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We examine the various kinds of phase diagrams that can occur in magnetic alloys when all

the interactions have the same sign, i.e, , all ferromagnetic. It is pointed out that these phase di-

agrams can be usefully cataloged in terms of the initial slope [0(ln T,)/Bp] of the transition tern-

perature T, with concentration p at the two points p =0 and p = l. For the two-dimensional Is-

ing model, these initial slopes can be obtained exactly, using perturbation theory, for alloys in-

volving either bond or site disorder. For site disorder we obtain results for a spin S in a host
1

with spin &, We show that mean-field theory is fairly reliable but fails to predict some kinds of

phase diagrams that may occur.

I. INTRODUCTION

Increasing interest has been shown recently in the
phase diagrams of insulating magnetic alloys. A few
of these systems have now been studied' and it is

very probable that many more will be studied over
the next few years. These systems (e.g. ,
RbMn~Nit ~F3, KqMn~Cot ~F4, etc. ') are very attrac-
tive to study because the interactions are short
ranged (often predominantly nearest neighbor) and
so present a well-defined challenge to theory in ex-
plaining the behavior of the transition temperature T,
with concentration p. Of course there are many other
properties of alloys such as the specific heat, suscepti-
bility, and the critical exponents that one would like
to explain. However these are more complicated
questions and we will only discuss T, (p) in this pa-
per. This can usually be obtained experimentally by
searching for discontinuities in either the specific heat
or in the susceptibility. This is not always easy due
to rounding caused by inhomogeneities, etc.

There are a number of approximate methods for
obtaining complete phase diagrams and we shall dis-
cuss some of these in this paper: mean-field theory,
annealed models for alloys with bond disorder, and
the Bethe lattice construction. No exact calculations
of the phase diagram exist, with the exception of the
very restricted form of the randomness in the two-
dimensional Ising model of McCoy and Wu. '

In this paper we consider two kinds of disordered
systems. Both are Ising fcrromagnets with only
nearest-neighbor exchange. For a ferromagnet with
bond disorder, there are two kinds of bonds with
strengths J~ and J2 that are positioned randomly
throughout the system with probability p and 1 —p,
respectively. For a ferromagnet with site disorder,
there are two kinds of sites A and 8 that are posi-
tioned randomly throughout the system with proba-
bility p and 1 —p, respectively. As a consequence

there are three kinds of bonds with strengths J»,
Jgg, and JAB= J84.

The initial slope 8(in T,)/Bp for p =0 and p =1 can
be calculated exactly using perturbation theory for Is-
ing models where the disorder is of either the bond
or site kind. The result is expressed in terms of
correlation functions in the pure system which are
known exactly in two dimensions. For the two-com-
ponent systems that we are considering here, these
initial slopes determine the overall character of the

phase diagram although not the detailed shape of
course. In Sec. II we introduce a general classifica-
tion scheme based on the initial slopes,

The alloy with bond disorder is simpler to treat
theoretically and we study this in Sec. III. This
corresponds to having two ligands through which the
superexchange can take place, leading to two possible
exchange interactions between neighboring magnetic
ions. This case has not been much studied experi-
mentally [an exception is Co(SvSet v)2j.' More ex-
perimental work on these systems would be helpful
as they are the simplest of all alloy systems.

In Sec. IV we discuss site disorder. The perturba-
tion theory is a little more complicated here, but
proceeds in a very similar manner to that for bond
disorder. We find a much richer variety of behavior
because an extra parameter J&~, the exchange
between magnetic ions at A and 8 sites, is involved.
We show that our conclusions about what kinds of
behavior are possible are not very dependent on spin,
by studying a site impurity with 5 ) —,.

Much of the detailed calculation is relegated to the
Appendices so as not to interrupt the flow of the paper.

II. GENERAL CLASSIFICATION SCHEME

Perturbation theory leads to the initial slope
8(in T,)/Bp for p =0 and p =1, where p is the bond
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Although this by no means provides a complete
description of the phase diagram, it does severely re-
strict what can occur and so can be used as the basis
of a classification scheme.

