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In order to study the origin of metallic magnetisrn and the metal-insulator transition (Mott
transition), the cluster variation method is applied in a two-site approximation to the Hubbard
Harniltonian H&„bb,„d= ~,. & ~ & ~ f,&c, c& + U ~1 &

n,. &n, ~, where c, , c; are, respec-

tively, the creation and destruction operators of an electron with spin o- (f or )) on lattice site i,
n; =c, c;, U )0 is the strength of the intrasite Coulomb repulsion between electrons having

antiparallel spins, & is the total number of sites, and tz is the "hopping" strength. W'ith the re-

striction of only nearest-neighbor electron hoppings of strength —t (t )0), and considering the
half-filled-band case, both one- and three-dimensional (simple cubic lattice) results are calculat-
ed numerically. This is achieved by solving the basic equilibrium equations for the following
two-site expectation values: (n, tn, t)p(a tl,7ji)p, (tt tngt)p, . (I7 in tttgt)p, (tJ ta tagtail)p,
(c tcyt)p, (c,tcztn;t)p(c t,cjnt, tnjt)p(c, . tc,, tc&tc~t)p, These expectation values can in turn be

used to compute various thermodynamic quantities, e.g. , internal energy, entropy, specific heat,
etc. For sufficiently large parametric value of U/t, a high-temperature maximum in the specific
heat is resolved and is identified as an indication of a gradua/ metal-insulator transition. For the
simple cubic structure, this high-temperature peak disappears, however, as one decreases the
value of U/t to values around or below 15. Also, correlation results strongly suggest that the
three-dimensional half-filled-band Hubbard model admits an antiferromagnetic ground state.

I. INTRODUCTION

In 1931, a very successful model of noninteracting
electrons was used by Wilson' to describe metallic
and nonmetallic behaviors of substances. But excep-
tions do exist, for example, cubic nickel oxide (Nio)
should be a metal according to Wilson's model yet
actually behaves as an insulator. To take into ac-
count the interactions between electrons, Hubbard2
introduced a nondegenerate single-energy-band
model to represent electronic systems like Nio. In
this model, electrons are distributed over localized
%annier sites and can "hop", without changing their
spins, from site to site; if two electrons with opposite
spins are on the same site then, in the Hubbard
model, the energy of the system increases by an
amount U. Because of the exclusion principle, elec-
trons with parallel spins are forbidden to occupy the
same site. Although this is the simplest model that
incorporates both the itinerancy of the electrons and
the correlation between electrons on the same site, it
is often used to study the origin of metallic magne-
tism and the metal-insulator transition (Mott transi-
tion3). Therefore, solutions to the Hubbard model
are highly desirable.

Unfortunately, the mathematics of the Hubbard
model is far from trivial, and up to the present, only
few exact results are known. For example, Lieb and

%u solved the one-dimensional half-filled-band
Hubbard mendel exactly and found an antiferromag-
netic ground state with no Mott transition, i.e. „ the
ground state is always insulating —Mott insulator'—
for finite U. Following this work, the lowest excited
states (spin-wave spectrum') and the magnetic sus-
ceptibility at absolute zero temperature were also
determined, Ho~ever, in order to investigate prop-
erties of the Hubbard model at finite temperatures,
subsequent authors were forced to resort to various
schemes of approximation and reviews on the Hub-
bard model and these approximation methods appear
in the literature. ' These methods include, among
others, truncation of the Green's-function equations
of motion, ' series expansion in the strong- or weak-
correlation (large or small U, respectively) limit, and
the coherent-potential approximation. ' In the
present investigation, yet another approach is em-
ployed, namely, the cluster variation method. " This
method is based upon the variational principle of
equilibrium statistical mechanics and lends itself very
naturally to systematic approximations. In addition
to the present work, Chen' has applied the cluster
variation method to the half-filled-band Hubbard di-

mer, dimerized, and uniform Hubbard chains, and
recently Chen and Huang' have examined the influ-
ence of a uniform magnetic field upon both thermo-
dynamic and correlation properties of Hubbard model
systems.
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II. THE HUBBARD MODEL

In the Wannier representation, the single-energy-
band Hubbard model' takes the form

m oi

+Hubbard x X x rij ja jm g il it
i ]J 1 a

where c, and c; are, respectively, the creation and
destruction operators of an electron with spin a ([ or

