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Electrical and thermal conductivity and thermoelectric po~er were theoretically calculated and

measured for (La,Gd)A12 —a dilute magnetic alloy with ferromagnetic coupling of the Gd spins

to the host electrons —between 0.3 and 10 K, and up to 8 T. It turned out that the transport

properties at finite field deviate markedly from the zero-field behavior, e.g. , in the electrical

resistivity (where a steplike transition is found between the high-temperature logarithmic in-

crease and a low-temperature plateau). A theoretical result for the Hall coefficient is also given.

I. INTRODUCTION

The anomalous temperature dependence of various
thermodynamic and transport properties of dilute
magnetic alloys has been recognized as a universal
phenomenon and has been reviewed both from the
experimental and theoretical point of view. ' In the
majority of cases, e.g. , in dilute alloys containing
transition metals and perhaps rare earths like Ce and

Yb, there is a logarithmic decrease of the impurity

part of the electrical resistivity as a function of in-

creasing temperature, for which the name "Kondo ef-
fect" was created after the first successful model cal-
culation by Kondo in 1964.4 He used an s-d ex-
change model for an impurity spin locally coupled to
the spin density of the conduction electrons.

Besides a perturbation calculation of the logarith-
mic temperature decrease of the resistivity for an an-

tiferromagnetic exchange integral (J,„'&0), Kondo's
paper also contained a prediction of a logarithmic
temperature increase of the resistivity for a ferromag-
netic exchange integral (J,„&0). Since this is the re-
verse of the Kondo effect, we use the term "reverse
Kondo effect" in the case of J,„)0. An antifer-
romagnetic exchange was shown' to originate in a sig-
nificant contribution of hybridization between 3d and

4f impurity states with delocalized conduction-band
states. However, in the case of well localized 4f
states of certain rare earths, e.g. , Gd, the hybridiza-
tion effects are dominated by the intra-atomic
Heisenberg exchange, i.e., result in an effective posi-
tive exchange integral. So, the two cases differ com-

pletely in their physical basis: in the antiferromagnet-
ic case the perturbation expansions break down, indi-

cating the crossover from a high-temperature weak-

coupling regime (with an asymptotically free spin) to
a low-temperature strong-coupling one (with a con-
fined impurity spin). The crossover leads to a new

characteristic scale for physical phenomena: the Kon-
do temperature. Parallel to the growing theoretical
understanding, the experiments were systematically
extended from transition-metal ions as impurities to
rare-earth alloys like (La,ce)AI2

The case of ferromagnetic coupling (J,„&0) was

considered to be less exciting because of the lack of a

new temperature scale. The theoretically predicted
logarithmic increase of the resistivity was first ob-
served by Sugawara' in La and Y based alloys with
"normal" rare-earth impurities like Gd. Ten years
later, considerably improved measurements could be
performed on LuGd, s and on (La,Gd)AI2. 9 It turned
out that the magnetic field dependence of the resis-
tivity leads to unexpected effects. Strong magnetic
field effects (e.g. , large magnetoresistivity,
anomalous thermopower) have also been observed
for Kondo (i.e., J,„&0) materials. '0 The latter could
be qualitatively explained by a competition between
the Kondo effect and the interference of normal and

spin scattering at the magnetic impurity. " To put our
speculation on a firmer basis, that such interference
effects were responsible, e.g. , for the observed step
structure of the magnetoresistivity for J,„&0,9 it was

decided to reexamine both experiment and theory for
the ferromagnetic case. The experiments were per-

20 2129



2130 W. LIEKE, F. STEGLICH, K. RANDER, AND H. KEITER 20

formed with dilute (La,Gd) Alz alloys which are high-

ly suited for this investigation, since a "reverse Kon-
do effect" could be well established by measurements
of the zero-field resistivity. Also, for this system
thermopower results obtained at moderate magnetic
fields' are available, which our data should be com-
pared with. The results of the theoretical efforts are
presented in Sec. II of this paper. In the Appendix
the solution of Suhl's dispersion equations' ' is gen-
eralized to arbitrary spin S and J,„&0.

In Sec. II this solution is evaluated numerically for
S = ~, the Gd spin in (La,Gd)AIq, and the electrical

and thermal resistivity, thermopower, and Hall coeffi-
cient are calculated within the collision time approxi-
mation.

In Sec. III experimental details are given, and in
Sec. IV experimental results are displayed. The dis-
cussion and the comparison with the theoretical
results follows in Sec. V. The paper is summarized
in Sec. VI.

