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Fluorescence in the presence of traps
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We present a general theory for the time development of the donor fluorescence in the pres-

ence of a random distribution of acceptor ions which act as traps for the excitation. The theory

is based on a set of coupled rate equations for the donor. array. Symmetric transfer rates are as-

sumed which are independent of the energy mismatch between Jonors. Backtransfer from the

traps is neglected. Exact results are obtained in the static and rapid donor-donor transfer limits

for all values of the acceptor concentration. An approximate theory based on the average-t-

matrix approximation is developed for the regime intermediate between the two limits which is

applicable when there is a small concentration of acceptors. We make contact with the stochas-

tic hopping model of Burshtein and the diffusion model of Yokota and Tanimoto in appropriate

limits. The range of validity of the two models is established and equations are given for the

corresponding phenomenological parameters. The relationship of the calculations to the theory

of fluorescence line narrowing is pointed out.

I. INTRODUCTION

One of the oldest problems in the study of the op-
tical properties of solids involves the influence of
traps on the time development of the fluorescence
from inhomogeneously broadened levels. Such ef-
fects are seen in systems where there is an array of
"donor" ions which can exchange excitation through
various phonon-assisted processes. Embedded in the
donor array are "acceptor" ions which act as traps for
the excitation. Excitation can be transferred to the
traps, . However the reverse process in which excita-
tion moves from the acceptors to the donors often
has a negligible probability of taking place on the
time scales of interest. In a typical experimental
study of these effects a small fraction of the donors
are excited by the absorption of broad-band radiation.
As time passes excitation is transferred among the
donors as well as to the acceptors. Aside from radia-
tive decay, in the absence of traps the number of ex-
cited donors remains constant. By monitoring the in-

tensity of the donor fluorescence one can determine
the fraction of excited donors. Provided the radiative
decay rate is known information can be obtained
about donor-donor and donor-acceptor transfer rates
from an analysis of the decay curves.

Despite the fundamental importance of the
phenomenon there has been relatively little theoreti-
cal work relating the microscopic transfer processes to
the macroscopic fluorescence. Theories for the time
development of the fluorescence in the presence of
traps are largely phenomenological. ' As a conse-
quence the connection with the behavior on the mi-

croscopic scale is often unclear. The regimes where
the theories are applicable are not precisely stated and

there is little in the way of microscopic theory for the

parameters.
In this paper we outline a microscopic theory for

the time development of the donor fluorescence in
the presence of traps which has as its starting point
the set of coupled rate equations for the donor ions.
Although we do not have a complete solution to the
problem (except in limiting cases) we do obtain an
approximate theory for the fluorescence which is ap-
plicable in the limit of low-trap concentration. As a
by-product of our work we obtain insight into the
limitations of the various phenomenological models
as well as approximate expressions for the associated
parameters.

The remainder of the paper is divided into four
sections. In Sec. II we outline the microscopic model
and discuss the exact solutions which are obtained in
various limits. Section III is devoted to the develop-
ment of the approximate microscopic theory. The
theory is discussed in Sec, IV, , where we compare our
work with two widely used phenomenological models'.

the hopping model introduced by Burshtein2 and the
diffusion model developed by Yokota and Tanimoto.
Our findings are summarized in Sec. V. The em-
phasis in this paper is on theory. Detailed compari-
sons with experimental studies are left to future pub-
lications.

II. MICROSCOPIC MODEL

Our treatment of the dynamics of the donor
fluorescence is based on a set of coupled rate equa-
tions for the donors. These equations are applicable
whenever the transfer is completely incoherent as is
the case when it involves phonon-assisted processes
between widely separated ions. I n the absence of
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traps the equations take the form4

(2.1)

tegrated over the inhomogeneous linewidth. It is
proportional to the total number of donors in the ex-
cited state and hence to the sum Q„P„(t). In the
low-excitation limit where the excited ions are widely
dispersed we can ~rite the intensity normalized to its
initial value in the form

where P„(t) is the probability that the nth donor is
excited at time t. The parameter y& denotes the radi-
ative decay rate and W„„ is the transfer rate from ion
n to ion n'. We assume symmetric transfer rates,
O'„„=W„„,which are also independent of the ener-

gy mismatch between n and n'. However they do
depend on the relative separation between the two
ions. 5