If there is no competition between the exchange
interactions, i.e., they are all ferromagnetic, then we
expect only two phases to occur —paramagnetic at
high temperatures and ferromagnetic at low tempera-
tures. This is borne out by all approximate calcula-
tions of the complete phase diagram.

Consider an alloy with a transition temperature
T, (p) as a function of the concentration p. We can
suppose without loss of generality that T, (1) & T, (0).
The simplest possible phase boundary would be a
straight line extrapolation for T, (p) between T, (0)
and T, (1) as shown in the upper part of Fig. 1 by a
dashed line. From the initial slopes near p =0, we
can identify three possible types of behavior also in-

dicated in the upper part of Fig. 1: (i) having slope
greater than the linear extrapolation, (ii) having a

slope less than the linear extrapolation but greater
than zero, (iii) having a slope less than zero. There
are three similar types of behavior near p = 1 giving a
set of nine phase diagrams that are indexed by ij in
the lower part of Fig. 1, where i refers to the
behavior near p =0 and j to the behavior near p =1.
Each of the nine phase diagrams is the simplest possi-
ble compatible with the initial slopes. It is possible
that the phase boundaries could have many more
maxima and minima and still be compatible with the
initial slopes. For the simple two-component alloys
that we study in this paper, this more complex
behavior would be unlikely to occur and is not sug-
gested by any experiment or approximate theory that
we know of.

In order to give these possible sets of phase di-
agrams a labelling that is somewhat easier to
remember than the ij labelling, we have adopted the
following notation which emphasizes the behavior
with respect to the dashed linear extrapolation and
also the number of maxima and minima. In this no-
tation we write X" ~here m, n is the number of mini-
ma, maxima (never greater than 1 for the simplest
possible phase diagrams shown in Fig. I). If n or m

is equal to zero, it is omitted. The letter X can be ei-
ther A for above, 8 for below, S for straddle, or T for
transverse. This designates the behavior with respect
to the dashed line and T is the mirror image of S
with respect to the dashed line. %e note again that
we have put T, (1) & T, (0). If this were not so, then

p could be redefined as 1 —p and it would be so. Our
simple classification scheme therefore exhausts all
possibilities —assuming of course that T, (p) never
drops to zero. This is the reason that we have re-
stricted ourselves to cases where all the exchanges
have the same sign (excluding zero) and where
kaT, (p) & min(Js) &0.

22 23 III. BOND DISORDER

B, S,

Although bond disorder is not as readily accessible
experimentally, as site disorder [an exception is

Co(S~Set ~)21, we will discuss it first as it is rather
simpler to treat theoretically. The Hamiltonian for
the system is

32 33
H = —4 $ JJS;Sf, (3.1)

FIG. 1. Upper part of the figure shows the linear extrapo-
lation of the phase boundary between T, (0) and T, (1) that
divides the ordered from the disordered phase. The nine
phase diagrams below are indexed according to the three
possible behaviors of the initial slopes at either end of the
phase diagrams (denoted by 1, 2, .or 3). The labelling
(3, 8, S, T) is explained in the text and the superscripts
and subscripts show if there is a maximum or minimum in

the phase diagram.

where the probability distribution of exchange param-
eters J& is a product of terms for each bond; each
with the same form

P(JJ) =p5(Js —Jt) + (I —p) g(JJ —J2) . (3.2)

This is sometimes referred to as quenched disorder.
The factor 4 in the Hamiltonian (3.1) is included for
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later convenience and the angular brackets mean that
each pair is only counted once.

A. Mean-field theory

known exactly in two dimensions. For the square lat-
tice a, = I/J2 and exp(2K, ) =1+J2 (Onsager ).

For small p, the result (3.7) can be expanded to
give the initial slope of the phase boundary (putting
J( = A.Jp).

The mean-field or virtual-crystal approximation to
the Hamiltonian (3.1) assigns the same value of the
magnetization M = {S) to each site so that the self-
consistent equation for the magnetization becomes

[e, +cothK, (X —I)] ' .
1 ~T. 1

Tc ~p Kc
(3.8)

M =SBs[4PMz(J, Sp + J2S(1 —p))], (3.3)
C. Perturbation theory

T, (p) =(I —p) T, (0) +pT, (1), (3.5)

which is just linear extrapolation between T, (0) and

T, (1). For the rest of this section we shall only be
concerned with the case where S = —, and so we will

rewrite the Hamiltonian

H = —$Js(r((rt,
&~J)

(3.1')

where o-; =+ 1 with the same probability distribution
of exchanges Eq. (3.2).