]) on the i th Wannier site, n; = c, c;, U & 0 is the
average Coulomb repulsion energy between two elec-
trons with opposite spins on the same site, tJ is the
"hopping" strength '[more precisely, tj is the transfer
(overlap) integral between Wannier functions on the
i th and j th sites] and Dt is the number of Wannier
sites. If the hopping of an electron occurs only
between immediately neighboring Wannier sites, or,
in other words, the transfer integral rj in Eq. (1) has
the values

t &0,
0, otherwise,

(i th and j th sites are nearest neighbors) then the
Hubbard Hamiltonian (l) becomes

H„= t $ X(—c, cj +c, c, ) +U $n tn t, (2)
(i J) a i 1

where the sum $t,. jl is over all distinct nearest-

neighbor pairs. Note that the total width Wof the

energy band is 4t. ' Working in the grand canonical
ensemble, one writes, with Eq. (2),

q =H~ —p, N

x
Htt p X (lilt + ill i) p

where p, is the chemical potential and N is the
electron total-number operator.

As was pointed out in the Introduction, few exact
results are known, in general, for the Hubbard model
at finite temperatures. But there are some suggestive
features resulting from various approximation pro-
cedures as well as numerical calculations. For exam-

ple, in one dimension Shiba and Pincus' attempted

to extrapolate the properties of an infinite half-filled-
band Hubbard chain by examining the exact results
of finite chains and rings of two to six atoms. Using
U/ i@as a parameter, they found that the specific
heat has two peaks when U/ W & l, and associated
the high-temperataure peak with a gradual metal-
insulator transition" while the low-temperature peak
was attributed to the antiferromagnetic short-range
ordering. When U/ W becomes small, the two peaks
merge into one.

For the three-dimensional case, Langer et al. 8 ap-
proximately solved the half-filled-band Hubbard
model for a simple-cubic structure by using one-
particle Green's functions and established that 0.27 is
the demarcation value rather then 1. That is, f'or
U/lV & 0.27, two critical temperatures are found: a

Neel order-disorder transition temperature T~ and a

higher critical temperature TM at which the metal-
insulator transition occurs. On the other hand, for
U/W (0.27, only TM exists. They, therefore, ar-

gued that for a large variety of intermetallic
transition-series alloys and oxides, these two critical
temperatureS with their corresponding specific-heat
anomalies, critical fluctuations, etc. , should be experi-
mentally observable, although they never calculated
these quantities explicitly. More recently, an "exact
numerical" solution of the half-filled-band Hubbard
model was put forward by Visscher. '6 Even though
his numerical procedure does not work in the neigh-
borhood of any singularity, he was able to resolve the
high-temperature peak of the specific heat for some
values of U/ 8'. He too suggested that this high-
temperature peak is due to a gradual metal-insulator
transition by observing that the probability of double
occupancy, (n;ln;t)o, decreases rapidly near the peak
as the temperature decreases, and this "freezing out"
of double occupancy causes a rapid decline in conduc-
tivity since the current carriers are extra electrons
(doubly occupied sites) and holes (empty sites).
However, his calculations are not conclusive enough
to indicate any demarcation value of U/8'.

In Secs. III—VI, the cluster-variation method in a
two-site approximation is applied to the Hubbard
Hamiltonian (2) for the half-filled-band case, and
some of the findings are compared with the above-
mentioned results.

III. APPLICATION OF THE CLUSTER VARIATION METHOD IN TW'0-SITE APPROXIMATION

Given the Hubbard Hamiltonian (2), one can express the trial grand free energy in a two-site cluster approxi-
mation" as

5'p == E —p, W —TS

Tr; jPP (ij )X„+kT Q Tr;Prtt~(i) lnPrtt~(i)
i ~~i &J%K

+kT $ X [Tr;jpP (ij)1 pP'n(ij) —Tr;pr" (i) Inpr' (i)—Trjpr" (j) lnpr' (j)]
1i &J~OZ
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Since it can be proved that

(2)(i j) (1)(/) & (1)(J)

if the i th and j th sites are not nearest neighbors, one has, for such i and j,
Tr; Jpp'(ij ) Inpr2'(I j) ='Tr;pr)'(i) Inpr)'(i) +Tr, pr)'( j) Inpp'( j)

"Using this latter fact, Eq. (4) is simplified so as to become

&r

=OGPU(n;fn;1)

