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The low-temperature limit ot' the frustrated 2-0 x-I,' n&odel is studied via the generalized Vil-

lain model. The spin-spin correlation functions are calculated for two limits of the density of
I'rustrated plaquettes "xf." In the dilute case the model is described in ternis ot' the usual spin

~aves, vortex and syn~nsetry-breaking excitations, plus the "curved" or frustrated halt'-integer

static charges. In this limit, to lowest order in xf, the infinite susceptibility phase of' the fer-

romagnetic model rensains. The stability of' this result is shown to hold including higher excited
states for the static vortices although there seen&s to be a lower critical ten&perature. In the spe-

1
cial limit xf —

2
a model with only vortex, symmetry-breaking, and frustrated plaquettes is stu-

died. The spin-spin correlation functions are calculated for large separation distances. There,
the susceptibility has an exponential behavior to lowest order in an expansion in the density ot
thermal vortices. We discuss under which conditions this result would lead us to the nonexistence
of spin-glass ordering for the planar model in two diniensions.

I. INTRODUCTION

An important long-standing problem in the theory
of phase transitions is to study the effects of disorder
on the critical properties of model-systems. In the
past few years progress has been achieved towards
this end mainly by using the renormalization-group
theory. One type of disorder is to have antiferromag-
netic impurities in a ferromagnetic host or vice versa.
When the density of impurities is very small, it was
found that the transitions remained sharp and second
order with the same critical exponents independent of
impurity concentration for a (0.' When the
number of antiferromagnetic bonQs increases, in ad-
dition to the paramagnetic and (anti) ferromagnetic
phases, the onset of a new type of ordering known as
the spin-glass (SG) may appear. '

The SG problem has drawn a lot of attention re-
cently. Several theories have been put forth to ex-
plain the experimental data, at least qualitatively, but
full agreement has yet to be achieved. If, indeed, the
SG phase posseses the attributes of a new phase in

matter, it is tempting to try to achieve an understand-
ing of its properties in analogy with the unified pic-
ture that has emerged recently in the studies of more
conventional types of phase transitions. To carry out
this program detailed analysis of different model sys-
tems should be performed. Progress in this direction
indicates that the upper critical dimensionality, above
which mean-field theory is exact, seems to be 6.
The lower critical dimensionality, below which SG
ordering disappears, is suggested to be 4 by Fisch and

Harris~ and conjectured as 3 f'or vector spin systems
by Anderson and Morgan. For the Ising model it

seems that the lower critical dimensionality is 2, ' but
this result is controversial. " In this paper we give an
explicit calculation of the spin-spin correlation f'unc-

tion ot the two-dimensional frustrated classical x- v

model that leads to an exponential decay of the sus-
ceptibility at low temperatures.

The SG phase presents a dif'ferent type of ordering
compared to the ones usually encountered in normal
or nonpathological phase transitions. In an effort to
pin down the essential feature ot the SG phase,
Toulouse, ' following an idea attributed to Anderson,
suggested that the concept of frustration is at the
core of the SG properties (see also Kirkpatrick'3 and
Vannimenus and Toulouse' for early discussions of
frustration). In this paper we wish to study the disor-
dered x-v model in two dimensions in terms of' frus-
tration. This wi11 be done in the context of ideas and
techniques recently developed by Jose, Kadanoff,
Kirkpatrick, and Nelsont~ (JKKN hereat'ter), in their
study of the low-temperature properties of the fer-
romagnetic case. An early qualitative analysis of the
meaning of frustration in this model has been given
by Villain. ' Here the problem is recasted and
Villain's results are rederived and used as the starting
point in our analysis. The main result of this paper is

. the evaluation ot' the spin-spin correlation f'unctions

when the model has a finite density of frustrated
squares. The goal is to determine how the behavior
of the pure system changes due to the presence of'

disorder. The type of disorder is special and
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corresponds to putting antiferromagnetic bonds ran-
domly in a ferromagnetic configuration. The dilution

by bonds of strength zero is not considered.
The key point in our analysis is the recognition that

a frustrated square is equivalent to a half-integer vor-
tex at a dual lattice site R. ' This type of vortex
differs in character from the ones encountered in the
ferromagnetic case; whereas the former ones appear
and disappear as we change the temperature, the oth-
er ones are fixed in their positions and their number
changes only when the density of antiferromagnetic
bonds changes. For a given configuration of antiter-
romagnetic bonds we have a configuration of frustrat-
ed squares. Thus, we have to perform an average
over the different configurations of frustrated pla-
quettes. Half-integer charges have appeared in

another not completely unrelated set of problems. '

Here we will use the nomenclature "fractional charge"
instead of "half-integer static vortex" and leave the
term vortex for the. thermally excited ones.

In the disordered case at finite temperatures, both
thermal vortices and fractional charges are present.
Vortices interact via a logarithmic potential between
themselves and with the fractional charges (see Sec.
ll). Thus, we will perform thermodynamic averages
over the spin waves and. vortices interacting among
themselves and with the static background field creat-
ed by the fractional charges. Afterwards, we shall
perform the configurational average over the
fractional-charge degrees of freedom. The fractional
charge at the dual lattice site R is denoted by

2
F(R). F(K) is a random function that indicates

whether a plaquette is frustrated or not and plays a
role analogous to the frustration function defined by
Toulouse, It can take values of 0 for nonfrustrated
and of +1 for frustrated plaquettes.

The dilute frustration limit and the xf —
2

limit
will be considered in this paper. In the dilute case
(x (( l) most of the fractional-charge pairs will have
L —1 where L denotes the separation distance
between the fractional charges forming the pair, and
every fractional-charge dipole can be replaced by its
effective field. If the total charge of the pair is zero,
its effective field will be of a dipolar type and decays
like 1/r2 (r is the distance at which we measure the
field from the pair). At low temperatures, the vortex
density is also very small and the effect of these
fractional charges on the vortex pair as we change T
wi)l be negligible. Proving that indeed the correla-
tion functions remain unchanged when xf « 1 and
for total fractional-charge dipole charge zero is
straightforward. To show the stability of this result
for higher excited states is, however, nontrivial. In
the ferromagnetic case the stability of the results ob-
tained in Ref. 15 were established. from the recursion
relations. Here it will be shown in Sec. III that states
with +1 total fractional-charge dipole charge do not
modify the pure result, although there is some evi-

dence of a lower temperature below T, for which the
calculation seems to break down. The difficulty of
extending the calculation to higher orders in xf is dis-
cussed at the end of Sec. III,

%hen x is large, the density of fractional charges is

large and the problem is rather complicated. Howev-
er, because the fractional charge appear only in pairs
forming large and small fixed dipoles and because we
are interested only in the long-range properties of the
spin-spin correlation functions, g~, we are able to cal-

1
culate g~ when xf ——.