B. Annealed model

The phase diagram for this system has been ob-
tained by Thorpe and Beeman5 for annealed disorder

in which correlations are introduced so that the joint
probability for two bonds P(JJ,Jk() does not factorize
into

where Bs[x] is the Brillouin function for spin
S and z is the number of nearest neighbors, Near
the critical point where M is small, we can put
B,[x] =x(S+ I)/3S,

M=4 S(S + I)
3

P,Mz(J(Sp + JzS(I —p)) (3.4)

This result (3.8) is identical with the result that is
obtained from perturbation theory in which a single
bond J~ is embedded in a lattice where all the other
bonds are J2. This is shown in detail in Appendix B.
The result is not surprising because if a single bond is
allowed to migrate through the lattice, as in the an-
nealed version of the problem, nothing is changed as
all possible positions are equivalent and so the an-
nealling has no effect and introduces no error. From
the initial slopes it is easy to show that the phase
boundary is always belo~ the mean-field result which
would be a straight line between the transition tem-
peratures at p =0 and p = 1. Thus for bond disorder
we have the situation 8 sho~n in Fig. 1 for all values
of J~, J2 & 0 and for all lattices. This has been
shown to be correct at all concentrations by Falk and
Gehring. In Figs. 2 and 3 we show phase diagrams
for various values of the ratio k= J(/Jq. The bowing
down can clearly be seen in these figures. As
h. = J(/J2 increases, the initial slope near p =0 ap-
proaches a limiting value which from Eq. (3.8) is
given by

(3.9)

In fact the initial slope is bounded from both above
and below as the coth function in Eq. (3.8) always
lies outside +1. For the square net this leads to the
inequality

P(Jt, Jk() W P(Ja) P(Jk(), (3.6)

where P(J&) is given by Eq. (3.2). Thorpe and Bee-
man' showed that these correlations were extremely
small when there was no competition between ex-
change interactions of opposite signs. The expression
for the phase boundary [Thorpe and Beeman, 5 Eq.
(13)l becomes

-7.747 &
' &1.329.1 ~Tc

Tc ~p

In the dilute bond case (X =0) we have

1 329
Tc ~p

(3.10)

(3.11)

P 1 —p
coth(K, —P,J() —e, coth(K, —P,Jp) —a,

=0,

(3.7)
—6.597 & —

' &0.8581 ~Tc

Tc ~p
(3.10')

The corresponding expressions for the honeycomb
lattice are

where K, and e, are the values at the critical point of
the interaction parameter pJ and the nearest-
neighbor correlation { (r(zr)(for a non-random sys-
tem on the same lattice. These parameters are

and for the dilute case

(3.11')
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18—

16—

As &=J~lJ2 0, the alloy becomes a dilute bond
ferromagnet and the transition temperature goes to
zero at the percolation concentration p, which is

2

for the square net.
For the square net with p = 2, Eq. (3.7) can be

I

rewritten

sinh(2P, J~) sinh(2P, J2) =1, (3.12)

12—

10—

which is the expression originally derived by Onsager6
for the square net where all the vertical bonds are J~
and all the horizontal bonds are J2. It has recently
been shown by Fisch' that Eq. (3.12) also holds when
the bonds are arranged randomly. It therefore ap-
pears that our expression (3.7) for the phase boun-.
dary of the annealed alloy coincides with the
quenched alloy small p, for small p'=1 —p and for

1

p = —, , and so can be regarded as an interpolation for-

mula between these known results for the quenched
alloy.

