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Based on a second-order perturbation calculation with a 5-function interaction, Geldart and

Rasolt have recently shown that the long-wavelength static spin susceptibility is nonanalytic in T
at low temperatures. We find the nonanalyticity is suppressed by the summation of particle-

particle scattering terms to all orders, Commonly held analyticity assumptions regarding the

long-wavelength and low-temperature behavior of the susceptibility are thus not invalidated.

We suggest that for the nonuniform susceptibility, a Kohn-Luttinger-Ward-like equivalence

between the zero- and low-temperature perturbation series exists between classes of terms, rath-

er than order by order.

I. INTRODUCTION

i
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Their calculation involves the evaluation of multiple
integrals from which the subtle logarithmic singularity
is extracted after much effort. GR have argued that
the logarithmic divergence persists to all orders in

perturbation theory and for finite-range interactions,
and is not a result confined to a second-order calcula-
tion. The logarithmic dependence on T has the fol-
lowing remarkable implications, as they point out: (i)
As T 0, X(k) cannot be expressed as a regular
series in powers of k'. (ii) X(k) may attain a max-
imum at a nonzero k. (iii) Corrections are not small
[i.e. , 0((T/TF) )1 at low temperatures. These con-
clusions contradict widely held assumptions regarding
the low-temperature behavior of X(k).

The implications of GR's claims put the nonuni-
form susceptibility on a different footing from the

The question of the existence of T"lnT contribu-
tions to the spin susceptibility X of a many-fermion
system has aroused considerable interest in recent
years. For the uniform case several authors' have
conjectured a T'ln T term. It has now been shown '
that T'lnT terms cannot arise from certain processes
(long-wavelength particle-hole scattering).

For the nonuniform case, in the static long-
wavelength limit we may expand X as

X(k) =X(0) —ak'+O(k') .

Geldart and Rasolt (GR) have recently investigated6
the coefficient n in second-order perturbation theory
for the case of a 8-function two-body interaction with
strength I, and find

uniform one. In the uniform case one has a well-

known theorem due to Kohn, Luttinger, and Ward. '
This theorem implies that the inverse of the suscepti-
bility (related to derivatives of the free energy) calcu-
lated (a) as the limit of the finite-temperature theory,
and (b) within the zero-temperature theory, agree
order by order. The theorem applies to spherically
symmetric interactions, and no initial distortion of
the Fermi surface, with the thermodynamic limit be-
ing taken before T 0. Thus

lim X„'(0,T) = X„'(0, 0),
T 0

where the subscript n refers to the order-of-
perturbation theory and we explicitly display the
momentum and temperature dependences. For a
normal system, this equation is valid for X„ itself
since one can invert without encountering singulari-
ties. Ideally one would like to have the generaliza-
tion to nonzero wave vectors as

lim lim X„(k,T) =lim lim X„(k,T) =x„(0,0)|. (2b)
T Ok 0 k OT 0

ln view of the behavior of a given in Eq. (1), the
above relation is meaningless since the limits T 0
and k 0 cannot be interchanged. The singular
dependence of X(k, T) on k and Tnear k =O, T=0 is

quite startling since there is no elementary reason to
think of k and Tas coupled variables.

In this work we derive the second-order perturba-
tion result of GR from a new point of view. The
magnetic susceptibility is basically a (triplet) particle-
hole (p-h) propagator. However, in perturbation
theory one comes across intermediate states which in-
volve particle-particle (p-p) scattering. These make
their first appearance in a second-order perturbation
calculation. It is well known in the theory of super-
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conductivity that the p-p propagator has a logarithmic
dependence on T for small total momentum g of the
colliding particles. ' Moreover, in the T =0 series
also, the p-p propagator gives rise to a lng diver-
gence. 9 "Therefore we examine the possibility that
the ln T found by GR is a consequence of the singu-
larities in the p-p propagator.