The main result of this paper, given in Sec. IV, is
that in this limit the thermal susceptibility of the
model is finite, It decays exponentially with tempera-
ture as T goes to zero. The calculation is done in the
strong-coupling limit to lowest order in y . In con-
trast with the pure case, there is not explicit appear-
ance of a critical temperature in the model.
Although, of course, we expect a Curie-like behavior
at high temperatures. The derivation and arguments
leading to this result are given in Sec. IV.

The outline of the paper is the following. In Sec. 11

we follow Toulouse and extract the frustration effect
in the x-y model. This is done using the generalized
Villain model Hamiltonian introduced in Ref. 15 and
valid for large K. In terms of the dual representation
techniques used by JKKN, the effective Hamiltonian
is derived in terms of the dual thermal and disor-
dered variables. In Sec. III the dilute limit xf « 1 is
considered and the first-order term in an expansion
in powers of xf for small xf is given. Section IV
gives the analysis for xf —

2
based on the plausibility

arguments given above. In Sec. V, further comments
on the results obtained in Secs. III and IV are given.

The model studied in this paper is defined on a lat-
tice. In Appendix A, the continuum limit of the
results of Sec. II are shown to lead to models analo-
gous to the heuristically motivated, quenched-gauge
model recently studied by Hertz. ' Indications are
given in this appendix on how to. go about construct-
ing frustration models from their lattice counterparts,
An early brief communication of some of the results
derived in this paper was published elsewhere. '

II. FRUSTRATION IN THE PLANAR MODEL

In this section, we shall follow Toulouse in extract-
ing the frustration effect in the x-y model (see also
Villain'6 for an alternative analysis). Since we are in-

terested in the low-temperature regime, we prefer to
study the generalized Villain (GV) model introduced
by JKKN, due to its close similarity in behavior to
the planar model. The generalized Villain model has
the advantage that it separates explicitly the spin
waves and vortex excitations in the problem. Be-
cause, as we shall see below, a frustrated plaquette
has associated a half-integer fixed vortex, it is con-



20 SPIN-SPIN CORRELATION FUNCTIONS IN THE FRUSTRATED. . .

venient to consider the generalized Villain model in

our analysis. In the pure case, the generalized Villain
model is del'ined by the Hamiltonian' (8 E [0, 2'],
m =0, +I, +2" )

The generalized-Villain model in this case can be
written

I-fov = ——,K $ [II(r) —e(r') —2~ &(r, r')]'
{r, r')

+ In t:p $[L ( R )]', (2.4)

+Invo $ [M(R)]'

where (see Fig. I)

(2.1) with g(r, r') =m(r, r') + —f(r, r'). The total charge

L (R) at point R is (see Fig. 2)

L(R) =M(R) +
2
F(R)

M ( R ) = m (I, 2) + m (2, 3) + m (3, 4) + m (4, I )

(2.2)

The last term in Eq. (2) corresponds to the cost in

free energy of adding a pair of vortices to the system.

va takes values in the interval [0,1]. When va =0,
the probability of exciting a vortex pair is zero and

for ya = I we recover the original Villain model. 20 0(r)
and m(r, r ') are the statistical variables of the model.

Adding a negative bond between two spins located
at nearest-neighboring lattice sites r and r' introduces
a "twist" in the orientation of the spins with respect to
each other. In terms of the angular variables this is

equivalent to tr'ansforming

6( r ) —8( r ') 8( r ) —I)( r ') —7rf( r, r '), , (2.3)

where, f(r, r') is an integer random va". iable with

probability x (density of antiferromagnetic bonds).
The f's play a role similar to the rn's if they are

chosen to satisfy f(r, r ') = —f(r ', r). Note that this

choice gives a sign to the orientation ol' the f 's in

much the same way as Villain did f'or the m's.

Without any loss of generality we take f(r, r ') =+I
letting the m's take care of larger values of the f 's.
In fact, the f(r, r ')'s are analogous to the 1& ex-

change integral in conventional spin-glass treatments.

Equation (2.4) has been written symmetrically in

analogy with Eq. (2.1). The extra term added to Eq.
(2.4) will not contribute to any ol the results given in

this paper. This is because we are interested in the

case w'here x is fixed and T changes. If we were to

consider changes in the density ot fractional charge

an appropriate separation of va in terms ol vp(M)
and ya(F) would be needed. Toulouse has given a

criteria to decide if a plaquette is trustrated or not in

terms ol a "frustration function" @. In the case at

hand, it becomes

y-„=exp[i2rrL (K)] (2.6a)

II L (R ) is an integer, $a = I, then the plaquette is
1

not frustrated. When L ( R ) = integer + 2, @~ = —I

and the square is frustrated. In terms of F(R),
these conditions are that F(R) =0 when the pla-

quette at R is not frustrated and F(K) =+I when it

is frustrated. Note that $-„does not distinguish froni

a plaquette with F(R) = I or —1. However, thermo-

dynamically the two states have ditf'erent vorticities

and are, therefore„distinguishable. In our calcula-

tion, from symmetry reasons, we choose to take the

values of 0, +I for F(K), and leave the M's to take

care ot their thermodynamic character.
Extending the criteria given above, consider an ar-

bitrary region Q contained in the two-dimensional lat-

m(3,4)

X X

p m{2/) 2

jII,

x m(l, 2) X{3,4)

X X

g S{&p) 2

]4

x l{l,&)

4 m{4,l) I

X

L (R)
X i& X

FIG. 1. Statistical variables in the planar model. Fl(i. 2. Variables in the frustrated planar model.
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—,
' $F(R) =

Ok

(2.6b)

~here the integer n is the total number of positive
@sinus negative fractional changes inside%. The sum

tice. Take N to be simply connected. This means
that we want to measure the total amount of frustra-
tion contained inside (R without having to subtract
any contributions from a subset region of S. Because
F(R) =+1, it follows that

is taken over all the frustrated plaquettes inside (R

with R E(R, and N~ is equal to the. number of frus-
trated squares contained in Q„ If n is even, (R is not
frustrated and if odd, (R is frustrated.