D. Bethe lattice

/
2—

We note that the phase boundary for the Ising fer-
romagnet on the Bethe lattice (no closed loops) is

given by the very simple expression9

(z —1) ' =p tanhP, J~ + (1 —p) tanhP, J2, (3.13)

0.2 0.6 1.0
0 I

0 0.4 0.8

1
FIG, 2. Phase diagram for the annealed spin-

2
Ising

bond alloy Ref. (5) on a square lattice with exchange in-

teractions J& and JI = XJ2, for various values of A. & 1. The
dashed lines are for guidance of the eye and p is the concen-
tration of bonds with strength Jj.

which is qualitatively the same as shown in Figs. 2

and 3 as would be expected. Note that the phase
boundaries for the spin- —, Ising model on the Bethe
lattice are identical for both quenched and annealed
disorder. This is because the high-temperature
behavior is identical due to the spin correlation func-
tion between any two points behaving as in a linear

2.0

1.5

1.0

0.5

0
0

t

0.3
I

0.4 0.5 0.6 0.V o.e
I

1.0

FIG. 3. Phase diagram for the annealed spin-
2

Ising bond alloy Ref. (5) on a square net with exchange interactions J& and

J& = A.J2, for various values of A. where 0» A. ( 1. The percolation limit (X=0, T, =0) is shown and p'=1 —p is the concentra-

tion of bonds with strength J2.
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p)M, ]

Sa (Sa + 1)
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(4.3)

P ~+I

Solving this pair of e ivesequations gives

2 z
B c =

3
( SA (SA + 1 JAB A A +1 JAAp +Sa(Sa+1)JBB(1 P)
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b & 0 it bows upwards and if 6 & 0 it bows down-
wards. It should be noted that 4 is very close to zero
for many transition-metal compounds. ' %'e will dis-
cuss the relevance of these results to real systems at
the end of the paper. Near the p =0 the phase boun-
dary has a negative slope if

Sg(Sg +1)Jgg & [SA(Sg +l)Ss(Ss+1)]' JAB (4.6)
3 vl

J~~ =S~(S~+1)J~~,

Jss = Ss(Ss+ 1)Jaa,

Jga = [Sg(Sg +1)Ss(Ss+1)]' Jga,

(4.7)

the mean-field results become independent of the
spin magnitude and depend only on j&~, j~~, and j~~.
These considerations have been used in choosing
suitable axes in Fig. 4.

1S. Perturbation theory —spin 2

with a similar relation near p =1. These results can
be conveniently presented in graphical form as shown
in Fig. 4. We see that only four kinds of phase di-

agrams are permitted from the nine possible ones
sketched in Fig. 1. The mean-field result is very use-
ful in providing a frame of reference in which to dis-

cuss subsequent results. Note that by absorbing the
spins into the exchange parameters so that

FIG. 6. Single impurity in a square lattice. The impurity

is labelled 0 and its four nearest neighbors I, 2, 3, and 4.

host is characterized by an exchange J arid the impur-
ity has z nearest neighbors to which it is connected
with an exchange XJ. This corresponds to putting

JB~ = J, J&~ = A.J, and J~~ which is irrelevant can be
set equal to zero, for small p in the Hamiltonian
(4.1'). For the honeycomb lattice, the initial slope of
the phase diagram can be expressed entirely in terms
of the nearest-neighbor correlation function (troo. t)
as shown in Appendix C. This does not seem to
have been noted in the literature previously. The ini-

tial slope [Eq. (C7)] is given by

We examine the Hamiltonian (4.1) for spin
2

zwhere S, =
2

~;.
1 [)Tc 2 [1 —2 sech(2' A.)],
Tc I)p 3' (4.g)

H = —X [Ptpt Jgg +P; (1 Pi) Jwa + (1 p—t) PtJs„—
&lj)

+ (1—p;) (1 pt) Jsa) tr; ot . — (4.1')

A single impurity site is introduced into an other-
wise -perfect lattice as shown in Fig. 5 for the honey-
comb lattice and Fig. 6 for the square lattice. The

)l 3

FIG. 5. Single impurity in a honeycomb lattice. The im-

purity is labelled 0 and its three nearest neighbors I, 2, and 3.

where cosh(2E, ) = 2."
The square net is more complicated, but the neces-

sary correlation functions have been studied previous-
ly. " The result for the initial slope [Eq. (D6)] is

derived in Appendix D. The parameter A. takes on
the values J~a/J» or J&s/Jss depending on which
end of the phase boundary we are considering. The
slope can then be examined to see in which of the
three regions I, 2, 3 in Fig. 1 it occurs.