In our model we assume that the transfer of excita-
tion to the traps is a one-way process. The passage
of excitation to an acceptor ion represents an abso-
lute loss similar to radiative decay. Because of this
we can incorporate the effects of donor-acceptor
transfer by including an additional term inside the
parentheses on the right-hand side of Eq. (2.1) thus
obtaining the expression

dP„(t) =—&, +X„+XW„„P„(t)
1I

ND ND

F(t) =N X XP„"'(t),
n' 1n 1

(2.3)

where P„(t) is the solution to Eq. (2.2) with initial
condition P„(0)= B„„and ND is the number of
donors. Equation (2.3) is the average of X„P„(t)
over all solutions with initial conditions correspond-
ing to there being only one donor, n', in the excited
state. As such it can equally well be written as a con-
figuration average

F(t) = X CPO(t)), , (2.4)

where the symbol ( ), denotes an average over
all configurations of donors and acceptors. It will be
convenient to separate the effects due to radiative de-
cay from those associated with donor-acceptor
transfer. This can be done by writing

(2.5)

(2.2)

The donor-acceptor transfer rate, X„, will depend on
the distribution of traps in the vicinity of the nth
donor. As a consequence, it will vary from ion to ion
in contrast to the radiative decay rate which is as-
sumed to be the same for all donors.

We assume that both the donors and acceptors oc-
cupy sites on a lattice. The acceptors and donors are
distributed at random such that each site has a proba-
bility c~ of being occupied by an acceptor ion and a
probability cp of being occupied by a donor. Thus we
have cD+c& ~1 with the equality pertaining to a sit-
uation ~here all sites are occupied either by donors
or acceptors. In addition, we make the assumption
that there are no isolated donors, that is to say, there
are transfer paths connecting all members of the
donor array.

Equation (2.2) is appropriate for characterizing a
situation where a small fraction of the donors are ex-
cited at any given time. Nonlinear effects associated
with high levels of excitation do not significantly af-
fect the donor-donor dynamics. However they can
influence the donor-acceptor transfer if an appreci-
able fraction of the acceptors is excited yt any given
time, since transfer to an excited acceptor will take
place at a different rate (if at all) than will transfer to
an acceptor ion which is in the ground state.

The property of direct experimental interest is the
intensity of the fluorescence from the donors in-

where f(t) is calculated from Eq. (2.2) with yR set
equal to zero.

Although the calculation of f(t) is a problem of
great complexity exact solutions for all values of c&

are possible in two limits. The first of these pertains
to a situation where there is no transfer between
donors. In this limit f(t) is given by a generalization
of an equation first derived by Inokuti and Hiraya-
ma4 7

f(t) = g (I —c~ + c~ e ' )
I

(2.6)

ND ND

g —P, (t) =—X (ytt +X„)P„(t)d

n-i d& n-i
(2.7)

In the rapid transfer limit all donors have an equal
probability of being excited for all times of interest.
As a consequence the P„(t) in Eq. (2.7) are indepen-
dent of n so that we have

ND (t) = ND X (yR + +n) NDP (t), (2.8)
dt

where the indices 0 and / refer to sites on the lattice
and XOI is the transfer rate from a donor on site 0 to
an acceptor on site I (or from a donor on site I to an
acceptor on site 0).

The other limit applies to a situation where transfer
between donors is extremely rapid in comparison
with the transfer to traps. We obtain the solution ap-
propriate to this limit directly from the rate equations
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from which we obtain the result

f(t) =exp( —(X),t) (2.9)

III. INTERMEDIATE REGIME

The complexity of the analysis in the regime inter-
rnediate between the static and rapid transfer limits
can be traced to the disorder. Were both the donors
and acceptors in ordered arrays then an exact solu-
tion to Eq. (2.3) could easily be obtained by standard
methods. In order to study the effects of disorder it
is convenient first to consider systems where the
donors form a lattice with the acceptors distributed at
random. Generalization of our results to include
disorder in the donors as well as in the acceptors is
straightforward and will be done later.