The plan of the paper is as follows. In Sec. II the
nonuniform spin susceptibility X(k) is expressed in

terms of the particle-particle propagator R (Q). The
p-p propagator is then explicitly evaluated in Sec. III
for small g and T and the logarithmic singularities of
R in g, Tare displayed. In Sec. IV we extract the
leading logarithmically singular contributions to X(0)
as T 0. Useful properties of the polygamma func-
tions that arise in this calculation are given in the
Appendix. Whereas (due to cancellation) there is no
net lnT in X(0), a inT survives in the result for o.. In
Sec. V, we discuss the implications of the lnT singu-
larity, and techniques for suppressing it. This sug-
gests the appropriate generalization to the nonuni-
form case of the theorem connecting zero-tern-
perature and low-temperature perturbation terms for
x(k).

II. X IN TERMS OF THE p-p PROPAGATOR

The eave-vector-dependent static spin susceptibili-
ty X(k) can be expressed in terms of the triplet ver-
tex part A(p, k) and the single-particle temperature
Green's function G(E) as

x(k) =2ps2( —T) X G(p + , k) A—(p,k) G(p ——,k) .

We use the usual four-vector notation p —= (p, i o&„)

where cu„ is the discrete frequency (2n+I) n T. We
use units t=ka= 1 throughout. Here 7 stands for
summation over momentum and the discrete fre-
quency. Thus a perturbation expression for 6 and A

generates one for X. In Fig. 1, we display all the
Feynman diagrams for 6 and A up to the second
order in I. In Fig. 2, we exhibit the labelled diagrams
for 6 and A from which the singular part of the sus-
ceptibility arises. The relevant part of the susceptibil-
ity X which contains the singularity can be explicitly
written

X(k) =2pa2T2I2 $ Go(p&+ —', k) Go(p~ ——,
' k)R (p&+p )

P) P2

&& [Go(@2+—k) Go(pp k) Go(p/ + —k) Go(p2 k) Go(pt k) Go(p2+ —k)], (4)
1 1 1 1 1 1

and

Go(p) =(ice„+po p ~2m)

&(g) =(—T) /GO(pl)GO(g —pl);

g —= (Q, iQ) .

R is clearly 'the particle-particle propagator. Here 0 =2m v T, v being an integer.

It is convenient to relabel the variables in Eq. (4) and write it

X(k) =2pa2T212 $ R (g) G(P) G(g —P) {G(P k) G(k+g' —P) ——G(p) [G(p+k) + G(p —k)]] .
0

(6)

+ t~1 +

+

FIG. 1. All diagrams for 6 and A up to second order.
The interaction is only between electrons of opposite spin.

P+ /&K

FIG. 2. Dangerous diagrams.
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In Eq. (6) we have omitted the subscript on G, the free-particie propagator. Expanding Eq. (6) in powers of k,
we find the following expressions for X(0) and a:

X(0) =2»T'/' X~(g) [G'(p) G'(Q-P) -2G'(p) G(g-p)l,

2 p2$2

$& (Q) G'(p) G (Q —p) G (g —p) G (p) + G'(Q —p) —2 G'(p) + —', ~, G'(p) G (Q —p)
m

+ —", ag, G'(Q —p) —— — G(p)G'(Q —p) ——,'a, G'(p), (g)

In obtaining Eq. (8), we have used the rotational in-

variance of X and averaged over the direction of k.
GR state their result for X [in Eqs. (11) and (12)

of Ref. 6] in terms of the p-h propagator Po defined
as

Po(q) = (—T) X G (p+q) G (p) .
P

We note that if their nonsingular terms (PO, PO and

gp, ) in their Eqs. (11) and (12) are dropped, then
their result yields precisely our Eq. (4) after a suit-
able change of variables. Thus the same second-
order expression can be viewed in either the p-p or
p-h "view points". As another example consider the
self-energy contribution from the diagram of Fig. 2.
This can be written

X(p3) = —T'&' X G (Zt) G (p~) G (P~+P3 Pl)