—OT p, (n;) Xqt(—(c,fcjf) + (c, jcjj)) +kT QTr;pr' (i) Inpr' (i)
i 1

+ kT g [Tr;jpr()(i,j) Inpr()(i, j) —Tr;pr("(i) Inp,'"(i) T—rjpr()(j) Inpr(')( j)]
&~'i)

where q is the lattice coordination number and k is the Boltzmann constant,
It is clear from Eq. (5) that one should attempt at least a two-site cluster approximation, because in a one-site

cluster approximation,

(c J )=( )( )=o
and hence no meaningful results can be derived,

In the present two-site cluster approximation, two reduced trial density matrices are needed, namely, pr" (i)
and pr()(i j ) where the i th and j th sites are nearest neighbors. These matrices are constructed rigorously in Ap-
pendix A and are also given in Refs. (23 and 24). It is shown, on the other hand, in Appendix 8 that the total
number of electrons $, )n; with the same spin jT is a constant of motion of the Hubbard Hamiltonian (2). One
then concludes that all but the four diagonal elements of pr('(i) vanish identically since each off-diagonal ele-
ment does not preserve this constant of motion, i.e. ,

0 j

0 (n;1(l —n;j))
0 (n; j(I —n;1) )

0 (/l;1Il;j),

For the same re'ason, most of the 256 elements of
Pr' (ij ) become zero, in fact, only 36 elements
remain.

Note that one has assumed, for simplicity, that all
%annier sites are equiva1ent. This simplification,
however, automatically excludes any solution with
long-range antiferrornagnetic ordering. Note also that
the system is not exposed to any external field, so
that there is no preference in the, direction of elec-
tronic spins. One has, therefore, for any i and j,

(Il' ) (Ilj ), (n fn j) = (n, 1 nj 1) etc. ,

(n;1) = (n;j) = , (n;), (n;fn, f) = —(n,jnjj)

(I? f I7 1 nj f ) (I?
f

/ ?
1

/ 1J 1) (c,
1
cJ f) y

c
1
(J 1)

(Cif Cj fflj 1) (Cj jCj jtljf) p

(C;1CJ f/li 1) . (C'jCJ 1/?if)

t,(C'fcjfn;jnjj) = (c, jcjjtl flljf)'
With these simplifications, the 36 nonvanishing ele-

ments of Pr' (i,j) can be summarized as follows:

p„= I —2(n, ) +2 (n, ,n, ,) +2(n, fn»)
+ 2 (/? j 1 IlJ 1) 4 (Il j 1

Ilj 1 nj 1) + (Ilj 1
I?j 1 I?j f Ilj 1)

P22 = 933 = Pss = I()'99

1

(ni ) (ni 1ni 1)
—(nj 1nj 1) —(n; 1 n, j)

+ 3 (n' fn'jnJ f) (Il I? jtljfni 1)

p44 p13, 13 (/I'1/l'1) —2 (n;fn;jnjf) + (n;fn; jnjfnJ 1)

P66 P11, 11 (ni fnj 1) 2 (n'fn'jnj f) + (n'fll 1/?jf nil)
p?7 = p)0 10 = (n;fnJj) —2 (n'1"'1 J1) (n;fn;jnjfnjj)

P88 PI2, 12 PI4, 14 P15, 15 = (n;ftl;1/ljf) (l?, ftl, j/ljf/?Jj)
p)6 16

= (n;fn; jnjfllJ 1)

Ps2 = P2s = p93 = p39

t t= (cjfcjf) (c;fcjfn; 1)
—(c, fcJtnij) + (c,fcj fll jlljj)'

P?4 = P7, 13 P10, 4 P10, 13= (cjfcjftlij) (c;fcjftl; jtlj 1)

P)3, 4
—P4, 13 —(c fc jcijc»)

plG 7 = p7 IO
= (Cl(C/jCJ jCJ1)

t

P13, 7 P47 P1310 P410 (C'fc,i f nil) , (Cif CJ fn jni1)

P148P814 P15, 1,2 P12,, 15 = —(c,fcjf n; jnj 1)
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From Eqs. (6) and (7), one sees that there are alto-
gether 12 variables (unknown expectation values)
under consideration, namely,

(n;), (n;fn, f), (n;fl?jf), (n;fl?jf) (I?'fl?'fl?jf),

t
(n;fl? fnjfnjf), (Cl?Cjf), (CI fCjfn;f)

(c fcj fl?jf) (c'fcjfl?'fnj f) (c fc fcjfcjf), (c fcl fcjlcjf)e t

One can also show that these variables are real, since
the reduced trial density matrix pp'(i j ) is Hermitian,

i.e., p ?=pl (I,m =1,2, . .., 16), and (c, fcjfn;f)
= (c,fcjfnjf) which is shown later [Eq. (15)].