II. THEORY

In the collision time approximation, the electrical
conductivity o-, Hall coefficient R, thermal conduc-
tivity K, and thermopower S are given by averages

over the two electronic spin directions and over the
energy

0 = ne'
d QJ
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&f(~) g ( )

9QJ
i gr~+

2

(r (~))
2m

R = [2/(en)) {r'((»))/(r ((v))',
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S = (I/eT) (o)r (co))/{r (cu)) (4)

Here, f(ru) denotes the Fermi distribution func-
tion, and n, e, m stand for electronic density, charge,
and mass, respectively. Denoting by coo half of the
Zeeman energy of the electrons, the collision times
are related to the scattering matrix, which describes
the transition of an electron with quantum numbers
k a(o. = +—, = [, [) and an impurity spin in the state

~(—S ~ K ~S) into the final state (k' o., K) via

}
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Here, N;, denotes the number of impurities, which, when divided by N, the number of atomic cells, yields the
concentration x; of the impurities. For equal g factors, which will be assumed in the following, ~„=—2K'(}.
Furthermore, in the scattering matrix T-„„-„„(z)only s wave scattering is taken into account, thus it is in-

dependent of k and k'. The Suhl equations, from which the scattering matrix follows, are solved approximately
in the Appendix, assuming ferromagnetic coupling between impurity and electrons,

The solution for o. =+—, is given by

T't„ t„(co) = '" v[1 —F'(cu) v} '+ 1 [I+ [X'(cu) +i gyp(m) K}C'(co) }[I —vF'(co) j '
2mi y p(co)

(6)

[compare with Eqs. (A4), (A10), (A16), and (A21)].
Here X'(co) is given in Eq. (A21), while C'(co) is the
retarded part of

sign(Imz)
t d InE(e)

27Pl Z

with

SC(e) = IX'(e) I'+ [mp(e) yi'S{S+I) .

phase 5 via

exp(2i5) = (I —vF')/(I —vF')

Inserting Eq. (9) into Eq. (6), and Eq. (6) into Eq.
(5) yields after a straightforward calculation

r)'(~, ~p) = ' Re(1+[X"(~+~p)
7rN &»

+ i rrypSBs(2PS cop)l

& C'(cu + rap) exp(2i 8) }

(9)

Instead of the normal potential Vor v = V/J, „one
may introduce the corresponding normal scattering (10)
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where Bs(2PScup) denotes the Brillouin function

S
Kexp(+2PKcup)

SBs(2PScup) = "

$ exp(2Pcc'cup}

in which y &( D holds. One lets D ~, wherever
this is possible. One also may express C'(cu) and
X'(cu) with the aid of the corresponding formulas for
zero magnetic field, for, up to corrections of the or-
der of cup/D, C'(cu) and X"(cu) depend on the magnet-
ic field only via (cu+cup). In the weak-coupling limit,
one has

=
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For S = —,Eq. (10) reduces to Eq. (31) in Ref. 11.
It may also be checked, that the collision time aver-
ages occurring in Eqs. (I)—(4) fulfill the relation

(~"..(~, ~o;8)5. ,)

= (—I)"(cu"r (cu, cup; —8) 8 I), (12)

which is convenient for the numerical analysis.
The quantities in Eq. (10) still depend on the band

structure. So, in a next step, one gets rid of this
dependence by performing the "weak-coupling limit",

h. = y '+In(1 134PD.) —= ln
~k

T
(15)
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The reciprocal average of the collision times can be
written

C"(cu) —( y) '[Kp(cu+ cup)] ' 'exp[ —i@(cu+ cup}]

(16)

(7p(cu)) ' = ' (I/Re [I —[Kp(cu+2cup)] ' 'exp[ —i@(cu+2cup) +i 4cr5) [Xp (cu+2cup) +i mSBs(2SPcuo)] j)~W(0)

(19)

In contrast to the case of antiferromagnetic cou-
pling (in which h. may be negative, zero, or positive),
in the ferromagnetic case A. is always a large positive
quantity. So, from Eq. (15), the ferromagnetic Tc, is
greater than the bandwidth.

It is generally believed —and the belief is supported
by the results for zero magnetic field —that this large
A. does not lead to any "anomalous effects" in macro-
scopic quantities. To our surprise this belief turns
out to be false at finite magnetic field. There is a

variety of intuitively unexpected transport properties.
Concentrating first on the discussion of the electri-

cal resistivity [which is proportional to the reciprocal
average of collision times, given in Eq. (19)), we may
reproduce the zero-field result by setting coo =0. For
a qualitative discussion, one may also replace the
averaging over the energy (which requires energies cu

of the order of ks T around the Fermi level) of r (cu)

by the value at cu=0 (Fermi level). The resulting
formula for the resistivity,

p =, '
(I —i cos(28)

ne'rr N (0)

x [)c'+ 'S(S+ I)] 'i'] (20)

shows a roughly logarithmically increasing function of
the temperature [compare Eq. (2.60) in Ref. 2(e)].

If one performs the energy average in Eq. (19).
correctly by numerical analysis, one obtains a slightly
higher resistivity (between 2 and 4% for the range of
parameters considered below). Turning on the field
(cup & 0), the behavior of p still follows Eq. (20) as
long as Pcup (( I (high-temperature limit). The
low-temperature limit Pcup » I is more interesting.
One first observes that X'(2cup) becomes independent
of the temperature, if Pcuo » I, because of the
asymptotics of the digamma function

chic[ —,
' ——,

' (2iP~o)1-In(P~ /pro) —,
'