This can be viewed either as a p-p term with total
momentum Q =p& +p3, or as a p-h term with

momentum transfer q =p3 pf. Thus

&(p3) =- T/' X~ (pz+P3) G (pi)

= T/' XPO(P3 —ui) G(pi) .
Pt„

It is noteworthy that GR attribute their singularity in

X to the behavior of J'0 in the large momentum
transfer (i.e., q =2kF) region of phase space. Since
at low T G(p) is largest for) p l

=kq, it follows that
in Eq. (10) pt, pt and pt+p3 —pt should all be close
to the Fermi momentum. Setting

I»l =
I p~l =

I p2+p3 pll =k.
we can readily see that l p~

—
p3 f

=0 implies

l pq+p3l =0. Hence the
l q l

=2k~ region of phase
space in the p-h view point is contained within the

l Q l
=0 region in the p-p view point. Hence we may

expect the GR singularity to arise from the Q =0
behavior of R (Q).

From Eq. (4) the p-p propagator can be written

«Q) =(—T) QG(P) [G(Q —p) —G( p)1+R(0)—.

(12)

Here R (0) (after doing the frequency summation) is
given by8-

R(0) =-N(0) J tanh
2T

Here N(0) is the density of states mkq/2rr' and g is
the energy measured with respect to the Fermi ener-
gy eF. The high-energy cutoff eoL is implicit in the
use of 8 function as discussed in Sec. V. It is clear
that

R (0) = N(0) ln (T/Tq) +constant .

For T &( TF, the 6's are sharply peaked at the Fer-
mi surface and we can use the approximation

N(0) J~ dip J
P

where II~ is the solid angle. In using Eq (15) an. y
slowly varying p dependence of the integrand should
be approximated by

p = (2m op) '~'(I + g, /op. ) '"
= kp. (1+ ,

' gp/aF)-
ensuring the function has the correct value and
derivative at-the Fermi surface. However, for ex-
tracting leading temperature singularities in the small

Q region it is sufficient to put p = kq in the in-

tegrand, since corrections can be shown to be higher
order in T.

In Eq. (12) we perform the g integral first and find

e(a)„) —8(II—ru„)
R (Q) = R (0) ——N (0) I

—' dx $2 j i 2 A~n+ ——@+i
2 2mT

e((u„)—e(II —o)„)
1n+—
2
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Using the standard properties of the diagamma func-
tions (see Appendix) we find'2

for small Q, T as follows:

R.(Q, T) =-ln(Q+ T) .
R (Q) = N (0) [R i + R2(Q) ],

where

R 1
= ln T —P(—,) +constant,1

(17)

(18)

Typically we are interested in integrals of the type

t0, -

J=J~ R (Q, T)F Q, + dQ . (24)

R2(Q) = —Im ln I (———v +iy),=1 1 1

2 2
(19)

y =Q/2m T . (20)

Equations (17)—(20) contain the structure of R in a
form particularly useful for manipulations. However
the asymptotic singularity structure is more trans-

parent in the approximate form
1

R, (Q) = —,
' ln(Q'+ —,

' n')

ln [(Q/2 T)'+ (0/4T) ']
I + (Q/2 T)'+ (n/4T)'

This can be obtained from Eq. (4) by first carrying
out the frequency sum, then the angular average, and
finally the momentum sum, retaining only the terms
which are singular as any one of Q, 0, or T goes to
zero. The asymptotic behavior of Eqs. (17) or (21) is
as follows:

Here Q, is some arbitrary cutoff and we are interest-
ed in the leading temperature correction to J. For
example consider F=1 in which case we get —T ln T
from the lower limit. (This is independent of the cut-
off Q, as expected. ) Setting F=Q, we see that the
leading correction goes as T +'ln T. Thus the contri-
bution comes from Q of order T. If
F = F(Q, Q/T+Q) then the leading dependence is
given by F(Q, Q/T). Hence Q may be neglected in
comparison with Q/T in a combination Q+Q/T.
Note also that if F can be expanded in a Taylor series
in the unscaled variables Q, then the leading contri-
bution comes from the smallest power of Q. The
general method followed here is to substitute Q=Ty
which gives an integral going from 0 to Q, /T The.
singularities arising from the low-temperature
behavior are then obtained from the behavior of the
integral from the upper limit (thus requiring the
asymptotic, i.e., y ~ behavior of the integrand).

lim R (Q) = A'(0) ln (—II),0 0; T 0, Q 0

lim R(Q) =X(0) In Q,
~ J

lim R (Q) = A'(0) ln T .
T 00 0, 0=0

(22)

B Uniform susceptibility

Scaling momenta by kF, temperatures by TF, and
energies by aF, we can write X(0)

X(0) =a, T'X[R, +R,(Q)]

x [ 6 (Q —p) 6 (p) —26 (p) 6 (Q —p)],
IV. SINGULAR PART OF X

A. General procedure where

(25)

We have seen in Sec. III that R (Q) is singular for
small (Q. II, T) and would expect this to be reflected
in X, which from Eqs. (7) and (8) is expressed as a
convolution of R with some function of Q, II, and T
For orientation, let us consider a model problem
which involves Q and T only and simulates the loga-
rithmic singularity in Eq. (22). Let R be singular

=4p, p~ kF/~ (26)

Using Eq. (15) and partially integrating with respect
to g, the integrand reduces to a single term
-RG(p) 6'(Q —p). Then, using identity of Eq.
(All) of the Appendix, dropping Q relative to Q/T
(as mentioned above), and also keeping only the
lowest-order terms in Q, we find

b, 1T ~~c
1 1X(0) =

2 X Ji y dy[Ri+R2(y, v)] Imp
' (2 + —v+Iy)

V

Here y, = Q, /2m T; Q, being some cutoff. By Eq. (A9), the polygamma function can be shown to be an even
function of v. %e separate the v =0 term and convert the summation to an integration by using the Euler-
Maclaurin" formula. This gives

4h T
X(0) =

2 Jt d$ Jf y dy[Rt+R2(y, 2@)]

Immit'i(

—+@+iy) .

(27)

(28)
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The correction terms are neglected as they are non-
singular. The integral is trivial since pt'2 is a perfect
differential. Only the boundary term from / =0 is

nonzero. Using the asymptotic forms for the poly-
gamma functions (see Appendix) in the large y
limit, we find the logarithmic contributions from Ri
and R2

X = (4A T'/lr')( —'2r'y21n T)

X2 = —Xi (29)

Thus each of the two terms in Eq. (29) is potentially
a lnT term but the sum of X~ and X2 is independent
of lnT. Note that this does not necessarily imply the

absence of T'ln T contributions. ' However, we shall
not pursue this here for reasons discussed in Sec. V.

C. Coefficient of k2

In Eq. (8) we make the following simplifications:
(i) We neglect terms with five G's in comparison
with those with six 6's since each 6 contains a T
dependence of O(1/T) (This is similar to the argu-
ments of GR and can be justified by a detailed exam-
ination). (ii) We set at2, = aF = av since the G's

are sharply peaked at the Fermi surface [see the dis-
cussion below Eq. (15)]. Converting to dimension-
less variables we get

a = —a2 T' X [R, + R, (Q)] [G'(p) G'(Q —p) +2G'(p) G'(Q —p) —2G'(p) G (Q —p)], (30)

where Note that

h2 = Iti(0) p, a2—I m2 3

From the p sum we go over to ( integration [see Eq.
(15)] and on integrating by parts, we find that Eq.
(30) is equivalent to

Imi]I "(-+@+iy)= — Imp( —+@+iy)1 . 9 1

2 0@0y2 2

i) 1Key"'( —+y+iy) .
d$8y

a =4&2T' $ [R2 +R2(Q)]G(p) G'(Q —p) . (31)

The g integration and the co„summation is carried
out using Eq. (All). The remaining angular integral
is trivial since the polygamma functions are perfect
differentials and we find

The ni term has an explicit lnT dependence. Using
Eq. (37) the @ integral in at can be performed, fol-
lowed by a partial integration over y. (The boundary
term in the y integration vanishes. ) Using Eq. (A7)
we find

X J y dy [R ~
+ R 2(y, v)] ni =253 ln T . (38)

X Immit" (2 + —,v+ iy),

5 = p, I kFm/288rr.