Using elementary column and row operations, the
reduced trial density matrix prf2?(i j), with its 36 non-
vanishing elements given by Eq. (7), can be
transformed into a block-diagonal form

prf2?(i j) p?181'28X2$ p688T4

Now it is trivial to write down the eigenvalues of
pr' (i) according to Eq. (6), i.e.,

X? = 1 —(n;) + (n; f n;f)
1

h.2
= x3 = —, (n;) —(n;f n; f)

X4= (n, fnlf)

On the other hand, using Eqs. (8) and (9), the eigen-
values of prf'? (I',j) are given as follows:

0 1 P113 ~2 ~12 P22 P52

Ir3 ?r13 P22 + P32 ?r4 ?r?4 P88 P14, 8

~5 ~15 P88 + P14, 8. ~6 ~11 P66

p66I 2X2p16, 16 ~ (8) 0 7 and o-8 are solutions of the equation

where 6 represents direct sum" and I 2, X2, T2 are
the following square block matrices, respectively: (P77 P107?r) (, P44 + P13 4?r) . 4P74P137,

and
P22 P52

r, =
P52 P22

pss p14 s

,p14s pss,

~9 P44 P13,43 0 10 P77 + P10, 73 0 16 P16, 16

If one defines, for convenience,
P77 P74 P74 P10, 7

T4 =
P13,7

P44 P13,4 P13,7

P13,4 P44 P13,7

0 = P77 P10 7, 6 = P44 4 P13 4 C —P74P13 7

?

P22 P52 0

P22 4 PS2

,P10, 7 P74 P74 P77

These square block matrices are readily diagonalized,
yielding the following:

then one can write

?r7 = —, ((o + b) —[(o —b)'+16c]' '}

~, = —,
' [(o+b)+[(o —b)'+16c]'J'} .

Note that
I

pss —
p14, s

X2 pss+ p14, s,
'

(9)

4 16

=Xo =1 (12)

p77 P10, 7 2p74

2P13 7 P44+P13 4

T4 0 0

0 0
P44 P13,4

0

0

P77+ P10, 7,

or in other words, pr" (i) and the diagonalized
Prf f(i,j ) are normalized as exPected.

Now one can perform the trace operations in Eq.
(5) readily so that it becomes

4 16 4

pr ——XU(nlfnlf) St p (n) —2%qt(cIf Jf) +XkT X km in+ 2XIIkT g omlnom —2 X Amino
1

m~1 m m 1

lf one uses x to represent any one of the 12 variables, then Eq. (12) implies that

1)f1m

X
?)?rm

1)

nt ~1 ~+ m 1

With this identity and the definition fr —=pr/~, the basic equilibrium equations are expressed as
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"dfr

c) (n;)
= —

p, + kT $ In jc + qk—T X Ino ~ —2 X In Jc
8 n; ', 8 n;, c)(n;)

0= = U+kT g ln)c~ +1 qkT X Incr —2 X Ink
"cjfr

c)(n;fn;I ll'fll J '1 11'fll I '1 n'f ll'I

dfr0=-
f

= —2qt+ , qkT—gIncr
I) (C,. fcjf) 1 8 (C;ICjf)

(13)

0= =-, qkT g lno.
Cjfr 1 C) Crm

m-1

where y stands for any one of the remaining nine
variables.

Using Eqs. (10) and (11), it is straightforward to
rewrite the basic equilibrium equations (13)

—p, + k T ln —+ qk T In — —2 in —=0, (14a)
0203

01
j

X1X4 01 0'92

U+kTln
2

+
2

qkT ln
2 2

+A ln07

A. 1A.4+A 'lncrs —2 ln =0
c

where

1 a —b . , 1 a —b
A = —+

2 2R
'

2 2R

48 = ( (Cjfcjf nj I) (C;I jfCfnncj I) ) (14m)

C = ——((c,ffcjfn; I)
—(c,ffcjfn; Jnjf))

4

and R = f(a —b) +I6C]' '.
Observe that, by comparing Eqs. (14h) and (14i),

8 = C for finite temperatures. Thus it follows from
Eq. (14m) that

(14b) (C'fCjfll I) (C'JCjfllj I)' (15)

qkT ln =0
0203

(14c)
Also, by substituting Eq. (141) into Eq. (14d), one
has

1 01
—,qkT 21n +A'ln07+A lno. s+ln01o =0

020304053 3

qkTln -

201 06 tT70 8~9010

0106 070 S0901O0162

—qkT ln
0 0 0 00203 0405

2qt + qkT ln(o 3/—crl) =0

(14e)