(i 7 ), (21)—

which cancels the logarithmic temperature depen-
dence of A. in Eq. (15). Furthermore
SBs(2SPcup) S. Consequently, in Eq. (19) the ab-
solute value of the last square bracket goes to
[Kp(2cup)]'i'. So, if the phase of the second term
inside the curly bracket in Eq. (19) is zero, the
resulting resistivity would also be zero. Entering the
discussion of the phase. then, we first observe, that
in the "physical" range of parameters PD » 1,
D/cup » I, we always have

ReX"(2cuo} & ImX'(2cuo} + rrSBs(2/3cuo), (22}

but the difference between the two sides is less than
an order of magnitude. Therefore the last square
bracket factor in Eq. (19) yields a contribution to the
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total phase, which is independent of the temperature,
if Peso » 1. Compared to this contribution, the
phase $(2coo) in Eq. (19) is small in the interesting
range of parameters. This explains the saturation
behavior of the resistivity, if one lowers the tempera-
ture. The low-temperature value, of course, depends
on the magnetic field. For fixed field, it is always
lower than the corresponding high-temperature value,
reflectjng freezing-out of the spin-flip processes. In
the intermediate temperature range (Peso -—1) there
is a smooth interpolation between the high- and low-
temperature regimes. This step structure is seen in
the experiments, which will be discussed in Secs.
III—VI. From a theoretical point of view, the details
of the steps can be strongly influenced by the size of
the normal scattering phase. Typical results can be
seen in Fig. 1(a). For low fields, the size of the steps
is small and increases with growing magnetic field.
The magnetic field is given in units of B~, where
gIJI,~B~ = k~T~ is also greater than the bandwidth.
There is a complete quenching of the resistivity, if

E
LJ

C

O.

0.1

the field is such that the total phase on the right-
hand side of Eq. (19) is zero for one spin direction
(the field-dependent. part of the phase is outbalanced
by 28). So the total scattering for one spin direction
is zero. This result, which is not easily understood
from an intuitive point of view, is already present in
second- and third-order perturbation theory, as calcu-
lated in Ref. 15, Eq. (2) (there one has rttI& =0 for
p&oo » 1 and V =(+lS

~
J~). While this "catastrophe"

is overcome in the antiferromagnetic case by higher-
order terms, it apparently survives in the present
(ferromagnetic) case in the frame of the dispersion
theory.

The curve of the "quenching catastrophe" is shown
in Fig. 2. Entering region 2 of that figure for
28=28', one sees the low-temperature plateaus of
Fig. 1(a) rising. So, if one plots the resistivity at
fixed temperature and 5, there is negative magne-
toresistivity with a negative slope at low fields, and a
positive at high fields. At low temperatures (where
"low" depends on g, e.g. , T (10 'OT» in Fig. 1) the
resistivity may reach zero, while at high temperatures
the minimal resistivity is finite. There is another
surprising behavior for low temperatures: the resis-
tivity at finite field may be larger than the zero-field
resistivity. It is presently unclear, whether this result
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FIG. 1. Theoretical results for (a) the electrical resistivity
(in p, 0 cm) and (b) the thermoelectric power in (p V K ~)

as a function of T/T& on logarithmic scale for various mag-
netic fields in units of B&(gp&B& = k& T&). Normal scatter-

ing phase 25 =28 ' and the spin S =
&

have been chosen.

In (a), the upper envelope of the curve represents the
zero-field result which is approached by all curves, if
g p,B/kz T « 1. In the opposite case there is a plateau at
finite field. For 10 & B/B~ & 10 this plateau ap-
proaches zero at the "quenching field" B«,. In (b), if B is
greater than the quenching field, the thermopower has a po-
sitive and a negative branch.
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FIG. 2. "Quenching field" on logarithmic scale in units of
B& as a function of the normal scattering phase 25 for

7S = &. The error bar —shown for the quenching field ob-

tained from Fig. 1 —stands for the uncertainty in estimating
B„„from the computer results.
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is inherent to the s-d model, or whether it is an ar-
tifact of the various approximations, e.g. , using only
particle-hole intermediate states in the dispersion
equations, employing special asymptotic conditions
for solving the latter, s-wave scattering for the nor-
mal part of the potential, and the relaxation-time ap-
proximation for the transport coefficients. One other
feature of the theoretical resistivity should be em-
phasized: the width of the step structure (when plot-
ted on a logarithmic T axis) is independent of the
magnetic field, and the temperature variation of p
normalized by the height of the step is universal.
This may be seen from the numerical results, e.g. , in

Fig. 1(a). We have not found a simple theoretical ar-

gument for this fact.
After this lengthy discussion of the electrical resis-

tivity, we turn to the thermal conductivity. The rela-
tively slow changes of the collision times an the tem-
perature scale suggest that the Wiedemann-Franz law

should hold. This turned out to be true to within
3%.

Similar dramatic effects as in the resistivity show

up in the thermopower. The characteristic features
can be seen from Fig. 1(b). For high temperatures
Po)p « 1, S(B,T) is independent of the field. There
is a maximum for intermediate temperatures Pa)p —1

("giant thermopower") and S approaches zero for low

temperatures Peep-» 1 more rapidly than the zero-
field curve. Above the "quenching-field" there is a
sudden change of sign of S, which is readily under-
stood from the fact that the collision time for one
spin direction becomes zero at the Fermi level. The
positive and negative maxima of S decrease above
the quenching field.

