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A new, simple method for treating the short-range correlations in a one-positron, many-
electron system is proposed. The method puts the emphasis on a real-space representation of
wave functions. Our ultimate goal is to apply this method to situations in which the electron
density is nonuniform, such as a metallic surface. In the present paper, we concentrate on the
case of a uniform electron gas, which provides a useful test of the method. Our results for the
total annihilation rate are well behaved at all densities, tend to the positronium limit at low den-
sity, and agree with experiment for simple metals. We show that the total rate is insensitive to
electron-electron correlations, although such correlations could affect the momentum depen-
dence of the partial annihilation rate measured in ahgular-correlation experiments. The exten-
sion of the method to nonuniform systems is briefly sketched.

I. INTRODUCTION

Few problems exhibit the importance of correlation
effects as clearly as positron annihilation in metals.
A basic quantity of interest in this problem is the an-
nihilation rate R, given by!?2

R=x [ @7 (G.(F)pp(P)) . a.n

where p.(p,) is the electron (positron) density opera-
tor and A =me*/m?c? is a constant. At zero tempera-
ture, the average in this expression should be taken
in the ground state of the N-electron, one-positron
system. If one neglects correlation effects entirely,
this equation reduces to

R=x [ &70.®)|w,(®) 1.2)

where p.(T) = (p.(T)) and ¥, is the positron wave
function. It is well known that rates computed from
Eq. (1.2) are substantially smaller than found experi-
mentally."? The reason is that the attractive
Coulomb force between the positron and the elec-
trons enhances the electron density near the positron,
so that the correlated average in Eq. (1.1) can be
much larger than the independent-particle prediction
(1.2). Much work has been devoted in the last fif-
teen years to the theory of this "many-body enhance-
ment" of the annihilation rate in a uniform electron
gas, and the behavior of the total annihilation rate for
metallic densities is now fairly well understood.

Many problems of experimental interest, however,
are still awaiting a complete theoretical solution.
Such problems include the effects of band structure
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on the annihilation rate, the momentum dependence
of the partial rate R, which is measured in angular-
correlation experiments, the possible trapping of posi-
trons near metal surfaces and more generally the
behavior of positrons in nonhomogeneous electron
systems. Our initial motivation for undertaking the
present work was to develop a simple theory of
electron-positron correlations that could be success-
fully applied to these problems, and to use the uni-
form electron gas as a test for determining the validi-
ty of the theory. Using our method in the simple
case of a uniform electron gas turned out to be more
fruitful than anticipated, however. Not only does our
theory reproduce previous results for the annihilation
rate at metallic densities, but it also provides a
smooth transition between the high- and low-density
limits, provides a new interpretation of the partial an-
nihilation rate and sheds light on the respective roles
of electron-positron and electron-electron correla-
tions. We have therefore chosen to devote this paper
to the case of a uniform electron gas; possible im-
provements and generalizations will be briefly
sketched in Secs. IV and V.

In the absence of correlations, the electron density
in the independent-particle formula (1.2) contains
contributions from all occupied electron states. To
lowest order, these are simply plane waves with wave
vector K inside the Fermi sphere. If-one assumes
that the positron has thermalized before annihilating,
its wave function is a plane wave with K=0. The ef-
fect of the electron-positron interaction is to cause
transitions in which an electron is scattered from K to
K +4, while the positron is scattered from 0 to —q.
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Because of the Pauli principle, the wave vector of the
intermediate electron states must lie outside the Fer-
mi sphere. In this way, Kahana® obtained a t-matrix
equation for the electron-positron scattering ampli-
tude, which can be used in Eq. (1.1) to calculate the
annihilation rate R. The results are in good agree-
ment with experiment for the nearly-free-electron
(NFE) metals Al, Li, and Na, i.e., those NFE metals
for which the electron-gas parameter r, is less than
about four. The same method can be used to calcu-
late the partial annihilation rate R, which is measured
in angular-correlation experiments.>* The results
again agree with experiments on Na and Al,>¢
although in the case of Al band-structure effects
must be taken into account.