(14f)

(14g)

(ll'f llj f) (ll fnj I) + ('C'f C' JCJ JCJ f) (16)

Thus, in thermal equilibrium, two of the 12 variables
can be eliminated with the two identities (15) and (16).

qkT 1n =0
0203

and comparison of this equation with Eq. (14c) yields

06 = 01O, Or

—qkT 21n +8 ln
1 02 0'7

03 0S
c

1 02 07
2 qk T 2 ln + C ln

03 0S

=0

=0

(14h)

(14i)

IV. EQUILIBRIUM EQUATIONS IN THE
HALF-FILLED-BAND CASE

To achieve the half-filled-band condition, one
prescribes a chemical potential so that there is on the
average one electron per Wannier site, i.e. ,

qkT2ln +(B—+C) In =0
020S- 07

(14j) (n;) =I
and then Eqs. (10) reduce to

(17)

, qkT(A lnol +A 'Incr—&—lno9) =0

qkT( A' lno. l —A In—crs+In—crfo) =01

1

(14k)

(14i)

Jcf = X4= (n;fn;I), Jcl = Jc3= 1
—(n;fn;I) . (10')

Similarly, using Eqs. (7), and (15)—(17), Eqs. (11)
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simplify to

?r? = —1+2(n;tn;1) +2(n;tnjt) +2(n;tnjj) —4(nttn;lnit) + (n;tn;jnjfllil)

(" t"'l) ("'t"Jt) '("II"J1) + ("II"'1"JI) ("'I"'1"JI"J1)
—(c,feil) +2 (c,fcJtn; 1)

—(cl?tejfn; jnj j)

(n'fn'1) (n'InJI) (n''fnJl) +3 (n'fn'lnJI) (n'ln'lnJInJl) + ( IICJI) 2 ( tejfn'l) + (CI f JIn'l Jl)
l.

04 0]4 (n fll'it?if') (Il ft?''ltlJ'fnjl) + (C ICifl?''i?lit)

?r5 o?5 (nttntlnjf) (ntf IlnJInJl) (etf JfntlnJl)

06 010 0?? {Il'ftlif) 2(t?II ljf') + (tltftlllllJftljl)

o = —((a + b) —[(a —b) + 16c]'J
I

?Ts = —[(a + b) + [(a —b)' + 16e]'J ]

cr9 (nlfn;j) —2 (n;tn;jnjt) + (n;tntlnjtnJj) (c fc lcJlcJI)

Ir?6 = (I?;IIl;jl?JIIlj 1)
where

a =2 (ntfnjl) —(nttnjt) —2 (n;tn;jnjt) + ("'I"'1"JI Jj)

b = (n, tn; 1)
—2 (n;tn, lnit) + (n;tn;lnjtnjl) + (c, tc, jcilci f)

c = ((c;fcjftltl) —(c;feil lltlnjl))

Note that the number of variables changes from 12
to 9 because of Eqs. (15)—(17); thus some of the 12
basic equilibrium equations (14a)—(14 1) are redun-
dant, for example, Eq. (14a) can be used to calculate
the prescribed value of the chemical potential.
Therefore, one has to eliminate the redundancy by
choosing suitable linear combinations of the 12 basic
equilibrium equations; in fact, the following nine
equations are used for numerical purposes:

Here, one has a set of nine coupled algebraic and
transcendental equations (lga) —(18i) with nine vari-
ables, namely,

(n?1 Il)' ( ll Jf) (nttnjl)

(Il ft?'ll?jf) (Il ftl it?if'I'ljl)'
(C'fCJ f) (C'f Ci fl?'1)

(CIICJ ftl'jlljl) (C IC lCJlCJ f)
U/t +2ln —+q ln

kT/l

O&06
ln

02@3

02 03 (74(Ts
3 3

ln
~i ~6 ~ZS~9

0
& ~6 ~ZOS09~&63

ln
~2~3 ~4~s

03
+1n =0

kT/I o.?