Finally, the behavior of the Hall coefficient can be
seen from Fig. 3. It approaches the low-field value
(en) ', whenever Prop « 1. For Prop » 1 it reaches
a region of saturation above the low-field value,

(ene R

2.5

I

10 10
ta

I

10 10
'

(T/ TK)

FIG. 3. Theoretical result for the Hall coefficient [nor-
malized by R =(ne) ] for various B/B~ and for 25=28',

7S =
2

as a function of T/T~. Note the double-peak struc-

ture for magnetic fields slightly higher than the quenching
field.

depending on the size of the field. In the intermedi-
ate region, Peep =1, there is a step structure. Start-
ing from low fields, a maximum on top of this struc-
ture develops at the inset of the high-field saturation
region. The maximum is split at fields just above the
"quenching field" (B/B» 10 9 in Fig. 3). For
higher fields this structure gradually disappears. We
omit the discussion of the details, which can be
traced to the averages of powers of the collision
times, as can be seen from Eq. (2). The discussion
follows the same line as that for the electrical resis-
tivity,

III. EXPERIMENTAL DETAILS

A. Samples

For the present investigation we have used one po-
lycrystalline (LapppGdpp2) A12 sample, prepared in an
induction furnace, and a (Lap9956dppp5)Al2 single cry-
stal which was grown by the Czochralski method.
The polycrystalline sample was of rectangular shape,
40 x 2 x 2 mm', and the single crystal (oriented with

its [100j axis parallel to the direction of the external
magnetic field) was of cylindrical shape with a diame-
ter of 2 mm and a length of 50 mm. Both samples
were annealed for two days at 1000'C in a high vacu-
um.

B. Set-up and procedure

A conventionil He' cryostat was used which pro-
vided a lowest temperature of about 0.3 K. With the
aid of a superconducting solenoid, magnetic fields up
to 8 T could be applied to the sample. We have built
a device which allowed for the simultaneous determi-
nation of three transport properties, i.e., electrical
and thermal conductivity as well as thermoelectric
power. A similar device has been used in previous
work. ' There it was, however, not suited to meas-
ure the thermopower at magnetic fields larger than 1

T. This drawback originated in a large inductive
noise which was produced by mechanical vibrations
of the voltage leads.

It is shown in Fig. 4 how this problem was solved
in the present investigation: the sample, which was

thermally and electrically coupled to the He bath at
one end, was supported with a Cu clamp at the other
end and two Cu vises in between; The clamp carried
the sample heater (bifilar manganin wire, 185 0) and
a manganin wire by which an electrical current could
be fed through the sample to the wall of the He' pot.
Each of the vises carried a pair of carbon thermome-
ters (Speer 470 0, 4 watt, 0.3—2 K; Allen Bradley,

180 0, —watt, 1.4—9 K) and clamped a supercon-

ducting NbTi voltage lead to the sample; the voltage
lead from the upper vises being led parallel and in



2134 W. LIEKE, F. STEGLICH, K. RANDER, AND H. KEITER 20

short distance to the sample down to the lower vises.
Here, it was fixed under tension. In this way, the in-

duction loop perpendicular to the field was kept small
and insensitive against mechanical vibrations. No in-
ductive noise was detectable even at the highest B
field of 5 T used in the thermopower measurement.

All transport properties were measured in the

steady state, either in an isothermal mode (electrical
resistivity) or without feeding the sample with an
electrical current (thermal conductivity and thermo-
power). The electrical resistivity p was measured us-

ing the four terminal technique. Details of this pro-
cedure and an estimation of errors are found in Ref.
9. The thermal conductivity E was determined from
the constant heater power 0, the temperature differ-
ence 4T between the two vises, and the sample
geometry. 6 T was obtained from the resistance
differences between corresponding carbon thermome-
ters, as measured in an ac %heatstone bridge. To get
the thermopower S, the thermal EMF AUwas. meas-
ured by a nanovoltmeter along with hT. The main er-
ror (2%) in the determination of E and S originated
in the calibration of the carbon thermometers. Tem-
perature drifts of the cold bath produced an addition-
al error for AT of about 3'/0. This error only affected
K, but did not show up in S, because of b, U being "in
phase" with 5 T to a good approximation. Absolute
values of S and E are uncertain to a few % because
of the uncertainty of the shape factor. These errors,
of course, cancel if one determines the Lorenz ratio,
L =EpT '.

The carbon thermometers were calibrated against
two precalibrated Ge resistors, which had a thermal
contact to the cold bath comparable to the sample
(see Fig. 4). Since no calibration of the Ge resistors
at high magnetic field was available, constancy of
temperature during an experiment at high field was
checked before switching on and after switching off
the field. As is discussed elsewhere, no field correc-
tion is necessary to the calibration curve of the Speer
resistors, awhile a formula proposed by Clement and
Quinnel'~ was used to correct for the magnetoresis-
tance of the Allen-Bradley resistors.

IV. EXPERIMENTAL RESULTS

A. Electrical resistivity

FIG. 4. Experimental set-up, consisting of sample holder,
copper vises with carbon resistors and voltage leads, heater,
and Ge resistors as primary thermometers. Distance
between vises is 20 mm.