As has been noted before, Eqs. (2.1) and (2.2)
bear a formal similarity to the equations of motion of
the electrons in the tight-binding model of a metal
and to the equations of motion for the spins in a
Heisenberg ferromagnet. In particular, for imaginary
values of t Eq. (2.3) is identical to the linearized
equations of motion for the spins in a ferromagnet
with exchange integral and anisotropy field propor-
tional to W„„and y~ +L„, respectively. 4 Because of
this similarity we can make use of theoretical tech-
niques developed for disordered alloys and magnets
to calculate f(t). An approach particularly well suit-
ed to characterizing the effects due to a small number
of traps is the average-t-matrix approximation or ATA.

In the Appendix to this paper we calculate the La-
place transform of f(t) in the ATA. D'efining the
transform by means of the equation

where (X), denotes the configuration average of the
donor-acceptor transfer rate

(X) =c~ XXol (2.10)
I

We see that in neither limit is f(t) an explicit
function of the donor-donor transfer rates. However
in the case of rapid transfer f(t) decays exponentially
in time whereas in the static limit f(t) decays less
rapidly, lnf (t) being a nonlinear function of t 4's.
However despite the qualitative 'differences in the
two limits both Eqs. (2.6) and (2.9) have the same
initial slope, df (0)/dt =—c„x,Xol. This is an exam-

ple of the general result that df (0)/dt is independent
of the donor-donor transfer rates, which can be esta-
blished by computing the derivative directly from Eq.
(2.2).

The tll (s) denote elements of the t matrix associated
with a single impurity at site 0 and I, I' label donor
sites in its "sphere of influence. " The t matrix is ob-
tained as a solution to the equation

tll'(S) = Xo(5(I' —$Xolgll" (S) tl"I'(S) (3.3)

with
I

g(k, s) = s+$ W„„]1—cos[k (r„—r„)]} . (3.5)
n'

Here the sum on k is over the Brillouin zone associ-
ated with the donor lattice with ions located at ri, ri,
etc.

There are a number of comments to be made in
connection with the ATA. First in our formulation
of the ATA [f(s)] ' is obtained exactly only to first
order in c~. Terms which are nonlinear in the accep-
tor concentration are not taken into account. Second,
we obtain the rapid transfer limit discussed in Sec. II
by making the Born approximation to the t matrix

~u' JoI50' (3.6)

so that

f(S) = S + Cg g Xpl
I

(3.7)
I

which is equivalent to Eq. (2.9). Note that we have
made use of the result that Xol depends only on the
relative separation of the two ions so that it is also
the transfer rate when the donor is at 0 and the ac-
ceptor at I.

In the opposite limit, W„„O,we obtain from
Eqs. (3.4) and (3.5)

g(I'(S) = 5(l'S
-1

so that the t matrix takes the form

~II &oI
t(l (s) =

1+Xp( s

The function f(s) is then given by

(3.8)

(3.9)

f(s) = s+c, s QXOI(s+Xo()

where Xol is the donor-acceptor transfer rate for the
I th donor and gll (s) is given by

1
gll (s) = /exp[i k (rl —rl )]g(k,s), (3.4)

woo

f(s) =„' dt e "f(t)

we obtain the result

(3.1) S CgS QXpl(S +Xpl)
I

(3.10)

I

f(s) = s + cz X tl( (s)
I,I'

(3.2) f(t) =1+c„x(e ol —1)
I

(3.11)

to first order in c&. Inverting the transform we find
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IV. DISCUSSION

In this section we discuss thc results obtained in

Scc. III. First of all wc note that the behavior of
f(t) as t 0 is determined by the behavior of its
transform as s ~. In this limit g(((s) 8((s ' so
that t(((s) 5((Xp(. As a consequence we have

(

f(I) exp cg XXp(t
I

as t 0. Thus df(0)/dt =—cg X(Xp( in agreement
with the results obtained in Sec. III.