2ln +8 In =0
~s

0 204

o 3~s

—2ln —=0
(1ga)

(18b)

(18c)

(18d)

(18f)

(1gg)

This, obviously, is a problem for the machineI

V. NUMERICAL CALCULATIONS AND RESULTS

In the present research, a computer program called
MINMAx is employed to solve the nine nonlinear
equations (18a)—(1gi) at each temperature. Given
an initial guess of the values of the variables (not too
far away from the actual solution), MtNMAx, using
some iteration procedures, manipulates the variables
to make the nonlinear equations hold simultaneously
to within a small predefined error (the numerical er-
ror permitted here is 10 '0). Towards such a goal
one realizes that, at high temperatures, the mean-
field results, i.e.,

0 z.Qs

~6~9
a —b ~z ~&0

, 2
ln +ln =0

[(a —b)? +16c]?j? ?Ts 09

(18h)

(18?)

(n; In; 1) = (n; I) (n; 1)

(c,teil) = (c,t) (cjt), etc. ,

should be reasonably close to the equilibrium values.



2124 %AI-CHING HO AND JEREMIAH H. BARRY 20

Thus, for each parameteric value of q and U/t, one
commences the numerical calculation at a high tem-
perature with the following initial guesses:

1
(lt'1tt'1) (tl tltj1') (tl'tltjt)

1 1

(tlt 1 tlt 1
flJ 1) 8

(tlt '1 fl j 1nJ 1
Ilj1)

(c;teil) (e tcjtn;1) = (c; tejtn;tn, t)
f f'=(e, , c,', c„c„)=0 .

If the program gives convergence, then the new
equilibrium values are taken as the initial guess for
calculation at a lower temperature, and so forth. All
these calculations are done using an IBM system/360
Model 44 digital computer with a memory of 64K
words. A typical run consists of six to seven 900-
second jobs covering temperatures from kT/t =10' to
kT/t =1, and yields about 50—60 data points. Each
data point contains the values of nine equilibrium ex-
pectation values

(n;tn;1) p, (n;tnjt)p, (n;tnjt) p

the half-filled-band case. One indeed finds that the
above equality is valid with a relative error of about
+0.008% or 0.00002% for small (—1) or large
(-10—100) values of U/t, respectively. On the oth-
er hand, since the only quantity involving lattice
dimensionality in the above solution is the lattice
coordination number q, numerical calculations for
half-filled-band Hubbard models of different dimen-
sions can be carried out readily by using appropriate
values of the lattice coordination number20 q. Thus a
further check of the solution is to perform calcula-
tions on the infinite half-filled-band uniform Hub-
bard chain (i.e., q =2) and compare the results with
those of Shiba and Pincus. ' The findings, with
U/t =8, are displayed in Figs. '1, 2, and 3. The
results, in general, are in good agreement, since it is
clear that as the number of atoms increases, the ther-
modynamic quantities also increase. The present cal-
culation, however, is terminated after the appearance
of the high-temperature peak in the specific-heat
curve for two reasons, namely, the low-temperature
anomaly, corresponding to a Neel transition, has
been excluded from the present solution, and the

n; 1 ni 1)p (n(1n; 1ni t nj t ) p

(e, tcjt)P, (e teil tl t)P

(c, tcJtn;tnit) p, (c;tc, tcilcJt)p

(19)

~here the subscript "0" is used to denote stable ther-
modynamic equilibrium .quantities.

Using the equilibrium expectation values (19),
thermodynamic quantities can be computed easily,
for example, the internal energy E is given by

I.O—

= —(tttttl; t)p 2q (Cttcjt)p

the entropy S,

S
ln)1.

%k

E

Nt

0.5—

16 4
——,'q X o- in~ —2 $ Z in'

m 1 m 1

and the prescribed value of the chemical potential p, ,
t

kT ~2 1 kT 02~3 . ~2
ln —+—q ln, —2 ln-

t A, 1 2 t

One can also differentiate the entropy data numeri-
cally to get the heat capacity at constant volume,
since

QSCY= T
, p„Y

To certify the accuracy of the present calculations,
one first examines the computed numerical values of
p, , since according to a rigorous theorem, "

p, = —, U in

0.0—

3
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r g»

0.0 1.0 2.0 3.0 4.0 5.0
kT
t

FIG. 1. Internal energy of the one-dimensional half-
filled-band Hubbard model with U/t =8, The dashed lines
represent Shiba and Pincus results of rings with three to six
atoms.
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FIG. 2. Entropy of the one-dimerisional half-filled-band
Hubbard model with U/t =8. The dashed lines represent
Shiba and Pincus results of chains with two to five atoms.

rate of convergence of the numerical calculation be-
comes extremely slow at low temperatures.