In Figs. 5 and 6 the resistivity of two
(La~ „Gd„)Alq alloys with x =0.5 at. % and x = 2
at. '/0 is plotted as a function of temperature for dif-
ferent values of the external magnetic field. At zero
field, the more diluted sample becomes supercon-
ducting below T, =0.95 K, but it can be forced back

-into the normal state by applying a field of 8 =0.08 T.
The 8 = 0 curve for (Lao 98Gdo p2) A12 shows a slight
change of slope below 1.5 K which was previously ex-
plained with the onset of Gd-Gd interactions.
Above this temperature, p increases almost loga-
rithmically with T for both samples which is typical of
a "reverse Kondo effect". Application of a magnetic
field 8 (4 T at 2 ( T ( 8 K reduces the resistivity
("negative magnetoresistivity") (see Figs. 5 and 6).
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FIG. 7. Magnetoresistivity b, p(B, T) of (La,Gd)A12 at
T =20 K.

FIG, 5, Resistivity of (LaQ995Gdpppg)Al2 as a function of
temperature (on logarithmic scale) for varying magnetic fields.

At higher temperature (above 10 K) there is always

positive magnetoresistivity. At sufficiently low tem-
peratures, there may be a change fr'om negative to
positive magnetoresistivity with increasing field. In
particular, for the 2 at. % sample, p at 8 =8 T
exceeds the zero-field value, if the temperature is
lowered down to T (0.5 K.

The positive magnetoresistivity at higher tempera-
tures is shown in Fig. 7, where b p =p(8) —p(0) vs
8 obtained at 20 K is plotted for the two samples. At

this high temperature the positive contribution of the
matrix predominates that of the Gd impurities. A

distinct decrease of slope of hp(8) for the 2 at. %
sample above 3 T, however, demonstrates the in-

creasing importance of the magnetized Gd ions at
large magnetic fields.

8. Thermal conductivity

In Fig. 8, the thermal conductivity K of
(Lap p956dppp5) Al2 measured at 8 = 0 and 8 -5 T, is

plotted versus T. In this plot, no dramatic tempera-
ture variation of K is found. At 8 =0, K is propor-
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FIG. 6. Resistivity of (Lap 98Gdp p2)A12 as a function of
temperature (on logarithmic scale) for varying magnetic fields.

0.02

0
0 1 2 3 0 5 6 7 8 T(K)

FIG. 8. Thermal conductivity of (Lap Q98Gdp Q2) Al2 at

B =0 aqd B =5 T as a function of temperature on linear

scale. Solid (dashed) line: thermal conductivity as calculat-

ed from the Wiedemann-Franz law using the electrical resis-

tivity measured simultaneously with K at B =0 (B 5 T).
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tional to T within the 5'/0 error margin (see Sec. III).
At 8 = 5 T, K is found to be somewhat higher, and
to deviate from a straight line.

C. Thermoelectric power

In Figs. 9 and 10 we present the thermopower as a
function of temperature at various magnetic fields for
both samples. Compared to the therrnopower of the
pure LaA12 matrix in the normal state, which con-
tinuously decreases upon lowering T, that of the two
alloys is considerably larger and appears to level off
at S =0.6 p,V/K below 2 K. It also appears unaffect-
ed by application of a small (overcritical) 8 field
necessary to suppress superconductivity. Further in-
crease of 8 results in S(T) maxima which become
higher and shift to higher temperature. For instance,
the thermopower peak found for (La098Gdp02)A12 at 5
T assumes 2.3 pV/K at 5 K; also remarkable is the
rather narrow shape of this peak.
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FIG. 10. Thermoelectric power S of (Lap 98Gd002)A12 as a

function of temperature for varying magnetic fields. Dashed
line represents S of normal state LaAl2.

V. ANALYSIS AND DISCUSSION

A. Electrical and thermal
resistivity

From the measured resistivities (Figs. 5 and 6) one
obtains the magnetoresistivity

Ap(8, T) = p(8, T) —p(O, T)

It may be decomposed as follows:

0.5— Sp(8, T) =ap„(8)+(x/3)ap, (8, T) . (24)

I ~ I s I I a I I a I I a aI

T (K)

FIG. .9. Thermoelectric po~er & of ~Lap. 995Gd0.005~AI2 as
a function of temperature for varying magnetic fields.
Dashed line represents 5 of normal state LaAl2 (after Ref. 6).