The variation of f(t) as t ~ is determined by

f(s) as s 0. Provided g(((0) is finite we obtain the
asymptotic equation

(

f(t) =exp —c~t Xt(((0) (4.1)

The exponential decay indicated in Eq. (4.1) will be
present in three-dimensional systems as long as
g(k, s) varies as (Dk2+s) ' for small k, which will

be the case if the dynamics of the donors is charac-
terized by a diffusion equation with diffusion con-
stant D in the low-frequency —long-wavelength limit.
Ho~ever in lower dimensional systems exponential
behavior is not present even when the dynamics is
diffusive since gt((s) —s 't' (one dimension) and

g(((s) ——ln(s) (two dimensions) as s 0 (see note
added in proof).

Since the general solution of thc t-matrix equation
is a complicated problem it is important to identify
simple approximations which can be used in making
comparisons between experiment and theory. %e
will discuss two such approximations. The first of
these consists in omitting all off-diagonal elements of
the t matrix. When t(((s) is set equal to zero for
I ~ /' we obtain the result

t(((s) = Xp([I + Xp(gp(s) ] ' (4.2)

where gp(s) =g(((s) with g(((s) given by Eq. (3.4).
Using Eq. (4.2) we have

f(s) = s+c„grp([I+Xp(gp(s)]
t

Equation (4.3) reproduces the exact results in the

which agrees with Eq. (2.6) when the latter is ex-
panded to first order in c&. Finally, we note that
although Eqs. (3.2) and (3.3) were obtained assum-
ing the donor array had translational symmetry the
effects of disorder in the donors can be included, in a
first approximation, by replacing g(( (s) with its config-

,urational average (g(( (s) ),.

f(s) = [s +&~(s)] '

where

($+Tp ) (
X(((s) = J e P fp(t) dt —s —rp'

(4.5)

(4.6)

Evaluating X(((s) to first order in c„we obtain the
result

-]
A 1f(s) = s+cz XXp( I +Xp( s+ — . (4.7)

I 'Tp
I I (

Comparing Eq. (4.7) with Eq. (4.3) we see that Eq.
(4.7) is a simplified version of the latter equation in
which gp(s) is approximated by (s + I/Tp) Provid-.
ed rp is identified with gp(0), this approximation re-
produces both the large s and small s limits of Eq. (4.3).

In the case of an ordered array of donors the calcu-
latloII of gp(0) from Eq. (3.4) is a relatively straight-
forward problem in numerical analysis. Complica-
tions arise when the donor array is disordered. An
approximate expression for (gp(s)), follows from the
observation that (gp(s)), [and gp(s) for the ordered
array] is given by

(gp(s)), =
J dt e "R(t) (4.8)

where R (t) is the conditional probability that an ion
excited at t =0 is still excited at a later time t. 4 As
shown in Ref. 4 this probability is equal to the nor-
malized intensity of the sharp-line fluorescence moni-
tored in a time-resolved fluorescence line-narrowing
experiment. Approximations to R (t) were suggested
in Ref. 4 and assessed in Ref. 8. These approxima-
tions when used in Eq. (4.8) provide a reasonable es-

static and rapid transfer limits. However by omitting
off-diagonal elements of the t matrix we neglect
correlations between different donors in the sphere of
influence of the acceptor. Thc neglect of these corre-
lations will be a reasonable approximation as long as
the excitation has a small probability of being
transferred between donors in the same sphere of in-

fluence. This will be the case if the average number
of donors in the sphere of influence is &1. The cri-
terion for this inequality to be satisfied will be dis-
cussed below.

There is a close connection between (4.3) and the
hopping model of Burshtein developed in Ref. 2. In
this mode f(t) is obtained as the solution to the in-

tegral equation
p(

f(t) =f,(t)e '+ —„drfp(t —r)e Pf(r)
Tp

(4.4)

where Tp is a phcnomenological hopping time. The
function fp(t) is f(t) in the absence of donor-donor
transfer and is given by Eq. (2.6).