Following the general philosophy put forth by

JKKN, we shall now find the dual representation of
Eq. (2.4) in terms of the total charge 4 ( R ). Thus
we should eliminate the 0 and+ variables in favor of
the dual variables. This operation is given by taking
the trace

with

H[L(R) j
f' ~ dt)(r) Hovl((a, ~(~, ~ )l

j. I j.0
(r, r'N:(r, r') r

(2.7)

Ho v [1),& ] = Hov + $ in VL (-„)( R ) (2.8)

The last term in the Hamiltonian Flov gives a constraint on the sums over2(r, r '),

r (F) ) L(Y)),g(1, 2)+e(2. 3)+ z(3, 4)+g(4, 1) (2.9)

This constraint is analogous to the one presented
by Kirkpartrick' in his analysis of the Ising model
and has a corresponding interpretation tor the planar
model. In the purely ferromagnetic case,
L(R) =M(R) and the vorticity at R is generated
thermally. Adding antiferromagnetic bonds to the
system leads to plaquettes with a total number of
negative bonds even or odd. In the first case,
4 (R) =M(R) + M'(R), where M'(R) is an integer
charge, physically indistinguishable from M(R) and
which can be set equal to zero by a suitable gauge
transformation. . The behavior of the system is the
same as in the ferromagnetic case, and thus we have
a Mattis-like planar model. '

Note that we can perform all formal transforma-
tions for a given configuration of's and that only at
the end do we need to average over different confi-
gurations. A trace like that of Fq. (2.7) has been
studied by Kadanoff recently. ~~ Borrowing the result
from his analysis we have

&[4(R)]=2~K $ (4)R(G—R R')4(R')
R, R'

A similar result was found by Villain using a route
different from ours. It should be stressed that the
physical content of Eq. (2.10) is different from that
of the usual two-dimensional (2-D) lattice Coulomb
gas Hamiltonian. Although its expession is formally
identical to the 2-D Coulomb gas model, the charge
L (R) is composed by two different kinds of vortices:
the M(R ) vortices that are excited thermally and the
static F(R) vortices, or fractional charges, that act as
quenched impurity charges in the system. The F(R)
are the vortices that are present due to the negative
bonds in the system. They are present in the ground
state and their number does not change as we change
the temperature. The magnitude of the vorticity
F(R) may be taken, with no loss of generality, to be
fixed as we increase T slightly. Therefore, we can
subtract the ground-state energy associated with the
F(R)'s and take the Hamiltonian

8=27rK $ M('R) G(R —R')M(R')
R, R'

+7rK $ F(R)G(R —R')M(R')

with

+ inv $ [L (R )]',
R

(2.10)
R, R'

+inv $ [M(R)]' (2.14)

1
v = v()exp( ——, rr2I()

«R-R ) =lnlR-R'I

Equation (2.10) results af'ter imposing the total
charge neutrality condition

$4(R) =0

(2.11)

(2.13)

instead of Eq. (2.10). The vortices have a kind of
"dynamical" behavior in the sense that as temperature
is changed they may separate. In the pure case, the
separation of vortices was an important element in
the calculations of the correlation functions, particu-
larly of the existence of T', . On the other hand, the
fractional charges are f'ixed in their positions and
their distribution is related to the random distribution
of antiferromagnetic bonds in the model. We believe
that this is an important physical difference between
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the two kinds of vortices that appear in the problem,
The Hamiltonian in Eq. (2.14) has, in fact, the infor-
mation that vortex-vortex and vortex-fractional-
charge pairs may separate from each other. The
last term of H corresponds to the energy required to
excite a vortex pair, and justifies our not having tak-
en a more explicit form for yp in terms of yp(F) in
Eq. (2.4).

%hen the density of negative bonds is very small
(x « 1) the density of frustrated squares, xf, is also
very smail (roughly 4

x). The number of fractional-
1

charges pairs is ——2Nf and the separation distance in

a pair is, on the average, of the order of one lattice
spacing. At large distances the pairs will look essen-
tially like isolated charges. In this regime we can

F(K")= [F(K) + F( K')]Bitt (2.15)

The bracket stands for nearest neighbors and R" is
the center of mass position vector for the pair.

In Secs. III and IV, the vortex-vortex correlation
function for a given configuration of fryctional
charges will be needed. As usual, we consider a vor-
tex at R with charge +1 and another one at R '

with
charge of —I. The two point vortex correlation func-
tion is equal to the potential of mean force, e
where W is the total field felt by the two vortices.
The lowest order contribution to order y2 is

consider the total charge of a fractional-charge pair as
the basic variable defined as

(M ( R ) M ( R ') )F t tt &

——2y exp 2rr —KG ( R —R ') + 7r K XF( K ")[G ( R —R ") —G ( R ' —R ")]
nR

(2.16)

The first term in the exponential comes from the
bare interaction between vortices. The second term
is the "mean field" f'elt by the two vortices due to the
background field created by the fractional charges.
Also, note that a configurational average should be
taken with respect to F(R) that takes vaiues of 0,

1 in the manner described previously. The specific
form of Eq. (2.16) follows from Eq. (2.14), which is
appropriate in the two limits and approximations
made in Secs. III and IV.

III. CORRELATION-FUNCTION CALCULATION

A. General form

In this section, we study the spin-spin correlation
functions for the frustrated planar. model. F'irst we
shall obtain the dual representation of the spin-
correlation functions in general f'orm. The dilute lim-
it (xf (( 1) will be treated in this section, and the
xf 2

case will be examined in Sec. IV. Our goal is

to determine how the correlations between well
separated spins are modified by the combined effect
of vortices and fractional charges. As was mentioned
before, we shall average thermally over the vortex
degrees of freedom and the resulting expression f'or
the correlation functions will then be averaged confi-
gurationally over the fractional-charge degrees of
freedom. There are two kinds of configurational
averages, both of which have a different physical
content: the "annealed" case that considers the im-
purities in thermal equilibrium with the normal ele-
mentary excitations in the system, and the quenched
configurational average that considers the impurities
frozen in their positions and far from equilibrium
with the excitations in the model. Because in most
experimental situations, the time it takes for the im-

purities to become in thermal equilibrium is nsuch
larger than the time it takes to carry out the experi-
ment, it is the quenched state which is tested experi-
mentally. In the present problem, taking the an-
nealed average corresponds to assunsing that there
are no distinctions between the M(R) and F(K) ex-
citations and implies that we should take the thermal
average with respect to L(R).

The quenched average entails taking averages over
F( R ) instead ot @a as was the case in the Ising
model. ' ' " The explicit averaging procedures will

be given below tor xf (( I and in Sec. IV f'or xf ——.2'
The configurational spin-spin correlation function

of order p is def'ined as

g~(r, r'; [F})= (e' t t~ ' t
) [F} (3.1)

where ( ) stands for thermal average. The dual
representation of g~ can be obtained following similar
steps to those of Refs, 15 and 22. The result is

g~(r, r'„}F})=exp i g g n(r)O(r —K) F—(K)
r R

x g, (r, r '; [F}) (3.2)

with

ell[WFnt

HW~l

R M(R)

(3.3)

The number n(r) is zero everywhere, except at r

and r ', where it takes the values n (r) = n(r ') = l-.
The Hamiltonian h [M, F, n] is given by

h[MF n] = II [MF]+ip X gn(r)(3(K —r) M(K)
r R

(3.4)
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The function O(R) was defined in Ref. 15 and, for
large R, it is given by

10(z) =lnz —G(~z~) (3.5)

with z = 8 t +iR z and R = (R t, Rq). At the end of this
section we shall use a representation of 0 more con-
venient for our calculations.