(32)

(33)

The singularity in n2 is more subtle, and can be un-

covered only after doing the multiple integrals. %e
use Eq. (37) to integrate with respect to $ and y and
obtain

n=n~+n2,

453
at = — lnT I d@ y dy

'ir 0 40

(34)

x lmy"'( —,
' +@+Iy), (35)

4b, 3 1a2= — Jl d$ I dy ImlnI'( —+Q+iy)
0 ~o 2

Since Ri and R2 contains logarithmic terms, it is

plausible that n will contain ln T also, barring cancel-
lations between R~ and R2 such as those which oc-
curred in X(0). As before, we can convert the v

summation to an integration and split up the contri-
bution as follows:

In order to evaluate the singular part of Eq. (39) it is

sufficient to use the asymptotic form of Eq. (A4)
which gives

1

453
a, = Jl d@ Jl dy (40)

We can separate the @ and y integrals by using the
substitution @=y tan8 and find

n2= —53ln T . (41)

Adding Eqs. (38) and (41) we get the final expres-
sion for the singular part of n

a2= J de)I dy[Reyt'2( —+g+iy)]2. (39)

x lmpO2(2 +/+A) . (36) a = (I i2, mkp 2/8 gr r)6ln, T, (42)
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Clearly Eqs. (42) and (2) are identical (with tt= I and
neglecting constant additive terms). In fact our Eq.
(39) is (apart from factors) the same as Eq. (A20) of
GR. The lnT dependence of a can also be extracted
by directly using the asymptotic forms for R, Eq.
(21), but the full form is required to get the right
coefficient.

V. DISCUSSION AND CONCLUSIONS

In summary we find that the logarithmic singulari-
ties of R lead to (a) no lnT term in the uniform sus-
ceptibility due to cancellations between two terms in

R; (b) a lnT term in u with precisely the same coef-
ficient as in the paper of GR. Note that the singular-

ity requires a frequency summation in this case, in
contrast to the case of superconductivity (where v =0
is the most important term). The reason is that R is

singular for 0 =0 which implies that all v up to
O(1/T) contribute to the singularity in X.

Thus the lnT term obtained by GR can be viewed
as originating from p-p scattering. The considerable
reduction in effort in obtaining o, indicates that this is
indeed the natural view point to understand this
singularity. This immediately suggests the well-

known cure for this singularity disease. One should
not stop at second-order perturbation theory since for
low enough temperatures, the effective coupling
(= —I'inT) becomes very large. Instead, the p-p
t matrix should be used in place of R. This, in the
ladder approximation, is given by

t(Q) =I/II —&R(Q)j .

Thus the perturbation series in I has to be reshuffled
to give one in t(Q), a possibility which is well recog-
nized in the theory of nuclear matter. ' The lowest-
order self-energy" and vertex part' in this approach
are well known in the literature,

X(pl) T X t (pl +p2) Gp(p2)

A(p&, k) = I + (—T) X t(pt +p2) Gp(pz+
2

k)

perturbation theory fails. Hence we should view the
second-order term as an element in the infinite p-p
series as stated above, The replacement of R by a t

matrix, which suppresses the second-order lnT contri-
bution to o., will also affect any second-order lnT
contributions to X(0) that comes from R. It is clear
that any possible such T21nT contribution to X(0)
would be suppressed in a similar manner. This com-
plements the findings of Refs. 4 and 5 where it is
shown that long-wavelength p-h scattering does not
give a T lnT contribution. This does not of course
rule out the possiblity of T'lnT terms coming from
other regions of phase space not considered by us.