In Figs. 7 and 8 we show the various kinds of
phase diagrams that can occur for the honeycomb
and square lattices respectively as the exchange in-

teractions J~&, J~~, and J~~ are varied. There is a
much greater variety of possible behavior in the site
problem as contrasted with the bond problem. This
is because an extra parameter J~q is involved in the
disorder. Comparing Figs. 7 and 8 we see that
they are quite similar. Two kinds of phase diagram S
and S' can occur that do not exist in mean-field
theory (see Fig. 4). The region of parameter space
where 8 occurs is considerably expanded while the
A and A

' regions are shrunk. Indeed it can be
shown by examining the expressions for the initial
slope (1/Tq)(BT, /Bp) that the phase boundary in

mean field theory for t-he S = T Ising model always lies
1
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kBTc

~AA 2, 0—

where Hpp is the same as Hp given in Eq. (4.10) but
with all the terms involving o-0 omitted. The trace in
Eq. (4.12) goes over all o. except o p, and over Sp.
Doing the trace over So, the terms can be paired to-
gether + S, + (S—1)... + —or 0, depending on wheth-

er 2S is even or odd. We find that

1.0

z"(S) =z'(2aS) +z'(2a(S —1)) +

+ z'(n), 2S even,

&
z'(0), 2S odd,

t

(4.13)

0.5

I

0.2 0.4
I

0.6
I

0.8 1.0

1
FIG. 10. Complete phase boundary for the spin- —site al-

loy on a z =3 Bethe lattice for the special points shown in

Fig. 9. The ratios of Jzz.'Jz~.'J~~ for the points considered
are: A; 18:24:8, 3; 18:16:8,S; 18:12:2,S; 18:21:2,B;
18:6:2, B&, 18:1:2. The dashed lines are for guidance of the

eye only.

1D. Perturbation theory S & 2

This same kind of perturbation theory can be ex-
tended to the case when the impurity spin S is greater
than —, as first noted by Watson' for S =1. Of
course the corresponding perturbation theory at the
other end of the phase boundary, where there is a

spin —, impurity in a spin S & —, host, cannot be

done as the pure system solution is not known. We
are therefore restricted to discussing what happens at
one end of the phase diagram only.

The Harniltonian for the pure spin- —, system is

given by

Hp =
—. J X a;ag, (4.10)

where the summation is over nearest neighbors only
and cr; =+1. A single impurity spin at a site labelled
0 interacts via

1 8T 2 f3(n) —3ft(n)
I)p 43K, f3(a) +ft(a) (4.14)

while for the square lattice

1 ~Tc 1

T, I)p &2K,

n [J2f2(u) —2] +g(a)
X

m[J2f2(n) —1] + (1 —1/m) g(n)

(4.15)

where

sinh [(2S + 1)K,aR ]
(2S+1)sinh[K, aR]

(4.16)

and

g(u) = f4(a) 442 f2(u) +5 . — (4.17)

Putting S = —, in these expressions we recover the

results found previously of course. As we found for
bond disorder, not all values of the initial slope are
possible'. Letting o. 0 and ~ respectively we find
the following inequality on the square net:

where z'(X) is the partition function for a spin-2 im-

purity given in Appendices C and D for the honey-
comb and square lattices. The energy can be calculat-
ed from the partition function and using similar argu-
ments to those used for spin —, we can calculate the

initial slope.
For the honeycomb lattice, we find that expanding

T, about p =0,

H;„,= —2n J XSpa.p,
8

(4.11) —1.565 & ( 2.354 .1 ~Tc

Tc ~p
(4.18)

where 8 goes over the z nearest neighbors of the im-

purity site and we include the factor 2 so that when
the impurity spin S = —, , we recover the solution

given in Sec. IV 8 with n = A..
The partition function for the system with the

single-site impurity may be written

For the special case of the dilute site problem

Tc ~p

Similarly for the honeycomb lattice we have

(4.19)

z" (S) =Tr[e PPexp(2PaJSp X as)], (4.12) -1.754 &
' &1.7541 ~Te

Tc ~p
(4.20)
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and for the dilute site problem on the honeycomb lat-
tice