Note that there is an extra weighting factor appear-
ing in the correlation functions given in Eq. (3.2).
To understand the meaning of this weighting factor,
recall that n (r) is different from zero only at the
points ~here we have the spins being correlated.
F(R), on the other hand, is different from zero only
in the case where the plaquette at R is frustrated.
This means that the weighting factor will be different
from one for a restricted number of r and R points.
The angular potential i O(r K) —couples the spins at
r with the fractional charges at R. Thus, this factor
weights the contributions to g~ coming from different
trajectories going between the different spins being
correlated. This coefficient appears because of the
gauge invariant calculation of the correlation
functions, ' With our assumption that the total
fractional charge and vortex charge are zero indepen-
dently, it will be shown that, when % is equal to the
area of the system, this extra factor does not contri-
bute to our final result and is equal to one. g~ is
identical to the ferromagnetic correlation function
studied by JKKN in the case'where F(R) =0. In
this section, we specialize to the dilute limit

(xf « I) and obtain the correlation functions to
leading order in an expansion in powers of xf.

B. Dilute-limit calculation

Here we shall concentrate on the two-point spin-
correlation functions. In this case Eq. (3.2) becomes

1

g~(r, r', (F(R)I) =exp i( —,p) gF(R) U(R)
R

xg~(r, r'; (F(R))) . (3,6)

U( R ) was defined in Ref. 15 as

U(R) =O(K —r) —O(R —r') +2m (3.7)

The extra +2m term comes from the discontinuity of
the 0 function when crossing, say, the x axis. The
value of the discontinuity depends on the ways of de-
fining the path connecting the points r, r ' or, restated,
on how we agree to measure the angles 0 with
respect to that path. In the pure case, the vorticity is

integral and this fact does not modify the equations.
However, in the frustrated case, because the value of
the fractional charges is +—,an extra factor

(3.8)

(a) (c)

FIG. 3. Fractional-charge pairs with F(R) =0 [(a)] and
with F(R) =+1 [(b), (c)].

(I/A) g
R F(R)-0, +i

(3.9)

N is the total number of dual lattice points and the
sum over R is taken over the frustrated plaquettes.

appears in front of Eq. (3.2). This fact has been dis-
cussed with clarity in Ref. 16(b). In that work it is
found that this extra factor appears from the gauge
invariant evaluation of the spin-spin correlation func-
tions. As mentioned in Sec. II, a region S is frustrat-
ed when +n is odd. In this case, (R is the region en-
closed by two arbitrary paths going from r to r'. In
the case when R is frustrated, the case of interest
here, depending on the values of p we can have a +1
or —I factor in Eq. (3.2); —I for p odd and +I for p
even (see Fig. 3).

In order to obtain the physical spin-spin correlation
function from Eq. (3.2) we shali average configura-
tionally over F(R ), The averaging must incorporate
the fact that fractional charges appear and disappear
in pairs. As was mentioned in Sec. II, when the den-
sity of negative bonds is very small, the members of
a fractional-charge pair are tightly bounded. The to-
tal charge of a fractional-charge pair that is con-
sidered here is equal to 0 or to +I (see Fig. 4). This
means that in the lowest order of approximation (in
xf) we can consider the fractional-charge pairs as in-
dividual entities. Thus we can take the total charge
of a pair, F(R) (see Eq. 2.15), as our basic variable
instead of F(R). This entails only changes of factors

1
ot —in Eq. (3.2). We wish to expand g~ in powers

of xf. The lowest order contribution requires averag-
ing both with respect. to the 0, +I values of F(R )
and the volume average. This last average appears
because although F(R) can take only 0, +I values
for the frustrated plaquettes, their locations in R
must be averaged too. The volume and F(R) aver-
ages are given by
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To lowest order in xf, g~ becomes

@((r—r'() =—g~(( r —r'))(1 —2x() + 2xfg $ exp ip gF(K) U(K) g~() r —r'(;(F)) +O(xj) . (3.10)
R Ft, R) +1

r q(r,y)— (3.11)

to lowest order in an expansion in powers of y2. q is

given by'

2

vl = P T +2~2y2 ~ ~2—2m'

2m,
0

"0
(3.12)

The subscript F(R) =0 in the first term of Eq.
(3.10) has been omitted. g~ corresponds to the xf =0
term in the expansion and is given by the correlation
functions of the pure case. Because xf &(1, the
second term in the parenthesis can be neglected to
lowest order of approximation. The form of the
higher order contributions to g~ will be discussed
after evaluating Eq. (3.10) at low temperatures. The
purely ferromagnetic g~ was calculated in Ref. 15. It
was found that below T„g~ behaves like

where the first term comes from the spin waves and
the second from the vortex contribution good to ord-
er y2. The critical temperature is defined by the con-
dition 2mK =4, above which g blows up and the
small v expansion breaks down. In this section, we
are interested in finding the effects of the second
term in Eq. (3.10) on the purely ferromagnetic result.
We turn now to the explicit evaluation of the second
term in Eq. (3.10) in the strong-coupling limit.

The total charge neutrality condition g-„L (K) =0
allows for the following type of complexions: a

fractional-charge —tractional-charge pai", , a vortex-
vortex pair, and a fractional-charge —vortex pair. The
last two possibilities, as the temperature is changed,
are qualitatively the same. Therefore, we will turther
assume that the total charge neutrality condition
splits into two contraints $-„M(K) =0 and

$-„F(R)=0.
The explicit evaluation of P~(rt, r ', (F)) can be

done by following the steps analogous to those in

JKKN. The lowest nontrivial contribution to a cu-

mulant expansion of g~ is

g, (r, r '; (F))

=—exp I(—,'p) g (M(R)M(R')), U(K) U(R')
R, R'

(3.13)

FlG. 4. Fractional-charge pairs and vortex pairs. The
dotted line stands t'or an antit'errornagnetic bond.

This expression is formally similar to the expression
for g~ in the pure ease, except that now the vortices
are in the presence of the background field generated
by the I" 's. This will change the explicit expression
of g~(F) with respect to its ferromagnetic counter-
part. In the limit when vortices and fractional
charges are very few in number (dilute regime), their
average separation distances are large. As in the pure
case, we shall assume that the main contribution to
Eq. (3.13) comes from tightly bounded vortex pairs.
This corresponds to taking R = R0+

2 r0 and

R'=Ra —
2 ro, with ) R —r ( » ro and

)
R' —r

( » ro, and the same condition is satisfied
for thc spin located at r '. Carrying out an expansion
around Ro [see Eq. (4.28) in Ref. 15] we obtain for
the exponent in Eq. (3.13)
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—,p'y'gg. exp ~K gF'(R")ro VR -R„G(Ko-K") [r, VR U(K)]2,
R 0 p

tt

(3.14)

where we have used Eq. (2.16) in deriving Eq. (3.14). Equation (3.14) can be re-expressed as
t

ttP y' $ $&o exp 7rK $F(R ")ro 7R R G(Ro —R") (ro 7-„[G(Ro—r) —G(Ro —r')]]2
tt 0 0

0 0
R"

l

in which the Cauchy-Riemann conditions

(3.15)