Having established the numerical and physical
credibility of the present solution, one proceeds to
carry out calculations for the three-dimensional half-
filled-band Hubbard model in a simple cubic (sc)

FIG, 4. Specific heat and the probability of double:occu-
pancy of the three-dimensional (sc) half-filled-band Hubbard
model with U/t =100. The dashed lines are Visscher's
results.

structure, i.e., with q =6. The results, some of
which include Visscher's data" for comparison, are
shown in Figs. 4—7. One sees that the specific-heat
agreement is very good for large value of U/t (Fig.
4), but not otherwise (Figs. 5 and 6). Visscher did
obtain a peak in the specific-heat curve for U/t =0.5
(and possibly one for U/t =4), yet none is resolved
in the present calculations. However, in this range of
paramagnetic values of U/t, one would expect —as
suggested by the one-dimensional results of Shiba
and Pincus —only one specific-heat anomaly embody-
ing both the Neel transition and the metal-insulator
transition and thus cannot appear in the present solu-
tion. Although long-range-ordered antiferromagnetic
solutions are excluded from the present solution, one
observes from Fig. 5(b) an antiferromagnetic tenden-
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FIG. 3. Specific heat of the one-dimensional half-filled-
band Hubbard model with U/t =8, The dashed lines
represent Shiba and Pincus results of rings with three to six
atoms.
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FIG, 5. Three-dimensional (sc) half-filled-band Hubbard
model with U/t =4. (a) Specific heat and the probability of
double occupancy. The dashed lines are Visscher's results,
and the question mark indicates that his data are incon-
clusive. (b) Short-range (nearest-neighbor) magnetic corre-
lations.
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FIG. 7. Specific heat of the three-dimensional (sc) half-
filled-band Hubbard model with typical values of U/t around
15. The base arrow indicates the position of the maximum
for the case U/t = 1S.
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FIG. 6. Specific heat and the probability of double occu-
pancy of the three-dimensional (sc) half-filled-band Hubbard
model with U/t =O.S. The dashed line is Visscher's result.

However, the approximation they employed is less
refined than the present two-site cluster approxima-
tion which includes four-body correlations, so the
present result of U/t = 15 is probably closer to the
actual value.

In conclusion, it has been shown that the cluster
variation method in a two-site cluster approximation
yields good and consistent results for the half-filled-
band Hubbard model, An advantage of using such a
method is that the equilibrium correlation values
(see, e.g. , Fig. 8) are calculated first and these quan-
tities describe the system in a more detailed fashion
than the thermodynamic quantities alone. Hence, in
this sense, the present results are more complete
than those obtained by various other authors.

cy in the nearest-neighbor magnetic correlations
(similar behaviors are observed for other values of
U/T). This agrees with the yet unproven but com-

mon notion that the three-dimensional half-filled-
band Hubbard model also admits an antiferromagnet-
ic ground state. ' Also similar to the one-
dimensional case, a high-temperature peak in the
specific-heat curve is found for the three-dimensional
sc structure for large enough value of U/t (see Figs.
4 and 7) and it is associated with a gradual metal-
insulator transition because of the corresponding de-
cline in the quantity (n;In;I) 0 (see the discussion at
the end of Sec. 11).

In contrast to the one-dimensional case, where Shi-
ba and Pincus suggested the two peaks in the
specific-heat curve merge at U/t =4, the demarca-
tion value of U/t in a three-dimensional (sc) struc-
ture is found here to be near 15 (see Fig. 7). Note
that the present result is larger than that obtained by
Langer et al. s (-1.08) by an order of magnitude.
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FIG. 8. Equilibrium correlations of the three-dimensional
(sc) half-filled-band Hubbard model with U/t =15.
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t . t t{b) (c(tet))0, ( ( cItctn(I)0, (c(Ictln(tntl)p, (c Ic/Icjtcj f)0.
The base arrow indicates the position of the maximum in the
specific-heat curve.
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VI. SUMMARY AND DISCUSSION

The cluster variation method in a two-site approxi-
mation is applied to the half-filled-band Hubbard
model (2). Both the one- and three-dimensional
(simple cubic) cases are examined. For sufficiently
large value of U/t, a high-temperature peak in the
specific heat is seen and is identified as an indication
of a gradual metal-insulator transition. For the sim-

ple cubic structure, this high-temperature peak disap-
pears as one decreases the value of U/t to around 15.
Also, correlation results strongly suggest that the
three-dimensional half-filled-band Hubbard model
admits an antiferromagnetic ground state.