= —1 754
Tc ~p

(4.21)

r(S) = [4S(S + I)a /3]'~' (4.22)

then the mean-field theory described at the beginning
of this section predicts that r(S) =1 for all spin
values for all lattices. We find from Eq. (4.14) that
r (S) =1, 0.923, 0.912, and 0.905 for S = —,2, —,
and ~ for the honeycomb lattice; and 1, 0.935,
0.926, and 0.919 for the square lattice.

a = 0(dilutej

FIG. 11. Sketch of the allowed regions for the initial
1

slope for the site alloy where the host has spin
2

but the

impurity has an arbitrary spin and an arbitrary exchange
coupling to the host.

Both the expressions (4.14) and (4.15) are even
functions of n. That is it makes no difference wheth-
er the impurity is coupled ferromagnetically or anti-
ferromagnetically and this leads to the upper bound
in the inequalities above. This result is perhaps a lit-

tle surprising. However it is clear that the energy
does not depend on the sign of o. and so T, is also
unaffected by the sign of n. The lower limit in the
inequalities above are always given by the dilute
problem (n =0) which therefore represents an ex-
tremum. This situation is sketched in Fig. 11. This
behavior is very different from the bond alloy dis-
cussed in Sec. III, where antiferromagnetic bonds
depress T, very much more than would happen for
bond dilution as can be seen by the very large low

limits in Eqs. (3.10) and (3.10'). It should be em-
phasized that apart from this comment and the simi-
lar one in Sec. III, all the work in this paper is con-
cerned with the case where all the interactions have
the same sign.

We examine the conditions that lead to a zero initial
slope. If we define

The classical spin limit can be found by letting
S ~, o. 0 so that o.S =Cis finite and

sinh(2CK, R )

2',R
(4.23)

The result in this limit can also be found more direct-
ly as the trace over So in Eq. (4.12) becomes an in-

tegral over the solid angle

(4.24)

U. CONCLUSIONS

We have sho~n that perturbation theory can be
useful both in classifying and in understanding the
kinds of phase diagrams that can occur in systems
where all the interactions have the same sign. We
have found that mean-field behavior generally
overestimates T, in the mixed region for spin —, even

when normalized so as to coincide with the exact
results at p =0 and p =1. We have also shown that
the initial slope of the phase boundary is not very
sensitive to the spin S if properly scaled variables are
used.

We have shown that not all values of the initial
slope are allowed but that they must fall within a
rather broad range. In particular in the site alloy, the
slope for the dilute case represents an extremum as
the system is not sensitive to the difference between
ferromagnetically and antiferromagnetically coupled
impurities. It is therefore not possible for T, to de-
crease faster than it does for vacancies.

There is surprisingly little experimental data pub-
lished on the critical temperatures of A-8 alloys and
that which there is involves systems with more com-
plicated interactions than just Ising. Indeed many of
the transition-metal compounds studied in Ref. 1 in-

volve Heisenberg interactions. However it is prob-
able thai most of our qualitative conclusions about
the nature of the phase boundary do not depend on
the precise nature of the interactions. Most of the
insulating magnetic alloys studied are antiferromag-
netic rather than ferromagnet. However as long as
there is no competition brought about by odd mem-
bered rings, such as the triangles in the fcc lattice,
our general conclusions should apply. For example
in Rb2Mn~Ni~ pF4 it is found' that T, =38.4, 63.7,

that can easily be done.
For S ) —, , II(ln T,)/I)p can be either greater than

or less than the mean-field result depending on the
value of o.. It is rather difficult to discuss the charac-
ter of the complete phase boundary in this case as the
result for p =1, when all the sites have spin S, is not
known exactly. Also a different temperature rescal-
ing would be needed for p =0 and p =1 to make the
mean-field results coincide with the exact results.
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and 91 K for p =0, 0.5, and 1. It is known that
Jqs=(JqqJss)' in this system' so that mean-field
theory predicts a linear phase boundary. In fact it

bows downward because 63.7 ( —, (38.4+91). This is

consistent with the calculations described in Sec. IV,
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APPENDIX A