BG (r ) BH(r ) I) G (r)
Qx Qg Bg

80(r)
Bx

(3.i6)

were used. Rp denotes the center of a vortex pair and R" the location of the center of mass for a fractional-

charge dipole. In the dilute regime (xf « I), I K, —K "I » I and Eq. (3.15) can be approximated by

t

—p2y2 ggro2 x I+2rK $F(R") ro V-G(Ro —R") (ro r7- [G(Ro —r) —G(Ko —r')][2
Rp rp R It

(3.17)

The justification for this approximation is given in Appendix B. The first term in Eq. (3.17) when summed over
Ro gives the same contribution as that of Eq. (4.32) in Ref. 15, i.e.,

p2y2G'(I r r 'I) $ F
2 —2ttx

fp

in which G'(I r —r 'I) is defined by

22r[G(r —r') —G(0)] = —G'(I r —r'I)

(3.is)

(3.19)

The summation over Ro in the second term of Eq. (3.17) can be done by integrating by parts using Eq. (3.19)
and

'7-R2G(R) = —22r5-Ro

The resulting expression for Eq. (3.17) takes the form
1

~p'y'G'(Ir —r'I) pro ' I —K $F(R") ro [&-, G(R" —r) —&-, G(R" —r')]
fp R"

(3.20)

(3.21)

Substituting Eq. (3.21) in Eq. (3.13) and then into Eq. (3.10) we get

gF(l r —r'I) =—gF(l r —r'I) [I +
2 xf(—I) " A(r, r')] +0(xj)

where

(3.22)

A(r, r ') = g g 8 XF(R) exp i XF(R)S(R)
R F(R) +t (R

(3.23)

The total fractional-charge neutrality condition is given in terms of the 6 function. S(R) has been defined as

S(R) =pU(R) —i7t p y KG'(I r —r'I) pro ro ['7, G(K —r) —'7, ,G(R —r')]
fp

(3.24)

Carrying out the sum over F in Eq. (3.23) we find

oo I

A(r, r') = j dtexp i g [t+S(R—)] ff(1+e ' '+s" I)

R R

(3.25)

Expanding the bracket and integrating over t Eq. (3.25) yields

i2S(R,) i2[S( R &)+S(R2)]
A(r, r') =exp i gS(R) 6—+ o+Btv —2 o ge +gg —4 o $ e +

R R1 R), R2
t t

(3.26)
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In the limit of
I

r —r'I » 1 we can keep only the first term in Eq. (3.26). The evaluation of the sum g-„S(R)
will now be carried out. The sum over the first term in Eq. (3.25) can be obtained using the representation~t

2

O(r —R) =lim t I K '(q)e''t't'
p ~ —~ ~ —~ (2Vl.)2

(3.27)

with

1
—~+iq /2 iq /2

K, ' (q) =i csc( t q») (2cosq„+2 cosq» —4)(e " —e " ) (3.28)

For large separations (I R —r I, I
R —r'I » 1), U(R) and K,(q) can be expanded in powers of q for small q.

The evaluation of the integrals is straightforward, but the limit ~ 0 should be taken at the end, The summation
of the second term in Eq. (3.24) is evaluated again integrating by parts and using Eq. (3.20). Therefore, to
lowest order of approximation, Eq. (3.26) reads

1

A(r, r ') =exp (—Nfp n~)—
I

r —r 'I —»1 lnl r —r 'I $ rg t ~
ra (r —r ') (3.29)

fp
t t

with»t =2ntytKp~. Substituting Eq. (3.29) into Eq. (3.22) the final result of this section takes the form

(3.30)

The factor (—1) "» is not present in Eq. (3.30) be-
cause of the fractional-charge neutrality condition,
and Q has been taken equal to the total area of the
system. The first thing to note about Eq. (3.30) is

that in the limit xf 0, it reduces, as it should, to
the purely ferromagnetic case result, i.e., zero mag-
netization for a11 T &0 and infinite susceptibility for
T ~ —m. Adding frustration has the effect of adding

a term that is exponentially small as
I
r —r 'I ~ and

therefore does not modify the infinite susceptibility
phase of the ferromagnetic model at sufficiently low

temperature. Recall, however, that in the limit of
xf « 1, the fractional-charge pairs are tightly bound-
ed and the correction term has come from the
fractional-charge pairs that have total charge of +1.
These states have a lower probability of being excited
in the system compared with the fractional-charge
pairs with total charge of zero. The result f'or
F(K) =0 can be easily understood by recalling that
in the pure case the role of the vortex pairs does not
become important at low temperatures. Further-
more, the vortex pairs become relevant only when
the size of the vortex pair is of the order of the
separation distance between the spins being correlat-
ed. Our result Eq. (3.30) shows that the higher-
excited fractional-charge pair configurations do not
change the result for the correlation functions ob-
tained with the F(R) =0 charge. As it was men-
tioned before, in the pure case, the critical tempera-
ture (y =0) was determined through the divergence
of the exponent at 2+K =4. Of course, if we were to
take higher-order contributions in the expansion
around Rp, lower critical temperatures would be ex-
pected because higher powers of rp would appear in
the expansions. However, it can be shown that in-

eluding higher-order terms in powers of rp does not
move the KT fixed point, Moreover, the fixed point
obtained from the recursion relations is not affected.
Note that the exponent in the second term in Eq.
(3.30) seems to diverge at a lower temperature given
by T'= —m. This divergence is of a different nature

to the one found at 2mK =4. The reason is that it
appears in a term that is exponentially small as
r ~. If we follow the arguments given by Koster-
litz we see that there is no singular contribution
from this term to the free energy. On the other
hand, because of the behavior of the susceptibility
when xf —

&
(see Sec. 1V), this may be the first hint

1

that the region in which the susceptibility is infinite
has been shrunk from [0,—7r] to [0,—m]. However,

1 2

we do not know how to connect these two facts con-
clusively because of the dif'ferent nature of the model
in the two regimes.

Finally, we turn to the way of calculating higher-
order terms in the perturbation expansions in terms
of xf. This.seems to be a rather difficult problem. In
obtaining Eq. (3.30) it has been assumed that the
system consists of a set of decoupled spin waves from
vortex and frustrated squares. For x « 1, the frac-
tional dipole size is -1 and, in the dilute vortex re-
gime, this is a good approximation. %hen the densi-
ty of fractional charges increases, so do their sizes,
and the decoupling of spin waves from the fractional
charges is not obvious. In fact, the mere existence of
spin ~aves at x = —in equilibrium is question-

2

able. ' In order to extend the calculation given in
this section, the fractional-charge spin-wave interac-
tions may have to be included. This problem will be
the subject matter of another communication, A
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second problem is to include a configurational
averaging procedure that incorporates the fractional-
charge pairs formation properly. For instance, if the
decoupling is valid,

~, II X II X &}a a},t+Sl.)
, R F(R)-0, +1 R ' F(R ')-O, +1

would account for the configurational average of the
next-order correction of Eq. (3.30). 8(x) stands for
the increment of the fractional-charge size (in units
of the lattice spacing) as a function of x. To this or-
der, we do not see why to expect changes from the
O(xf) results. It is not obvious how the higher-order
contributions to the expansion in powers of xf will

give the desired result of depressing T,. Perhaps a
double expansion in powers of xf and -exp( —I/xf)
contain this information.