Here the matrix contribution hp~(8) is always posi-
tive. In Eq. (24), Ap;(8, T) refers to one impurity
atom, and x denotes the concentration of Gd atoms
with respect to La atoms in LaA12. The field depen-
dence of hp~(8) complicates the separation of the
impurity part. As shown in Ref. 9, hp~(8) strongly
depends on the electronic mean free path and thus
cannot be determined by an independent measure-
rnent on a LaAL2 reference sample. Without such an
additional experimental information, the universal
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behavior of the theoretical results [Fig. 1(a)] has to
be included. As was mentioned in Sec. II, one first
observes from Fig. 1(a) that the width of the step
structure is independent of 8, when plotted on a log-
arithmic T axis; in addition, the temperature variation
of p, normahzed by the height h (5,8) of the step, is
universal. As far as the experimental results are con-
cerned, there are two different types of curves in

Figs. 5 and 6:
(i) At small Bfields, no saturation of p(B, T) is

observed down to 0.3 K. Then, from the universal
shape of theoretical curves in Fig. 1(a) it follows that
at 20 K we are already in the region where
pcuo (( 1, and thus the impurity part in Eq. (24) is

negligible compared to the matrix part within the
scatter of the data. Subtracting this measured

hp~(8) (Fig. 7) from the p(B, T) curves yields

p) (8, T) = p(8, T) —6p~(8)

0.36'
09a
1.0b

1.8'
2.0b

3.6'
4.0b

8,0"

&0.3
&0.3
&0.3
&0.3
&0.3
=0.6
=0,65
=1.4

=1
p0.98
=-0.84
=0.82
=0.55

'x =0.005;
bx =0.02

TABLE I, Set of parameters, which is needed for the
separation of the magnetoresistivities of the matrix and the
Gd impurities in (La& „Gd„)A12 alloys [see Eq. (26)].

= pM(0) +(—,'x) p;(B, T) (25)

where upon the temperature dependence of p;(8, T)
is known up to the constant pM(0).

(ii) At high 8 field, at 20 K we are not yet in the
region where peso (( 1, so the impurity part in Eq.
(24) is not negligible compared to the matrix part.
Instead, a low-temperature plateau is observed. This
means that we reached the region where peso = 1.
Denoting by To those temperatures, at which these
plateaus are reached within the scatter of data and
which are displayed in Table I, one then can deter-
mine the fractions (I —a) from the theoretical results

1 —a = [p;(8, 20 K) —p;(8, T )1/h (5,8); (26)

experimental hp(B, T), in particular

hp'(8) = p(8, 20 K) —p(0, 20 K)

=op„(8)+(—,'x) ap, (8, 20 K),
(see Fig. 7), we may rewrite Eqs. (23) and (24)

hp(B, T) = (—'x) Lip; (8, T) + hp "(8)

+ (—,'x)[p, (O, 2OK)-p, (B,T,)] .

Here it has been exploited that, approximately,

h (8,8) = p;(0, 20 K) —p;(8, Tp)

(27)

these fractions are also listed in Table I.
Knowing a from the theoretical results, and the

Since p~(8) is independent of temperature, the
last term in Eq. (28) may be replaced by

(—x) [p;(0, 20 K) —p; (8, To) ] =.
—( 3

x) [p, (8, To) —pi (0, To) + p((0, To) —p; (0, 20 K) ] + p M (0) —p~ (0)

= —( x) dl p; (8, To) +—p (0, 20 K) —
p (0, To)

Inserting Eq. (29) into Eq. (28) and putting together measured quantities at the right-hand side, we arrive at

(—'x) [d p; (8, T) — Aa(p8, T )] = 5p(8, T) + a [—p(0, 20 K) +p(0, T ') ] —5p "(8)

(29)

(30)

Solving Eq. (30) for T = To, we determine
Lip;(8, To), whereupon Eq. (30) yields the full tem-
perature variation of hp, (B,T).

In Figs. 11 and 12 the total resistivity (reduced by
the magnetoresistivity of the matrix) p~(B, T) [see
Eq. (25)] is plotted as a function of temperature.
These curves have a striking similarity with the
theoretical ones of Fig. 1(a). For instance, the points
of inflection occur at equidistant positions on the log-
arithmic T axis, where the 8 fields are scaled by a
constant factor. In addition, the low-temperature pla-

I

teau is reached at higher temperatures for higher ap-
plied fields. These plateau values display an overall
negative magnetoresistivity with a field dependence
which becomes weaker upon increasing B. These
features locate the curves of Figs. 11 and 12 to re-
gime 2 in Fig. 2.

At present, we cannot separate the residual resis-
tivities resulting from all nonmagnetic scatters,
pM(0), from the plateau values. In Fig. 8, the meas-
ured data of the thermal conductivity K are compared
with those which were calculated from the
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FIG. 11. Resistivity p~ for (Lap9956dppp5)A12 from Eq.
(2S) vs T on logarithmic scale for varying magnetic fields.

%'iedemann-Franz law, K =LpTp ', where
Lp

= 24.5 n W AK is the Sommerfeld value and p is

the electrical resistivity as measured along with K at
the same sample. From the coincidence of measured
and calculated K values we infer that (within the ex-
perimental 5'/o error margin) the Wiedemann-Franz
law holds at 8 =0 as well as 5 T. This is in agree-
ment with the theoretical prediction (Sec. 11). e
note that at 8 = 5 T an enhanced thermal conductivi-
ty with nonlinear K(T) dependence corresponds to
the steplike magnetoresistivity curves of Figs. 5 and 6.