The present research also opens up some interest-
ing avenues for further investigations. For example,
one can ask: What kind of magnetic transition will

take place at low temperatures? Will it be a Neel
(continuous) transition or rather a discontinuous
one? To answer these questions, one has to solve
the entire problem anew by initially assuming the ex-
istence of two sublattices and this obviously. compli-
cates the diagonalization of the reduced trial density
matrix pp?(i j ) In f.act, one can show that a cubic
equation appears in this case, but nonetheless, the
problem can be solved theoretically. Finally, it
should be pointed out that it is only a matter of com-
puter time to carry out further calculations on the

'

three-dimensional half-filled-band Hubbard model for
structures other than simple. cubic, for example, the
body-centered cubic structure with q = 8, and the
face-centered cubic structure with q =12. One can
also examine the non-half-filled-band cases by using
various values of (n;) other than 1.

APPENDIX A: RIGOROUS CONSTRUCTION OF THE REDUCED TRIAL DENSITY MATRICES

The actual building of the complete one-site reduced trial density matrix prt?(i) and the basic mechanics of
matrix [p$" (i?, . . . , i„)] construction has been published, '3 and it was shown that

((I —n, t)(1 —n;I)) (c, t (I —n;I)) (c, i (1 —n;I)) (c;Ic;I)
((I —n; I) c; I) (n;I(1 —n;I) ) (c,Ic;I) —(c;In; I)

p&'I() =
((1 ??'I) O'I) (O'IC I) (n'I (I n I) ) ('C'In I)'

(c tc » —(n, tc, l) (n, tc? I) (n?1n;I)

(AI)

0 1

0 0
Jt 00

0 0

OO OO1 O

00 OOO-1
0 1 ~ '~-'~~-

O O O O

0 0 000 0

However one can always interpret e& or e& as two-

For the construction of prt? (i,j), the 16 possible
states of occupancy are defined in the following
order:

I00), cjtt I00), Cj?I I00)

cjlcjt I0», ;I I0», c, lcjl I00)

'I JI I )' ~I JI Jj I00)

c;I I00), C, ICJI I00), C, ICJI I00)

c'
I cJ I cj I I 00), c ?I c, I I 00)

C'IC'ICJI I00), c ?le ttcJI I00)

ci I ci I cjI cjI I
oo )

t

where I00) represents the state with both the i th and

j th sites empty.
Note that in the one=site representation,

site operators e; 1& or 1;e& where 1; and 1& are unit
operators on the i th and j th site, respectively, but in
the two-site representation these two-site operators
should be represented by square matrices of order 16.
In this regard, one can show that

e; 1&=e; 8I4, 1;e& =I4'8 e& (A2)

where the symbol 8) stands for direct product, ' and

0
I4= 0

0

000 1 0 0 0
100 0 —1 0 0
O 1 O

'4'=
O O -1 O

001' 0 0 0 1

The same rules (A2) are followed in order to
represent creation operators. In general, since every
two-site operator can be decomposed into a product
of creation and destruction operators, the correspond-
ing 16 x 16 matrices can now be obtained by simple
matrix multiplications. For example,

c, cj nj = (c; . S 14)(14' Scj ) (14' Scj" )(14' Scj —' )

= [c,t (14')?] 8 (14cj cj cj )—
=(c,'14') is(cj nj )
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~here the following matrix identities have been used:

(A 8B)(C 8D) = (AC) S (BD)

1

l4 for even n

lq' for odd n

for any i and j; o., X = [ or )
Using the commutator-anticommutator identity

[AB,C] = A [B,C] + [A, C]B
=A (B,C) —(A, C)B

Thus, using direct-product theory, the complete two-
site reduced trial density matrix pP (i,j ) can be con-
structed and is displayed in Ref. 24,

APPENDIX B: FERMION ALGEBRA

Since orie is considering electronic systems which
obey Fermi-Dirac statistics, the basic anticommuta-
tion relations are given by

(Cl~, egg) /5J 5(pg, (c,~,c)~ ) —(C;~,egg} —0

one can easily show that

n; = n;, [n, , n~„] =0.2 =

[n;, cjoy]
= —5,&5 „c;

[n;,c&„]=5&5 „c;t

Making use of the latter relations, it is straightfor-
ward to prove that, for the Hubbard Hamiltonian (2),

gt
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