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Quasiparticle approach to the de Haas —van Alphen effect
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The oscillatory contribution to the thermodynamic grand potential for electrons in a magnetic
field is calculated using an integral representation which conveniently yields the general ampli-
tude result of Fowler and Prange, Linearization of the self-energy evaluated on the imaginary

energy axis leads to a quasiparticlelike approximation which includes both impurity scattering
and phonon effects.

Fowler and Prange' (FP) and Englesberg and Simp-
son' (ES) have shown that in some cases it is natural
and convenient to express the thermodynamic poten-
tial of equilibrium statistical mechanics in terms of
energies on an imaginary energy axis3 instead of real
energies, see, e.g. , Soven. In particular FP and ES
both discuss application of this approach to studying
the effects of electron-phonon coupling in the oscilla-
tory part of the magnetic susceptibility of metals [de
Haas —van Alphen (dHvA) effect). Although their
approaches differ formally, their results are essential-
ly identical and each concludes that modification to
the amplitude of the dHvA oscillations is contained
in the self-energy due to electron-phonon effects
which is imaginary when evaluated at points on the
imaginary energy axis. (Both authors have finally
carried out an analytic continuation of the self-
energies from the real energy axis to the imaginary
energy axis. )

We explore here an alternative formulation of the
imaginary-energy-axis method which in a somewhat
distinctive manner yields a convenient contour-
integral representation for the total magnetic suscep-
tibility of the free-electron gas, (i.e. , self-energy
terms zero) as well as the oscillatory part of the sus-
ceptibility with nonzero self-energy first given by FP.

In keeping with FP and ES we focus on short-range
interactions due to static impurities and phonons in
which. case the self-energies can be evaluated with
magnetic-field-independent basis states and, as do
Englesberg and Simpson, we begin with Luttinger's'
expression for the leading contribution to at least the
oscillatory part of the thermodynamic potential, 0
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is a diagonal matrix. Here e(p, k„a) are the Landau
levels with assumed band renormalized mass m
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with eo, = e8/mc as the cyclotron frequency, 8 is the
magnetic field taken in the z direction, pa ——e/2moc is
the Bohr magneton, e =+—, is the spin quantum

numbers of the electron, g is the electron-band g fac-
tor, y is the chemical potential, mo is the bare-
electron mass, and P=(ksT) ' with
r„=(2n +1)rr/P X(ir„) .is that part of the
magnetic-field-dependent self-energy matrix which
does not contain any oscillatory terms5 and the trace
is taken with respect to the matrix inside the loga-
rithmic function. Procedures for evaluation of the
trace in general cases where the Green's-function
matrix has off-diagonal elements have been given by
Luttinger; however, for the present discussion we
limit ourselves to diagonal matrices by using the ar-
guments given by FP, Brailsford, ' and Soven4 for
short-range impurity scattering and for electron-
phonon interactions. These authors show that not
only can the oscillatory contributions to the self-
energy be neglected, but so can the entire magnetic
field dependence; i.e., the self-energies can be calcu-
lated using field-independent states of the electron.
Within the limitations imposed by these short-range
conditions and with spin-dependent scattering ignored
for now, the self-energy matrix is diagonal in the
quantum numbers k„' p, and 0-. Hence we can write

fl„,= ——Tr X In[a(p, k„a.—i r„+X(k„kz,i r„)]1

(4)
with

where G(i r„) is the electron Green's-function ma-
trix6 and

G '(ir„) =Go'(ir„) —X(ir„)

where

Go' (ir„) =i r„—e(p, k„o)

(2)
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Here ki is the wave-vector component transverse to
the magnetic field direction which arises from using
the field-independent electronic states in computing
the self-energies. The ki contains "false" quantum
numbers introduced by these basis states which may,
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however, be dealt with by defining a suitable orbital
average over the Fermi surface.

For convenience we drop the "osc" subscript and
consider now the complex quantity i r„—X(k, ;i'r„),
in particular, its imaginary part. If we treat the loga-
rithm of Eq. (4) as a distribution we can construct
the following integral representations applicable in

the regions noted: when

Im[ir„—X(ir„)] & 0,
ds -$[c-/T +X(i~ )]

In[a —i r„+.X(ir„)l = Jl
—e
s

and when

Im[ir„—X(ir„)] & 0,
b s -g[~ —i~ +X(i~ )]

In[a —ir„+X(ir„)l= — t —e
b —/oo

To clarify the objectives of the method we note
that for free electrons the trace and sum over r„can
be easily done, for with Re s & 0 we have the follow-
ing:
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Furthermore, when

7„&0, Ims )0

e —= —2I sin
~ ~

and when

Here b is real and positive, and the contour lies just
to the right of the imaginary axis. From the spectral
representation of the self-energy function

~„&0, Ims &0,

g e is(2n+-1) 7

n 0

We note that

IX( )=
27T 'T~ + OJ

so ImX(ir„) & 0 when r„&0 and ImX(ir„) & 0
when v„(0. We then can partition 0 as a sum of
contributions from 7„&0 and from v„(0 which we
call 0+ and 0, respectively, i.e.,

