameters are:

a1=4.8 x101 deg-1A-1, a2=2.3 x 104A-1

as =2.7 x10 deg A 3, b1 -—1.5 x101p eV-1

b2 ——1.5 x10 eV, b, =1.6x10 eV

c=9.0x109 eV 1, J =3.5»03 A 1

q=9.8 x10 A, Tgo = —240 'K

2.0

I.5
0.0

I I I I I I I I I I I I

0.05
H

O. IO

FIG. 8. Field dependence of the ratio S~/H, for different
temperatures, to demonstrate the nonlinear behavior of the
Hall coefficient (see text). The conditions of Fig. 5 apply
also here.
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and magnetoresistance data. The resistivity has a
Kondo-like minimum accompanied by a maximum at
a lower temperature. "We note first that the con-
ventional Kondo effect, involving isolated localized
impurity moments, cannot account for the resistivity
features. The reduced resistivity versus lnT plots
possess a concentration dependent slope, ' not expect-
ed in a traditional Kondo system. Furthermore, the
impurity moments cannot be treated as isolated, in
view of the fact. that in an ideal, two-dimensional,
substitutional, hexagonal, binary alloy containing IO/0

solute ions, only 53% of them have no riearest neigh-
bor of the same kind (the percentage becomes 28'/o

for a three-dimensional fcc structure). We conclude,
therefore, that for iron concentrations of about 5'/o

and more the simple Kondo mechanism should be
disregarded as the dominant mechanism for the resis-
tivity minimum. Nonuniformly distributed iron
atoms can, however, cause a Kondo-like behavior,
the magnetic moments being associated with groups
of iron atoms rather than individual atoms. The ob-
served logarithmic temperature dependence of the
resistivity near the minimum points in the direction
of a Kondo-type mechanism (though not necessarily
the conventional one). While such a generalized
Kondo effect can account for the minimum, the ob-
served maximum is still unaccounted for. We em-
ploy the physical picture already developed, attribut-
ing this maximum to the reduction of spin-flip
scattering. ' ' Two mechanisms can be responsible
for this reduction: either an external magnetic field
is applied or an internal field is present. In either
case the field locks the impurity spins in its direction,
reducing in this way spin-flip scattering. The first
mechanism is responsible for the negative magne-
toresistance. The stronger the field the more spin-
flip-scattering suppression it causes, and the more the
magnetoresistance decreases. The second mechanism
is responsible for the anomalous behavior of the
resistivity and magnetoresistance curves. Because the
rate at which the SDW amplitude increases with de-
creasing temperature is maximum at T,„, we identi-.

fy T,„with the temperature of rnaximurn slope in
the resistivity versus T plots. The experiments seem
to support this interpretation, ' even though meas-
urements looking specifically for this correlation do
not yet exist. Finally, SDW formation can account
for the field and temperature dependence of the mag-
netoresistance. For small applied fields and low tem-
peratures (below T,„) the interplay between the
external magnetic field and the internal fields created
by the SDW enhances spin-flip scattering, thus in-

creasing the magnetoresistance. When the applied
field is large enough or if the temperature is above
T,„, the magnetoresistance decreases with increasing
field. For T & T,„, therefore, the negative magne-
toresistance should exhibit a minimum for small
fields, while for T ) T,„ this minimum should

disappear and the negative magnetoresistance should
increase with increasing field, for all values of the
field, This behavior too is observed experimentally. "

IV. DISCUSSION

I

Within the framework of a Landau-Ginzburg
mean-field theory we find that magnetic impurities in
2H-TaSe2 tend to suppress the CDW formation,
while enhancing the formation of an SDW. Various
phases show up in the phase diagrams and, depend-
ing upon the choice of the parameters of the model,
the SDW or the CDWSDW state may be the stable
one at low temperatures (see for example Figs. 3 and
4). However, as discussed in Sec. III B, the experi-
ments indicate that the impurities stabilize an
aperiodic modification of the SDW, with a smeared
CDW serving as background.