B. Thermoelectric power

The S(8,T) curves of Figs. 9 and 10 show distinct
peaks which increase and are shifted to higher tem-
peratures with increasing 8 field. A similar behavior
is also known from Umlauf's previous experiments"
which, however, were confined to temperatures
above 1 K and to magnetic fields below 2 T, In addi-
tion, we find an appreciable sharpening of the ther-
mopower peak, if we apply a field as large as 5 T
(Fig. 10). Since the phonon drag thermopower was

previously found to be very small' in the tempera-
ture range of interest here, the observed peaks must
be due to the diffusion thermopower displaying a

strongly energy-dependent scattering of conduction
electrons from the Zeeman split Gd + states.

In order to compare the experimental curves with
the theoretical results of Fig. 1(b) one has to evalu-
ate the thermopower arising from electron scattering
from a single Gd impurity S;. Denoting by SM the

. thermopower of pure LaA12. (independent of 8) one
can express S; with the aid of the Nordheim-Gorter
relation

S BT =P(B,T)S(B,T) P (»S
p (8 T) p (8 T)

Since S~ (& S, in the parameter range of interest
here, we can neglect the last term in Eq. (31). Un-
fortunately, S; cannot be obtained quantitatively from
Eq. (31), because of our difficulty with the separation
of p into pM and p, (see Sec. VA).

A qualitative statement can be gained, however:
the peak value of S; increases (since S increases while

p; decreases) with increasing 8 field. So, again we
conclude, that at magnetic fields up to 5 T, dilute
(La,Gd)A12 alloys may be described by the theoreti-
cal results from regime 2 in Fig. 2. In order to leave
the simple qualitative level, we used 28=28' and the
position of the thermopower maximum

T,„=9x 10 " T» [see Fig. 1(b)l to calculate

S;,„=40p,V/K from S,„=2.3pV/K at 8 =5 T (or
8 =1.4 && 10 '3 8») for the 2 at. % sample. This would

imply a residual resistivity of reasonable size, i,e.,
pM(0) = 2.5 p, Qcm, which is slightly below the tem-
perature plateau as found for 8 =8 T (Fig. 12).
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To finish the discussion of the thermopower
results, we want to note that there is a large "incre-
mental" thermopower of (La,Gd)Alq even at B =0.
Compared with S of LaA12, this additional contribu-
tion increases down to our lowest temperature, so be-
cause of Nernst's law one expects a peak below 0.4
K. Such an incremental S;(T) at B =0 is in strict
con.tradiction to the theoretical result which gives
S; (T) increasing very slowly with T [Fig. 1(b)].
Presumably, we here observe the high-temperature
"tail" of an anomaly resulting from Gd-Gd interac-
tions. This feature is at present under investigation
in a He -He dilution cryostat.

VI. CONCLUSION

Contrary to what is generally inferred from the
smail effects in the zero-field resistivity, the "reverse
Kondo effect" in dilute alloys with ferromagnetic cou-
pling of the impurities to the host electrons gives
rise to interesting anomalies, if a finite field is ap-
plied. We have developed a device which allows for
a simultaneous measurement of various transport
coefficients up to g T. For (La,Gd)Al2 the electrical
and thermal conductivity as well as the thermoelectric
power have been measured down to 0.3 K.

On the theoretical side, we succeeded in solving
the dispersion equations devised by Suhl" for fer-
romagnetic coupling, arbitrary spin S, temperature,
and magnetic field. Using this solution, the above-
mentioned transport coefficients and, in addition, the
Hall coefficient have been calculated numerically.
The main joint results (of theory and experiments)
are: Saturation of the electrical resistivity at low tem-
perature at finite field and a logarithmic increase at
high temperature with a steplike transition region.
For the thermal conductivity, the Wiedemann-Franz
law holds to within 3% (for the calculation) and to
within 5% (for the experiments) in the range of
parameters chosen. The thermopower is positive and
develops a distinct peak, which can be increased and
shifted to higher temperatures by increasing the mag-
netic field. This behavior corresponds to the field
dependence of the low-temperature plateau of the
resistivity (negative magnetoresistivity). In addition,
the following features of the theoretical results
should be mentioned: Interference between normal
potential and spin-dependent scattering can lead to
the disappearance of the scattering for one of the two
electronic spin directions (at low temperatures for a

"quenching field" which depends on the normal
scattering phase). Negative slope of the negative
magnetoresistivity at low fields and a positive one at
high fields are a result of this phenomenon. It is also
responsible for a change in sign of the thermopower
as a function of temperature for higher fields, and to
changes in the steplikg structure of the Hall coeffi-
cient. There, on top of the step a single peak
develops with increasing field, which is split into two
peaks after the "quenching field" has been reached.

Despite the surprisingly good qualitative agreement
between theoretical and experimental results at finite
field, it is still as difficult as in earlier investigations
to obtain quantitative results, in particular those for
the exchange integral and for the bandwidth. Also,
one inconsistency in earlier analyses of the measure-
ments on (La, Th)Ce, ' and (La,Ce)Alq, as well as
of those on (La,Gd)Alz, 9 should be mentioned:
while for the analysis of the electrical resistivity the
angular dependence of the integral has been taken
into account (by a factor 21+1), it has not been con-
sidered for the analysis of the initial depression of the
superconducting transition temperature as a function
of impurity concentration —in contrast to theoretical
suggestions. ' One completely unresolved problem is
left for the future: the low-temperature anomaly of
the thermopower at small magnetic field, which we
have found for (La,Gd)Al2.
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APPENDIX

Here, an approximate solution of Suhl's dispersion
equations at finite magnetic field will be sketched. It
is valid for arbitrary spin and for ferromagnetic cou-
pling between electrons and impurity, their g factors
being assumed to be equal. The solution is a gen-
eralization of that in Ref. 14 for a spin-2 impurity.