In Sec. IV, we will calculate the vortex contribution
to the spin-spin correlation function when x is not
small. This will be based on a Hamiltonian that con-
tains the vortex-vortex and vortex —fractional-charge
logarithmic interactions. If the spin-waves are
screened and the short-wavelength cooperative exci-
tations of the spins serve the purpose of just renor-
malizing the Coulomb interactions, the calculation
given in Sec. IV will acount for the properties of the
frustrated (x finite) planar model in two dimensions

1
when xf

~ &, (r, r; tF(K) }), (4.2)

fractional-charge number can only be even, since
they come in pairs. These facts should be imple-
mented in the calculation. It will be argued below
that within our approximation this can be done at the
level of P(F(R)). At finite densities of antifer-
romagnetic bonds, the system contains thermally ex-
cited vortices and an array of quenched fractional-
charge dipoles of different sizes (see Fig. 5).

Formally speaking the problem should be defined
in terms of a Hamiltonian that includes all possible
interactions: the dipole-dipole and dipole-charge, that
decay like 1/r' and 1/r, respectively, pius the charge-
charge that grows logarithmically. To lowest order of
approximation we shall take into account only the
logarithmic interactions between fractional charges
and vortices. Note that very few fractional charges
will "look" isolated to the dilute thermally excited
vortices. Recall that this argument is true for an ele-
ment of the ensemble of fractional-charge configura-
tions. The average spin-spin correlation function
takes the form

g, (r, r') =g $ a 'P(F(R))
R F(R)

1

xexp i(2p) QF(R)U(R)
R

IV. CORRELATION FUNCTIONS FOR x~ —
2

In this section we investigate the behavior of the
correlation functions for xf —2. This limit

corresponds to having less than half of the plaquettes
frustrated and slightly more than half not. This
statement follows from assuming
xf = 4[x3(1 —x) + (1 —x) 3X} (see Ref. 1 3) . Note,
that xf —.

2
for a range of values of x E [0.2, 0.5].t31

As pointed out by Villain' the Edwards-Anderson
(EA) point (x = 2)5 is special. For this density of
negative bonds, the plaquettes are distributed ran-
domly with probability

2
of being frustrated and

2

1 1

of not. The probability of finding a plaquette at R
which is frustrated takes the form

P(F(K)) = (1 —xf) g(F(R )) +Xfg(F'(R ) —1)

(4.1)

where the normalization factor is chosen so that

a =Q $ P(F(R))
R F(R)

(4.3)

Strictly speaking Eq. (4.1) makes sense physically
1 1

only at xf 2 (x 2). Here we assume, however,

that Eq. (4.1) makes sense for xf very close to
2

but
1

not for values that differ appreciably from
2

. Note
that Eq. (4.1) refers to isolated fractional charges.
Nevertheless, as we have noted above, the

FIG. 5. Fractional-charge dipoles of different sizes (ar-
rows) and a vortex pair (circles). .
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In general g~'(r, r', IF(R) I) is the configurational
spin-spin correlation function obtained from the ef-
fective Hamiltonian. Within our approximation, g~
is obtained from the Hamiltonian with logarithmic
interactions. Care must be taken to not overcount
the degrees of freedom in the system. If the sum is
over Nf frustrated squares, we must subtract the
ones that form part of the small fractional-charge di-
poles. This is easily done at the level of P(F(R)).
A plaquette at R is either frustrated or not frustrated.
However, there will be many frustrated plaquettes
that. will not contribute because they form part of a
fractional-charge pair that acts like a small dipole.
Therefore, we should add a term to Eq. (4.1) that
measures the probability that a frustrated plaquette

belongs to a pair that does not contribute, i.e.,

P(F(R)) = (I —xf)8(F(R ))

(4.S)

+Xfg(F ( R ) —I) —II 8(F( R )) (4 4)

When xf is very close to 2, very few of the fractional

charges will count as isolated and therefore f? will

also be close to 2. At the particular point
1

xf+ 0 =1
the probability function (4.4) becomes

P(F(R)) 5(F'(R) —1) (4.6)

This equation is in fact true for xf —2, the region of
validity of Eq. (4.1). At this point Eq. (4.6), the
correlation functions (4.2) become

g~(r, r') =g g exp i( p) $—F(R)U(R) g'(r, r';IF(R)I)
R F(R) +1

(4.7)

At first glance, the correlation function g~ seems to have the same form as the second term in Eq. (3.10) but the

physics behind both of them is completely different. First, in the dilute limit, the decoupling between spin waves
and vortex —fractional-charge configurations was fully justified. The second difference between Eqs. (3.10) and

(4.7) is that we were able to expand the vortex-vortex. configurational correlation function in powers of N&/N be-

cause Nf ((N. Here, we can not approximate the vortex-vortex correlation function and must resort to a dif-

ferent procedure.

A. Spin-spin correlation-function calculation

The expression to be calculated is
1

f~(r, r') = g $ 8 QF(R) exp i(—,p) QF(R) U(R) exp ip $M(R) U(R)
R F(R) +1 R R

t

(4.8)

As in Sec. III the strong-coupling limit of Eq. (4.8) will be obtained by considering that the main contribution to
Eq. (4.8) comes from tightly bounded vortex pairs. A cumulant expansion of the thermal average leads to

g~(r, r') =g g 5 XF(R) exp i( , p) XF(R) U(—R)+ W(F(R);r, r')
R F(R) +1 R R

(4.9)

where 8' has been defined by

IIr(F(R);r, r') = ——p2y2 ggro2 «exp rrK gF(R") ro V-„-„„G(Ro—R") [ro V«U(R)l
RD ro R" 0 .