Equation (4.4) is easily solved for the Laplace
transform of.f(t). We find
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f(s) = s+nq
&

dr dr 't(r, r ';s) (4.9)

and

t(r, r ';s) = v(r) S(r —r ') — dr" v(r)g (r, r ";s)

x r(r ",r ';s), (4.10)

where u(r) is the donor-acceptor transfer rate at a
distance r and n~ is the concentration of acceptors.
The function g(r, r ', s) is given by the counterpart
of Eq. (3.4),

g(r, r ', s) = „dkexp[i k (r —r ')] g(k, s)
2m ' "

(4.1 1)

timate of (go(s)), and hence the parameter ro in the
Burshtein model.

The second approximation to the t-matrix equation
involves the passage to the continuum limit, which is
appropriate whenever there is a large number of
donors in the sphere of influence. The continuum
analogs of Eqs. (3.2) and (3.3) take the form

u(Rp) =1/7p (4, i6)

where u(r) is the donor-acceptor transfer rate and
I/ro ——gp(0) or (go(0)) as is appropriate. Equation
(4.16) has a simple physical interpretation. The ra-
dius of the sphere of influence is such that for a
donor at Ro the transfer rate to the acceptor is equal
to the donor-donor hopping rate. Thus with Ro
determined by Eq. (4.16) we have

tain this result from Eq. (4.9). When s =0 the in-

tegral of the t matrix in Eq. (4.9) can be identified
with 4n D—&& [zero-energy limit of the scattering am-
plitude associated with v(r)]." At low energies the
scattering amplitude is approximately So(k)/k where
So(k) is the / =0 phase shift for incident particle "en-
ergy" Dk~. In the limit k 0 we have So(k)/k =—as
so that Eq. (4.9) becomes identical to Eq. (4.15).

As was pointed out the approximations leading to
Eq. (4.3) are meaningful only when there is a small
number of donors in the sphere of influence of the
acceptor whereas Eq. (4.9) is valid in the opposite
limit. In order to determine the radius of the sphere
of influence, Ro, we use the criterion

~here

g (k,s) = (s + Dk') ' (4.12)

nDRO &1

for Eq. (4.3) to be applicable and

(4.17)

in which D is identified with the diffusion constant
appropriate to the donor array. When the donors
form a lattice D is obtained by expanding g(k, s) [Eq.
(3.5)] to order k~. Assuming cubic symmetry we
have4

D =
6 X W„„(r„—r„)~

n'
(4.13)

Except for a few special cases the exact value of
the diffusion constant of a disordered three-
dimensional array is unknown. However in situations
where the donor system is dilute, cD &(1, and the
donor-donor transfer rate varies as P/r" we have
D cc pnDt" "/' on the basis of dimensional arguments,
nD being the concentration of donors. Under these
circumstances the result obtained by generalizing the
method of Trlifaj' to arbitrary v,

nDRO )& 1 (4.18)

R (t) = exp( —A „t /")

where

(4.19)

n p /"2 /" 'r 1---
3

"'
V

(4.20)

in which I (x) denotes the gamma function. Thus
from Eqs. (4.19) and (4.20) we obtain the result

for Eq. (4.9) to be appropriate.
As an example of the use of the criteria we consid-

er the case of a dilute array of donors with a donor-
acceptor transfer rate equal to n/r" and a donor-
donor transfer rate p/r". We obtain ~0 from Eq.
(4.8) using the approximation for R (t) referred to as
"model 2" in Ref. 4

D, =-(v —5) '(4mnD/3) " p (u & 5) (go(0)), = ro = I'(u/3 +1)A „"/3 (4.21)

(4.14)

is a reasonable approximation.
In the diffusion model of Yokota and Tanimoto3

when s is small f(s) has the form
& 1-u/u(~/p)3/u. & i (4.17')

Combining Eq. (4.16) with Eq. (4.21) we conclude
that Eq. (4.3) is appropriate when

f(s) =(s+4nDn„as) (4.15)
whereas for the diffusien model to apply we must
have

where as is the scattering length associated with a

one-particle Schrodinger equation in which the "po-
tential" is equal to the donor-acceptor transfer rate
and the "mass" of the particle is (2D) '. We can ob-

n' "'"(u/p)"" » 1 (4.18')

Thus if both the donor-donor and donor-acceptor
rates vary as the same power of the separation (4.3)
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V. SUMMARY
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donors present in the sphere the decay rate is equal
to [cf., Eq. (4.15)l

4mn„Da, ,

where

and

n"
(A3)

where D is given by Eq. (4.13) or (4.14) and as is
obtained from Eq. (4.25) or the equivalent. The cri-
teria for determining which of the two expressions is
appropriate are given in Eqs. (4.17), (4.17'), (4.18),
and (4.18'). Note that the decay rates hold only in
the limit c~ or n~ -0, where the ATA is valid:.