The essential features of the experimental data are
correctly predicted, even within the limitations of the
mean-field theory. Namely, (a) the rapid drop of the
susceptibility with decreasing temperature below T,„
and its correct high-temperature behavior; (b) the
lowering of T,„with increasing magnetic field; (c)
the sharpening of the susceptibility maximum with
decreasing H; (d) the correct nonlinear dependence
on the temperature and the magnetic field of the Hall
coefficient, for different iron concentrations; (e) the
observed resistivity maximum at low temperatures;
and (f) the field and temperature dependence of the
observed negative magnetoresistance.

While this success is an indication that the correct
physical idea is incorporated into our model, on the
other hand, the present calculation omits (a) the ran-
dom nature of the phase of the SDW, associated with
the random spatial distribution of the magnetic im-
purities, by employing the random-phase approxima-
tion. Thus, we omit the pinning of the wave and the
loss of long-range order.

(b) Our calculation does not take into account the
possible random orientation of the SDW and the im-
purity spins'. we simplified the free energy in Sec.
III B by assuming that

S'SyOPPyOSWOPAO
The detailed calculations underlying the results of
Sec. III A reveal that the SDW developing is a spiral
one with its axis of rotation arbitrarily oriented with
respect to the direction of propagation. This degen-
eracy raises the possibility that one may have a locally
defined spiral SDW, with its axis of rotation changing
randomly in space. Even if such a spiral SDW is not
actually realized and the material favors the develop-
ment of a linear SDW, the fact that more than one
SDW may be present, raises the possibility of an
SDW possessing a wave vector p~ in one region of
space and a different wave vector p2 in another, thus



20 COMPETITION BETWEEN CHARGE- AND SPIN-DENSITY. . . 241

adding again orientational randomness to this already
complex random system. (c) Finally, we omit fluc-
tuations of the order parameter by employing the
mean-field approximation.

The inclusion of (c) results mostly in quantitative
changes. The inclusion of (a) and (h) would give
rise to a novel kind of spin-glass state: The conven-
tional spin-glass system consists of localized magnetic
moments on a set of impurities, randomly distributed
in a nonmagnetic host. " ' There exists also a second
kind of spin glass, known as the Stoner glass, consist-
ing of diffuse magnetic moments associated with ran-
dom impurities in a nearly magnetic host. ' A third
possible kind, suggested by the present work, consists
of localized magnetic moments and a random SOW
in a nearly magnetic host. We call it a "spin-density-
wave glass". The experimental data provide some
evidence that orientational, as well as spatial random-
ness exists: magnetization versus magnetic field
measurements exhibit a hysteresis loop, ' characteris-

'
tic of such a state. It would be interesting to see if
the sharpening of the pronounced maximum in the
susceptibility extrapolates to a cusp in the limit of
zero field. The experimental technique used in Ref.
7 already distinguishes between the spin-density-wave
glass and the conventional spin glass. In the latter,
the magnetization reaches its maximum value at zero
temperature, as the temperature is lowered, in the
presence of a constant magnetic field. In the form-
er, the magnetization drops suddenly at T,„during
such a field-cooling experiment, because it is reduced
by the development of the SDW. It would be in-

teresting to compare the behavior of these two sys-
tems with increasing temperature, after zero-field
cooling.

Even though the available experimental data sup-
port the development of an SDW in our system, a
direct proof of its existence does not, at present, ex-
ist. We wish, therefore, to suggest that neutron
scattering experiments be performed in these systems
(e,g. , Fe-doped 2H-TaSe2), in order to detect the
development and stabilization of the SDW phase, as
the temperature is lowered. In support of our model
we point to the fact that wp reproduce correctly. the
observed anomalous behavior of the susceptibility
and Hall-constant data, in a semiquantitative way,
within the mean-field theory we employ and that we

explain qualitatively the peculiar features of the resis-
tivity and magnetoresistance measurements. The
present phenomenological calculation, however, does
not account quantitatively for the details of these
measurements. It offers instead a clear physical pic-,
ture which can serve as the basis for calculations that

go beyond the mean-field theory.
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