We should mention that within the T =0 formal-
ism it is well known that p-p scattering leads to lnQ
type terms (for example in the Landau interaction
function9'P). The cure in this case is again well

known —a p-p ladder summation should be in-

voked.
It is interesting to note that if the large energy cut-

off cvL implicit in the use of 5 function interactions,
is allowed to go to infinity, the function R goes to in-

finity as —~L ' in three dimensions. This implies
that perturbation theory breaks down. The cure in
this case is once again the use of a t matrix which
vanishes in this limit. Hence the self-energy and ver-
tex corrections vanish, yielding for pure 5 function
interactions a susceptibility identical with the free
value. This is an extension of Herring's comments"
regarding the absence of an energy shift in three-
dimensions for a pure 5 function interaction.

In conclusion we stress that a Kohn-Luttinger-
Ward-like theorem for the nonuniform susceptibility
may not be valid order by order, as the singularity in
n indicates. We suggest instead, that the T =0 and
T 0 perturbation theories coincide not between terms

of a given order, but rather between (infinite) classes of
perturbation terms. Thus, denoting by X,. the result of
a class summation, we suggest that Eq. (2b) should
be replaced by

lim lim X,. (k, T) = lim lim X, (k, T)
T Ok 0 k OT 0

=x, (0, 0) .

& Gp(p2 (44)
APPENDIX: SOME USEFUL

DEFINITIONS AND IDENTITIES
Thus u expressed in terms'of t(Q) instead of R (Q)
will not show any logarithmic singularity since t is
small in the region where R is large. In fact the t

matrix in this approximation has a zero as T 0.
(For an attractive interaction, it would have a pole at
some T,). GR view the second-order expression as
an element in an infinite p-h series, and find that the
singularity persists on including higher-order
paramagnon terms in this series. However, at low

temperature it is precisely the p-p scattering for which

dp+1
y "'(z) = lnr(z) .

dip+'
(A I)

The expressions containing finite temperature
Green's functions in the text can be usefully reduced
by using the properties of polygamma functions"
given below,

The pth-order polygamma function (p=0, 1, 2) is a

logarithmic derivative of the 1 function
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For p =1,2, 3, . . . , it is related to a discrete sum
(zAO, —I, —2, . . .)

Q"'(z) =(—1)' 'p! $„,(n+z)'+' ' (A2)

f(z) ln z + 0 (I/z),

ln I (z) (z ——) in z —z
1

2

+ —,
'

ln (2 rr) + 0 (z ') .

(AS)

(A6)

with the digamma function P' ' =—P(z) being

y(z+I) = y(z) +-
z

z '

„0n(n+z)
(A3)

Im P(2 +iy) = ( , rr—) tanh 7ry (A7)

and for y

For certain values of the argument, the imaginary
parts of the functions are simple,

Q"'(z) (—I)' '(p —I)!z '+O(z ' '), (A4)

where y =0.5772 is Euler's constant. The asymptotic
forms for z ~, ~argz~ ( vr are

Im ln I'(—+iy) y lny .
1

A useful symmetry relation for p odd and
1 1

z =
2

——v+iy is

(Ag)

Im Q
~ (I—z) +Im P ~ (z) =0 = (—I) rr Im cotmz .

d~

dz~

Finally, we prove a useful identity. Using contour integration we have

e(a)„)—e(II—o&„)

(2i s)„i II x) r +—'—
~ith a change of variable n n —I——v for the second term and using Eq. (A2), we obtain the identity

(A9)

(Alo)

r

1 (—I) ' () t i ix———v+ + (—1)~f ~() 1 1 IX

(2mi) (( io)„)[(—i (II —cu„) —x—]~+' p!(4miT) 47r T 4mT

(A I I)
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