In order to derive an expression for the change in

the transition temperature from the energy, a

number of very reasonable assumptions have to be
made. %'e will give the argument for a temperature
T just above T, but it can be made equally well for T

just below T, . If we write the specific heat C as

(Al)

ln(T —T,) +1 BC 1 9A 9o. n ~Tc

CBp A Bp Bp
' (T —T,) Bp

(A2)

It is clear that if A (p), T, (p), and u(p) are reason-
ably behaved for small p, then the last term in Eq.
(A2) is dominant. The energy E can be written

where e, and IC, =P,J are the values at the critical
point. This expression is exact given the reasonable
assumptions made above. It is probable that these
arguments can be made rigorous; great care must be
taken however with the p 0 and T T, limits.
Similar arguments have been used by Osawa and
Sawada. " %hen the energy cannot be written entire-
ly in terms of e as in Eq. (AS), then the temperature
can be considered T(e) and an expression obtained
for B(lnT, )/Bp as is shown in Appendix D for the
square net. Identical results for B(ln T,)/Bp can be
obtained by considering the functional form of the
magnetization rather than the specific heat as in Eq.
(Al). This is slightly more general as one only has
to assume that the magnetization goes to zero at the
critical point rather than the specific heat diverging.
The result Eq. (A4) therefore applies to Ising Bethe
lattices ~here the specific heat is finite at the critical
point when approached. from the high-temperature
side. It would also apply to the Heisenberg model in
three dimensions, although not enough is known
about this model for it to be useful.

E =const+ (T —T,) +'A
—o, +1 (A3) APPENDIX 8

and therefore

=—A (T T,)—~Tc

Bp Bp

~Tc= —C
Bp

This expression allows BT,/Bp to be found. This
equation must be interpreted as involving only the
most divergent parts, i.e., C and BE/Bp are divergent
while BT,/Bp is finite. The divergent parts cancel out
to give the desired result for BT,/Bp for any particu-
lar system. It must be emphasized that Eq. (A4)
only applies if the specific heat of the pure system is

infinite at the critical point. It is valid if the specific
heat diverges logarithmically as in the two-
dimensional- Ising model.

For small p, the energy Scan often be written

For the case of bond impurities in an Ising lattice
[see Eqs. (3.1') and (3.2)], it is possible to find the
behavior of the phase boundary for small p or small

q =1 —p using thermodynamic perturbation theory. "
The partition function z' for a system with a single
defect bond J' = A J, embedded in an otherwise per-
fect system with exchanges J, may be written

where zo is the partition function for the pure system
without a defect (i.e., A J replaced by J) and the ther-
mal average is to be taken in the pure system. The
spins a~, 0-2 are at the ends of the defect bond. With
a little manipulation Eq. (Bl) may be rewritten

z'(h) =zo[coshP(X —1)J + (a~a.2)osinhi3(X —I)J] .

(B2)

E = ED —Wp ln(a + b e),8
8

(AS) The energy can be obtained from the partition func-
tion in the usual way (E = —Blnz'/BP) to give

where Eo is the energy of the pure system, N is the
number of bonds, a, b are functions of T, and e is
the nearest-neighbor correlation function (cr~oz).

E = ED
—2 In[coshP(h. —I)J + e sinhP(X —I)J],8

BP
(B3)
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1 ~Tc

Tc ~p
[e, +cothK, (X —1)] ' .

K,

This expression is the same as derived from the an-
nealed bond model given in Eq. (3.8).

where e = (o.to.3)o and Ep is the energy of the Pure
system. If there are a small number Wp defect bonds
that are so widely separated that they are essentially
noninteracting, then a factor Np can be inserted be-
fore the second term in Eq. (B3), to give an expres-
sion of the general form Eq. (A5). The initial slope
of the phase boundary is therefore given by Eq. (A7)
and 1s

respectively, we find that

(o pat)p= A [1 +2(a')a'3)p] +8 (a(a3)p

and

(C6)

(apala2a3) 3~ (alo2)p+8

Thus the expression (C3) has the form a + be and
we can use the result of Appendix A (an extra factor

3
must be inserted because we are dealing with

site impurities rather than bond impurities). At the
critical point ~, =4&3/9 and exp(2K, ) =2+ J3
and so we have, expanding about T,. (0),

APPENDIX C

/TED

2 [I —2 sech(2K, h)] .
T, I)p BASIC,

(C7)

where zo is the partition function for the pure system
and

t = tanh[pJ(Z —1)l .