(4.10)

with Ro, ro, and R" having the same meaning as in Sec. III. Using integration by parts repeatedly and Eqs.
(3.19) and (3.20), Eq. (4.10) takes the form

1 'I

II'=p y G'(I r r'I) pro " exp mK QF(IT") ro'&-, G(R" r) +exp rrA XF(R") ro p'-, G(R" —r')
fo R" R"
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Expanding exp W in series, for large I
R —r

I
and

I
R "—r 'I, we find in Appendix C that Eq. (4.9) becomes

t
1

g~(r, r') =—$ —,A (rp) g $ 8 $F(R) exp QF(R) T„(R)
R F(R) +1

(4.12)

in which

(r)p2y2G(I rr I)gr22%»
fp

(4.13)

and

T„(R ) = i ( 2 p) U( R ) + n vr K rp [V„G( R "—r ) —'7F G ( K"—r ')] (4.14)

Carrying out the sum over F in Eq. (4.12) we find
t

-n -i 2f T (R )+j)
g (r, r') =—g, 3 (rp) J dtexp X T„(R)+iN&t ff [I+e " ]

R R

(4.15)

If we now expand the result in square brackets and integrate over t, Eq. (4.15) becomes
r

-n -2iT (R)
g~(r, r') =—g, ( p)exp $ T„(R) gn p+5tv 2 ppe " +

n n! R

(4.16)

As in Sec. 111 we shall keep only the leading contribution to Eq. (4.16). This is again a good approximation in the
limit r ~. The sum over R in T„(R) can be carried out giving

g T„(R ) =—(—,
'

m 2) iVfp I r —r
'

I
2n 7r K rp—( r —r ')

R

(4.17)

where we have used the fact that

$['7G(R "—r) —'7F G(R "—r')] = —2'(r —r')
tlR

(4.18)

which is easily shown using integration by parts and Eq. (3.20) plus the expression (3.27) for O(R —r). Per-
forming the sums over n, Eq. (4.16) takes the form

g~(Ir —r'I) =—(—I) " exp[ —lnIr —r'IA(rp)e ]
R„u —n r Kil —r'i

(4.19)

The extra factor of (—I) "~ disappears when we take the two paths going from r to r ', and enclosing III, covering
the whole area of the system plus the total fractional-charge neutrality condition (see Fig. 6). The sum over rp

can be transformed into the integral

OO ~l
(7r KI r —r'I) ~»J drprp ""e =I (4 —27rK vr KIr —r'I) (4.20)

where I' is the conventional incomplete I function. In the limit when
I
r —r 'I » I the asymptotic form of Eq.

(4.20) gives

pi= 'I e
I 0 3 —2mK

~KI r-r'I 2~'KIr —r'I
(4.21)

Substituting this result back into Eq. (4.19) we obtain

gt, (I r —r'I) = exp I [27r y p l—nI r —r 'I(vr K
I

r —r I) 'exp( —vr K
I
r —r'I)][ (4.22)
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8. Finite susceptibility at low temperatures

%'e shall now derive and discuss the consequences
from the result of Sec. IV A. The contributuion to
the correlation functions coming from the pure f'rus-

tration variables has so far been left out. This
corresponds to the T =0 properties of the model, and
therefore, to the possible degeneracies of the ground
state. In the limit of sufficiently low temperatures,
such that the SG phase is stable, the full spin-spin
correlation functions can be written

FIG. 6. Paths I'i and I'2 going from r to r
' encircling the

region R. Crosses denote tractional charges and circles vor-

tices.

This is our final result for the calculation of the
spin-spin correlation functions. In Sec. IV 8 we will

put together the result of Sec. I& B plus Eq. (4.22)
and will discuss their consequences.

G, (r) =—gj, (r) gl, (r) (4.23)

(m) .
where g~ is the pure frustration T =0 contribution
to G~(r) As we s. hall see below, the not knowing

(m)
g~ (r) explicitly will not hamper our results for the
behavior of the thermal susceptibility of the model.
From Eq. (4.22), G~(r) is equal to

G~(r) =—g~ (r)(exp —(2y p [Inr exp( —n Kr)](Kr) '))
I

(4.24)

In the large r limit, we obtain
1

2Kr

G(r)=—g
t

(4.25) =-2p2y2/(7rzK + nF) (4.:9)

can now be applied. The evaluation of Eq. (4 28) is
straightforward giving

where we have taken the leading contribution in the
large r expansion, and have neglected the logarithmic
contributions. The first term of Eq. (4.25) is a

nonthermodynamic T =0 contribution to G~(r). It is
the second, temperature-dependent term in which we
are interested. %e can define

+p(r) = gp (r) (2p2y2e '/Kr) (4.26)

as the thermal contribution to the spin-spin correla-
tion functions. It is for this function that it makes
sense to apply the fluctuation dissipation theorem,
Before that can be done, we ought to know the form
of g (r). Without having an explicit calculation for

(m)

g~ (r), we can expect that for large r it should have
the canonical behavior

(m) F ~F(r) —e /r (4.27)

X, = —pe, (r)K,
J

r
(4.28)

where aF and pF are temperature-independent func-
tions of xf. 0.F should be positive definite. If aF =0,
pe is strictly bigger than zero. Because of the form
of g~(r), we can assume, without loss of generality
that pF =0 and uF ~0. The fluctuation dissipation
theorem

This is the main result of this section. It gives a

susceptibility that is finite, and that goes to zero
essentially exponentially with temperature. This
result should be contrasted with the infinite suscepti-
bility result of the pure and dilute cases. The calcula-
tion has been carried out in the strong-coupling limit.
In contrast to the ferromagnetic case no evidence is
found for the existence of a critical point. At high
temperatures we expect that X should have a Curie-
Weiss behavior. The change of behavior of X, going
from the 1ow to the high-temperature regions, can
occur smoothly or abruptly. In the first case, X

would have a rounded maximum, in a similar way as
a one-dimensional antiferromagnetic Heisenberg
model. 29 e see, ho~ever, no evidence of a possible
critical temperature in our calculation, and this may
indeed be the case. This should agree with the specu-
lations put forth by Anderson and Morgan and a
2+~ calculation done by Grest, although their ana-
lyses did not take into account the specific properties
of the frustrated planar model. On the other hand,
we have no reasons to rule out a possible cusp or a
sharper peak at a "freezing" temperature separating
the low from the high-temperature behavior. If this
is the case, a dif'fercnt kind of SG phase would exist
at low temperatures. This possibility would be in

disagreement with conjectures put forth by some
authors.
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APPENDIX A: CONTINUUM FRUSTRATION MODELS

Here we wish to extend the analysis presented in

Sec. II in two respects: First, continuous variations of
F(R) will be allowed. The continuum limit of the
lattice Hamiltonian will be taken and, at the end,
some comments will be made with respect to the con-
nections of the resulting models to the continuous
gauge model of Hertz. '

We start by recalling the gaugelike properties of the
random field f(r, r '). It has zero divergence and its
curl is twice the fractional charge. In fact, f(r, r ')

plays an analogous role to the exchange coupling con-
stant J„" in the more conventional treatment of spin-
glass models. Therefore, allowing continuous varia-
tions of f(r, r ') is in some respects analogous to
changing the magnitude of the coupling constants
between the nearest-neighboring spins, For conveni-
ence we shall denote by A (r, r ') the continuous ver-
sion of f(r, r '). F(R ) was defined in Sec. II as the
circulation of f(r, r') around a plaquette. F(R) can
be rewritten (see Fig. I)

F ( R ) = [f(I, 2) f (4, 3) ]—[f(3, 2)—f (4, I )]—
(A I)

In order to differentiate an f(r, r ') in the x direction

from another in the y direction a Greek subindex will

be added to A from here on. Hence Eq. (Al) in

terms of A „ takes the form

F»(R) =[A~(r+ ~, re+e +e ) —A„(rtt, r+e„)]

—[A „(r + e~, r) —A „(r + e+ e„r+e„)],
(A2)

~here e„and e~ are unitary vectors in the p, and y
directions, respectively. Written in this way the con-

nection of F»(R) to the usual

P(F„(R)) g(F„', (K) —I), (A6)

for the xf ——.Equation (A6) forces a frustrated

plaquette at the dual lattice site, R, to have either

+—, or ——fractional charge. Considering smooth1 1

variations of F»(R ) we can approximate Eq. (A6)
by

—(1/e )(F ) —
A, (F )

P(F (R))=e»» (A7)

for a given point R. If A. =0 and e = ~ this forces
the value of F(R) to zero, or, equivalently, to the

nonfrustrated case. When ) =0 and e ~0 the pla-

quette is "slightly" frustrated, In the limit when
—e2 —0 and X —~ while I/e' = —2X we recover Eq.
(A6).