The solution can be systematically derived from the
coupled system of 8S+2 equations for spin S. In
order to keep technical details at a minimum and to
make use of the spin- —, result, a short-cut derivation

seems to be more useful than a systematical approach.
The system of dispersion relations under considera-

tion is given by

T~«&(z) (V Jc&s~~. S« )+ X 'T~« ~ & (ek) T'«&& (ek)
1 1 —f(e-„,)

k, cr", x" k
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—XF(e-„)—N(0) Jtde p(e)F(e)I
N

(A2)

with N(0) p(e) being a model density of states,
p(a =0) = I at the Fermi level,

(ii) Elimination of the normal part of the scattering
potential. Let

where T"(e) = T(e y i5), 5 +0 denote the ad-
vanced and retarded analytic parts of T(z) on the
real axis, N stands for the number of atomic cells, V

characterizes the normal part of the scattering poten-
tial, and J,„ the s-d part.

The state of an electron is specified by the quan-
tum numbers o-, k, that of the impurity by K, and
f(e) is the Fermi distribution function. Spin conser-
vation during scattering yields 2(2S +1) direct ampli-
tudes T „„and 2 2S spin-flip amplitudes T „„+.

The following steps are a repetition or a slight gen-
eralization of those in Ref. 14.

(i) Continuum limit

I —2rri y p(z) Tt„ t„(z) = —(Xt„& +i 7rypii) Ct„&(z)

(A12)

I —2rriyp(z) Tl„+, t„+,(z)

= —. [Y(„&—i gyp(K+1)]D(„&(z) . (A13)

The complicated system of equations for the new am-
plitudes Eqs. (A8) —(A13) can be solved approxi-
mately in the ferromagnetic case. It turns out, that
all new amplitudes and the auxiliary functions can be
chosen to be independent of K, Furthermore

C"( )oiC'( )o&= L'(o&) M'(o&)

D'(o&) D'(o&) = L'(o&) M'(o&)

(A14)

(A15)

With these assumptions, the equations for the direct
scattering amplitudes are reduced to

(iv) Auxiliarpfunctions: Xt„&(z), Y&„&(z) [y = J,„N(0)].

y = J,„N(0), v= V/J, „

and define

(N/J, „)T „„(z)=v[1 —vF(z)] '8

(A3)

Cr(o&) Ca(oi) ] Xr-(o&) Xa(o&)

+[2rryp(o&)] —„S(S+I) (A16)

+ T „„(z)[I —vF(z)] . (A4)

Then the new, barred amplitudes fulfill the relations
(Al), with v =0 and a modified density of states

and an analogous relation between D and Y, and to

X'(ro) —X'(ro) = imyp(o&) tanh[P(co+ o&o)/2] (A17)

N(0) p(e) =N(0) p(e) II - vF'(e)
I

'

where

(AS) and an analogous relation for Y, in which coo on the
right-hand side is replaced by —coo. Finally, the spin-
flip-scattering amplitudes have to be determined from

F(z) =y Jl doi Pp(~)
Z —GJ

is the Hilbert transform of the original density of
states. For p(z), in the complex plane, one may
choose a Lorentzian model

(A6)
L'( ) oiH( )

L'(oi)
C'( ) ioD'(ro)
M'( ) oiI M'(ro)
D"(oi) H'(o&) C'( )ro

(A18)

(A19)

p(z) = sign (Imz) D2/(Dz + z2)

(iii) Definition of new amplitudes

Mt„&(z) = (2/S„„+&) Tl„ t„+&(z)

L(„&)(z)= (2/S„+„&)Tt t —&(z)

KC&~&(z) = Tt~ t~(z) Tt ~ t ~(z)

—i~D&„&(z) = Ti„ t„(z) —Tt „ t „(z)

(A7)

(A8)

(A9)

(A10)

(AI I)

where

X'(m) +&gyp(~) [~+ft(~)]
H QJ

Y'(oi) + imyp(u) [K+ I —ft(ro)]
(A20)

The asymptotic conditions, which are needed for
determining a unique solution, follow from Eq. (Al).
The solution of Eq. (A17)

i

I pD iPoio I i p(z + iuo)X(z) = I + y sign(lmz) p(z) Q
—+ + —

&[i
——sign(Imz)

2 2iT 2' 2 2' (A21)

and the corresponding one for Y(z) [following from Eq. (A21) if (roo —ruo)] show that H(io) may be set equal
to 1 for y (( 1. Multiplying Eqs. (A18) and (A19), one sees the compatibility with Eqs. (A14) and (A15). So
Eq. (A21) is an approximate solution for 0 ( y (( 1. The corresponding solution for C follows from Eq. (A16),
etc. , and is listed in Sec. II.
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