The correlation function that appears in Eq. (Cl)
may be multiplied out to give

1 + 3 t ( po to) o + 3 t (a ] a 3)p + t (0 p 0 t a'3 (T3)p,

(c2)

where we have used the equivalence of the three
sites to simplify the expression. The expressions
in Eq. (C3) can all be expressed in terms of
e = (apa ~)o. If 0'is any operator that does not in-

volve a, then by doing a partial trace over o-0 it is
easy to show that

(tr p 0)p
=2 (( tr t + (73 + (73) 0)p +8 (tr &

0 3 0 30)p,

where

The honeycomb lattice is actually easier to treat in

perturbation theory than the square lattice that has
been more extensively discussed in the literature. "
The impurity site is labelled zero as shown in Fig. 5

and its three neighbors are labelled l, 2, and 3. The
three bonds from the impurity site have exchanges
XJ associated with them while all the other bonds in
the lattice are J. The partition function z' for this si-
tuation may be written

z'(Z) =zocosh3[PJ()I, —1)]

x ((I + to po t) (1 + to pa 3) (1 + to p(73)) p,

(cl)

APPENDIX D

A single spin impurity in an otherwise perfect
square net has been treated extensively in the litera-
ture" and we will only sketch the result. The impuri-
ty is labelled 0 as shown in Fig. 6 and its four neigh-
bors labelled I, 2, 3, and 4. The four bonds from the
impurity site have exchanges A J associated with them
while all the other bonds in the lattice are J. Using
similar notation to that in Appendix C, the partition
function z' may be written

z'(h ) = z cosh~ [pI ()L —1)] ( g (1 +t;))o . (D I)

Expanding the brackets leads to both two- and four-
spin correlation functions. The four-spin correlation
functions can be expressed in terms of two-spin
correlation functions using arguments similar to those
in Appendix C for the honeycomb lattice

where 0 is any operator not involving a-0 and

A = —, [tanh4E+2tanh2K],

8 = —, [tanh4E —2 tanh2It. '] .

(D3)

Putting 9 = o.
~ and then 0 = a.~o.20.3 respectively, we

find that

(~o0) o
= ~ ((~~ + ~3 +a3+ ~4) 0)o

+8 [ (o t trztr30) o+ (t73t73(740) p

+ (a3(74a}0)p+ (a4o.&(r&0)o], (D2)

A = —,[tanh3K + tanhIC],

8 =
4 [tanh3It —3 tanhE],

(cs)

and & =pJ. Putting 0 = o-t and then 0 = oJ(TZ(73, .

(aoa))o=A [1+2(tr)cr2)p+ (trto3)o]

+8[2 (tr~o3) p+ (a.to.3)p

+ (a& a 3 a 3474) o] (D4)
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and

(o0lrlo2o3)0 ~ [2(lrlo2)0+ (lrllr3)0+ (lrllr2lr3o4)0]

+B[1 +2 ( lr la 2) 0+ (crl (r3) 0] . (D5)

These expressions are rather more complicated than
those for the honeycomb lattice and the result for z'

cannot be expressed as a function only of
0 = (0'1 rr2)0 H.owever we can use Eq. (A4) if we
note that near the critical point, '

of the equation and we have the result

1

1 —1/4r + [J2 cosh(2K, X) —2] '

(D6)

where we have expanded about T, (0). For the case
of a vacancy (h. =0) we find that

4

nkgT, 2 Tc

The divergent logarithmic terms cancel on both sides

1 ~rc
Tc ~P

= —1.565 (D7)

a result previously found by placing the vacancies on
a superlattice of variable size, ' and taking the dilute
limit.
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