%'hen there is a small number of donors in the
sphere of influence the behavior of f(t) at inter-
mediate times is reasonably well approximated by the
solution to Eq. (4.4) as long as ro is identified with

go(0) or (go(0)), .' When the diffusion model is ap-
propriate the Pade approximate to f(t) developed in
Ref. 3 provides an approximation which interpolates
between the short- and long-time limits.

Note added in proof. In one and two dimensions

gtt (s) becomes independent of. i-i' in the limit s 0.
As a result it is straightforward to solve the t-matrix
equation for the sum X t0 (s). In the one-
dimensional case one obtains the expression

f(t) = exp[4(cq/a) 2Dt]erfc[2(c„/a) (Dt)' 2],

in agreement with the random walk analysis of
Richards [P. M. Richards (private communication)].
Here a is the lattice constant, D is the diffusion
constant and erfc denotes the complementary error
function. This equation has the asymptotic limit
f(t) —[4m(cq/a) Dt] 'i2. In two dimensions the
corresponding limit is (4wcqa Dt) '.

-~nn' +n ~nn' (A4)

f(s) = No ' $ G„„(s)
n, n'

(AS)

where

G(s) =(st+r+X)-', (A6)

with I being the unit operator.
Since the configurational average of G is transla-

tionally invariant we can write it as a Fourier expan-
sion

(G„o(s)),= Xexp[i k (r„—ro)] (G(k,s)),
D k

(A7)

Using Eq. (A7) in Eq. (A5) we obtain the result

f(s) = (G(0,s)), (Ag)

To evaluate (G(0,s)), we introduce the operator T
defined by

Tg =XG

where

Taking the transform of Eq. (A2) we obtain the result
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g = (sl + I')

The operator T satisfies the equation

T =X —XgT

and can be used to rewrite G in the form

(A10)

(Al I)

(A12)

APPENDIX
In the average t-matrix approximation the confi-

gurational average of T is given by

f(t) =exp(yttt)No' X X P„"(t)
n' 1n 1

(Al)

Equation (Al) can in turn be written as a sum of
matrix elements of the operator exp[ —(I'+X)]
between states, labelled by the index n, which have
only the nth donor in an excited state

f(t) = No' X [exp[ —(I'+X) t]]„„
n, n'

(A2)

In this appendix we outline the steps leading to
Eqs. (3.2) and (3.3). According to Eq. (2.3) f(t) can
be written

ND ND

(T), = Ng (t),/(1+Nag) (A13)

where N„ is the number of acceptors and (t), is the
configurational average of the t matrix associated
with a single impurity. Making use of Eq. (A13),
(A12), and (AS) along with the equation
(G), =g —g (T),g we obtain the result

f(s) = [g(0,s) '+Ng (t(0,s)),] ' (A14)

where g(k, s) is given by Eq. (3.5) and (t(k, s)), by
an equation analogous to the inverse of Eq. (A7).
From Eq. (3.5) it is evident that g(0, s) =s '.
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In the k =0 limit we have

&T(0 s)).= X &t(((s)).

the trap located at site 0. Combining these results we
obtain the equation

(A15)

(f(s) = s +c„xt(( (s ) (A17)

in which t„(s) satisfies the analog of Eq. (All)

t(('(s) =Xo(5(( X'XO(gll t( ((s) (A16)

where I and I' refer to sites in the neighborhood of

where c„=N~/No is the fraction of sites occupied by
acceptors, It should be emphasized that as long as
the donor array has translational symmetry the
average-t-matrix approximation reproduces the exact
result for f(s) ' to first order in c„.
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