The two integrals 0+ and 0 ', may now be
summed to give a contour integral representation for
free-Landau electrons
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where cosh —, (giccaBS) arises from the spin sum. As

an aside it is mentioned that this integral is surpris-
ingly easy to evaluate and has been studied for both
its oscillatory and nonoscillatory contributions to the
magnetic susceptibility. 9'

In the more general case when X(ir„) A 0 we find,
after performing the Landau level and spin sum,

mco, t . i'b+c exp[—s[k, /2m —y —irn+X(ks, irn)]}0+= —— X Jl dk, &I ds, " ' "
cosh(2 g paBS)
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2
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and

mco, t' "b exp (
—s [k2/2m —y —ir„+X(k,;ir„)]}

P 2n2 "-~ '
b i~ -s sinh(sco, /2) 2

The FP-ES result can be directly obtained by asymptotically extracting the oscillatory behavior. This is done by
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deforming the contours in 0+ and fI to encircle the zeros of sinh2 (sp), ) at s =2mir/p)„r WO. Using the resi-

due theorem we then have
i

(—1)' 2mir kc g p, gm8r0+=—
X& dk, X exp + —y —ir„+X(k,;is„) cos

Finally 0+ and 0 can be combined to give, with all v„&0,
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Apart from a remaining k, integration, this is the FP-ES result. It shows conveniently how the dHvA effect
separates contributions from the real and imaginary part of the self-energy for a short-range interaction, when the
self-energy is evaluated on the imaginary energy axis.

When the self-energy is specified the sum over- n can be numerically done as has been demonstrated by FP for
model phonon interactions and ES for realistic phonon interactions. FP also noted that at sufficiently high tem-
perature (k() T » (p,) only the first term in the sum contributes significantly. On the other hand if the self-
energies do not vary too rapidly along the imaginary energy axis they can be expanded to linear order and the n

sum readily approximated. This leads to an extension of the FP high-temperature result which, by further exami-
nation, can be brought into the quasiparticle form. To simplify the presentation we ignore the real part of the
self-energy which only serves to modify the dHvA frequency and locate the extremal orbits.

The k, integration is generally approximated by a method of stationary phase to give
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or, for the dominant term in the magnetization
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where k, =0 is, in this case, the extremal dHvA orbit. With the v„sum yet to do we apply the Poisson sum for-
mula to the grand potential,

oo oo goo

X f i(2n +1)—= X J dy f i(2y +I)—
n p p p

and assuming differentiability expand ImX((2y +1)(m/p)i) to linear order about y =0,

ImX((2y + 1)(m/P) i) = ImX(i&p) + 1m X(imp)
P dip

where Tp = lf/P. The dHvA amplitude for each harmonic becomes

-(2mr/«) ) [vp —Imx(imp)]
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The y integration yields for the amplitude of the rth harmonic
i
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where the infinite sum over v is an expansion of

4"o' e .
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(1S)



2306 A. %ASSERMAN AND N. BHARATIYA 20

To this approximation then the amplitude of the rth harmonic is

-(2~r/oo ) [T0 —ImX(iv0)]
e
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The oscillatory part of the thermodynamic potential is then
1 -( ./ )l — x( )l

e c 0 0

4mr' 1 —exp — rp 1 — ImX(i7p)
QJ QT'0

(17)

Xg —p (I Tp) = I rph. (18)

For the particular self-energy contributions con-
sidered here we have first the electron-phonon term'

which upon going to zero temperature gives

lim ImX;, (0, irp) = —
&

I (y)
TQ

(20)

where A. , the dHvA orbital average electron-phonon
enhancement factor is defined as

the usual temperature independent zero-temperature
result. 4' Thus the rth harmonic of the amplitude is

"(~g(~)('F(~)],
0 Qj

with g(cp) the coupling constant and F(rp) the pho-

non density of states. At low temperature we also
have

ImX; p(irp)
a
70
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ImX, ,(irp) =——Z .
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For impurity scattering we can use the spectral
representation with I'(k, ru) expressed in terms of
the forward-scattering t matrix;

I'(k, )=2 W, $~ -„~ 8(

with N; the number of scattering sites. Taking k, =0
as extremal and orbital averaging this becomes

ImX; p(0, irp) = —
~) do)

&p, t'" I ( )
1r Tp + et) —y

where m'/m = A. +1, with m' the electron effective
mass, and (2n ks) 'I'(y) is defined as the Dingle
temperature. Despite its seeming inadequacy if com.-

pared to the full ES calculation it is not inconsistent
with their results. When real parts of self-energies
are included Eq. (21) will differ somewhat from
Soven. 4

Spin-dependent scattering can formally be treated if
it is noted that the spin scattering self-energy is a ma-
trix and therefore the initial Green's function must
first be diagonalized in spin coordinates. This step al-

lows the trace to be readily performed and the
remaining argument is identical to that given above. "
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