We proceed now to take the continuum limit of the

lattice model. Clearly, the difference between a lat-

tice point in the original lattice and its dual vanishes
and F(R) becomes a frustration density at point R.
Of course, an appropriate prescription must be given

to obtain the averaged density of frustration at point
R. Here, this concept shall be used formally without

any explicit definition because it seems to be of no

consequence for the conclusions of this appendix.
The Hamiltonian (A4) can now be expanded in

powers of 0 and the gradients of 8. For arbitrary

dimensionality d we shall take 0 ranging from —~ to
~ and denoting it instead by P. The gauge invariant

gradient is

coupled to the frustration gauge field, in the form

H [0,A ] = —K g [I —cos [0(r ) —0( r ') —~A ( r, r ') ] }

(A4)

The prescription for evaluating thermodynamic
quenched variables is: first, calculate the thermo-

dynamic average with respect to the Boltzmann factor
resulting from Eq. (A4) for a given configuration of
A's and then, average over the A' s. For any thermo-

dynamic density, T, defined in terms of the dual vari-

ables I », the configurational average can be defined

by

T= JI gdF„(R)P(F„(R))T(F „(R)), (A5)
R

where P(F(R)) is the probability weighting function
for F»(R). As motivated in Sec. IV we can take

I'„„=7„A,—7,A„ (A3)

in the continuum limit is quite suggestive. However,

we should warn the reader about the formal similari-

ties among expressions like Eq. (A3) in the frustra-

tion problem and their electrodynamic counterparts.

They have, of course, completely different physical

meanings.
The full x-y model Hamiltonian can now be written

Keeping the lowest order contribution in the gra-

dient, Eq. (A4) becomes formally

e, =
J~

d'x [[(V„—~W „)q ]'+ V(q) } . (Ag)

x denotes a d-dimensional position vector. The
second term of H, is an even polynomial in 1 that
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can be of the Ginzberg-Landau form. In the continuum limit the integral in Eq. (AS) becomes a functional in-

tegral as usual. We can think now of various extensions of the model defined by Eqs. (A7) and (A8). First, in-
stead of having ~ a scalar, g can be thought of as being an n-component vector. Different constraints on the
magnitude of P introduce extra terms in the Hamiltonian that can be incorporated in V(P) in the usual manner.

A~ can be taken as an Abelian "gauge frustration" variable' or as a non-Abelian one. ' Therefore, in two dimen-
sions we have point frustration defects, in three they form open or closed frustration rings, and surfaces in four
dimensions.

APPENDIX B: LOWER BOUND FOR THE VORTEX-VORTEX CORRELATION FUNCTION IN THE DILUTE LIMIT

%e wish to show that
I

exp m Kr p g F ( R ")'7-„G ( R p
—R ") ~ I + 7r Kr, $ F( R ") '7-„G ( R p

—R ")
R" 0 k" 0

I I

Expanding the left hand side of Eq. (Bl), with a =rrKr gives

(BI)

'(1)

exp a $ F ( R ")'7-„G ( R p
—R ")

It n

(2)
' 'n

+ $ —, g F ( R ") '7-„G ( Rp —R ")
R"n! 0

(B2)

where the sums (I) and (2) run over even and odd n respectively. For n =2m (m an integer) the inequality

'2m f 'm

F ( R ") '7a G ( R, —R ") ~ Nf" $ ['7-„G( R p
—R ")]

IIR" 0 R"
] ]

follows from Cauchy's inequality
I )2

ga„IIrr ~ fax gb„'
K K

i

and, because F =+I, implies gF = Nf When n =2.m + I, using Cauchy's inequality again, it results

(a3)

(a4)

' 2m+1
QF(R")'7 Ga(Rp R") ~ g (FR")&7G
R" 0 R" 0

I

Evaluating' the R " sum gives

'm

(Rp —R")Nf $ ['7a G(Rp —R")]
R"

t I

(as)

$['7-„:„«G(R—R")]'= $+ $ ['7a -„G(R"—Rp)]'= /[7-„G(R))2
R 'R" R0 R"—R0

(B6)

where an integration by parts has been carried out and Eq. (3.20) was used.
Changing the sum in Eq. (B6) to a continuous integral it takes the form

$[7aG(R)]2 =2Irxy Jt dR R ' = n(lnN —I.n2m)
R J

Note that in our units N =27rR =3 (area of the system) Therefo. re, in the dilute limit, Nf (( N, Eq. (B7) is

very small and to lowest order of approximation Eq. (Bl) becomes the equality quoted in Sec. III.

APPENDIX C: DERIVATION OF EQ. (4.12)

Start by rewriting e as

R ll IIR

e =exp A g f(R"—R) +g f(R"—R) (Cl)
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with

3 =p'y'G'(i r —r'i) Xr' '"
fp

(C2)

f(r) =exp[(romK) F(R ")'vr-, G (R "—r)]

As mentioned in the text an isolated fractional charge corresponds to having a fractional-charge pair in which one
of the members is very far away from its partner. Or, in other words, separated by a large number of antifer-
romagnetic bonds. So, even in the x =

2
regime there will not be too many of these isolated fractional-charges in

the system. ln this limit, the condition ln f (( 1 will be satisfied. Therefore, we can approximate

g f(R"—r) + P f(R"—r') =-P[f(K"—r) + f(K"—r')] —2 0 $(inf)
ll lt R" Rii

(C4)

The last term on the right-hand side of Eq. (C4) is, when integrated, very small. Thus, Eq. (Cl) can be written
r

i "(r,) ff[f(K"-r) +f(K"—r')]" . (CS)

Expanding and rearranging terms the previous equation takes the form

,
1

1 ~.(r )g f(K"—r)
a, f«"—r') (C6)

Neglecting the last term in Eq. (C6) and factorizing the 2" factor we obtain Eq. (4.8). Note that the factor

exp( —2 r) was not written in Eq. (4.8) because, when the sum over n is carried out, it cancels out with the 2"
factor in Eq. (C6).
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