The t-matrix approximation is based on a high-
density expansion in powers of rg, and as with all
electron-gas problems it is difficult to justify this ex-
pansion for values of r; in the metallic range
(r¢ ~2—6). Many-body corrections to the t-matrix
approximation have been investigated by Carbotte
and Kahana,’ who find a surprising amount of can-
cellation between some higher-order contributions.
Sjélander and Stott® went beyond perturbation theory,
and generalized to the electron-positron case the
strong-coupling approach developed by Singwi et al.®
to treat the electron gas. Their results for the total
annihilation rate are very similar to those of Ref. 7.

The approaches outlined above suffer from a com-
mon problem. When the calculation is extended to
values of rs larger than four, one finds that the
predicted rate R diverges. In particular, the rate
predicted for Cs(r, =6) is much higher than experi-
ment. The breakdown of the theory was pointed out
by Crowell et al.'® for the +matrix approximation,
and by Sjolander and Stott for their own theory. A
similar divergence shows up in apparently unrelated
approaches such as that of Arponen and Pajanne,!!
which is based on a collective description of the elec-
ton gas. The divergence of the annihilation rate in
these approximate theories is due to an excessive
buildup of charge in the vicinity of the positron. The
common origin of the divergence must lie in the
neglect of the repulsion energy which would in reality
prevent the excessive accumulation of electrons near
the positron.

The first theory that succeeded in eliminating the
divergence is that of Bhattacharyya and Singwi,'? who
added nonlinear corrections to the theory of
Sjolander and Stott. The role played by the nonlinear
correction is precisely to include correlation effects
between the electrons which contribute to the density
enhancement near the positron. Further insight into
the nature of the divergence was provided by Lowy
and Jackson,!® who showed that the divergence arises
from an incorrect description of bound states.

Although free of divergences, the theory of Bhatta-
charyya and Singwi does not reproduce the correct

low-density limit for the annihilation rate. When

rs — oo, the many-body effects should become negli-
gible. One expects that the positron will capture an
electron to form positronium (Ps), which will move
almost freely in the surrounding low-density gas.

The annihilation rate should therefore tend toward
the value R =2.0 nsec™!, the spin-averaged annihila-
tion rate of free Ps. The theory of Bhattacharyya and
Singwi, however, predicts a rate which tends continu-
ously toward zero.!* Leung et al.'* proposed an al-
ternative theory, which exploits the analogy between
the problem of positron annihilation and the screen-
ing of a heavy impurity in an electron gas. Although
their theory works well in the low-density limit and
predicts a rate that tends toward the spin-averaged Ps
value, the validity of the theory is difficult to assess
in the high-density limit in view of the approxima-
tions used for the positron kinetic energy.

In Ref. 14, Leung et al. point out that the true low-
density limit of the annihilation rate may be that of
the Ps~ ion, as suggested by Ferrell!> some time ago.
Ferrell estimated the annihilation rate of Ps™ to be
~3.2 nsec !, 50% larger than the spin-averaged Ps
rate. This estimate however, was based on a one-
parameter variational wave function which yields a
binding energy of about 0.20 eV. The correct value
of the binding energy, obtained from a better varia-
tional wave function, is 0.33 eV.!'®* A more accurate
wave function for Ps~ was calculated by Ferrante!’
who finds that the electron density at the positron
and the annihilation rate of Ps™ are nearly equal to
the corresponding quantities in neutral Ps. More-
over, the small binding energy of Ps~ is reflected in
its larger size. Since the binding of an extra electron
presumably occurs when the density of the electron
gas is comparable to that of the outer electron orbital
in Ps~, we will assume that the "correct" low-density
limit of the annihilation rate for reasonable values of
rs is the spin-averaged Ps value.

This paper is organized as follows. In Sec. II, we
will outline our approach to electron-positron correla-
tions. The approach is based on a variational princi-
ple, in which the energy of a trial wave function is
minimized. The wave functions that we consider can
be freely adjusted in the vicinity of the positron,
where the influence of the positron potential is
strongest. Far away from the positron, our wave
functions reduce to the noninteracting ground state.
Minimizing the energy leads to a set of coupled
Schrodinger equations which are derived in Sec. III.
There, we also present expressions for the induced-
electron density and the partial annihilation rate. We
conclude that Sec. III with a discussion of the relaxa-
tion energy, which involves collective excitations
neglected in our simple variational treatment. An ap-
proximate expression for these collective contribu-
tions will be derived. The results of our calculations
are discussed in Sec. IV,
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II. OUTLINE OF THE PRESENT APPROACH

We now turn to the description of our approach to
electron-positron correlations in a uniform electron
gas. The main reason for studying the uniform case
is that we want to get an estimate of the accuracy of
our approximation by comparing our results to those
of previous approaches, most of which deal with a
uniform electron gas. The generalization to the
nonuniform case will be outlined in Sec. IV.

In the following, we will use the "relative coordi-
nate" representation introduced in Ref. 14. Let
W (T, Ty, ---,Tx) be the wave function of the one-
positron, N-electron system. Tp is the coordinate of
the positron, and Ty, -- -, Ty are the electron coordi-
nates. We define a new wave function ¢ by the
equation

Y (To, Ty, -+, TW) = (T, Ti —To, ., T —T0) , (2.1)

where T, is the center-of-mass coordinate.

The advantage of this transformation is that the posi-
tron coordinate drops out of the transformed Hamil-
tonian, which becomes (£=1)

N_.2
?*2 E i

3|

A 0
H= + +
[2(N +1)m] 2m 2m
2 2
N 2.2)
i>j Ty i T

The first term is the center-of-mass kinetic energy; P
is the (conserved) total momentum of the system
and will be taken equal to zero in the following. The
next two terms are the electron and positron kinetic
energies, while the last two terms represent the
electron-electron and electron-positron interaction,
respectively. Were it not for the positron kinetic en-
ergy, the Hamiltonian (2.2) would describe an elec-
tron gas with a positively charged impurity at the ori-
gin.'* However, the finiteness of the positron mass
leads to recoil effects which must be taken into ac-
count.

Since the positron coordinate has dropped out of
the problem, we will not mention it explicitly. The
problem is now to determine the wave function of an
inhomogeneous N-electron system with Hamiltonian
(2.2). Fortunately, we do not need a complete solu-
tion of the N-electron problem. We are interested in
quantities such as the annihilation rate, which only
involve the short-distance behavior of the wave func-
tion. Hence, it is sufficient to find a wave function
which is accurate near the origin.

J
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Our philosophy will be to start from the Hartree-
Fock (HF) description of the electron gas, and to
modify the HF ground state so as to include correla-
tion effects near the origin. The HF ground state,
denoted by |0), is a Slater determinant in which all
plane-wave states with wave vector k less than kf are
occupied. The first step of our analysis is to realize
that the HF ground state can be equally well
described in terms of localized states. To be specific,
consider the state | o) defined by

lo)y =[2/p]'*¥ (D) ]0) 2.3)

where ¥,(T) is a Fermi field operator which annihi-
lates an electron with spin o and p is the average
electron density. It is easy to see that |o) is also a
Slater determinant, in which one electron orbital is
missing. The (normalized) wave function of the
missing-electron is

-
- 12 dk i+
a0 =0/p1" f, e 2.4)
Obviously, the HF ground state can be recovered
from |0') simply by recreating an electron in the state
(2.4). Thus we have

0y = [ #Fag(rn ¥l)]o) @.5)

where ¥ is the field conjugate to ¥. The wave
function ay is, in a sense, the most localized orbital
that can be made out of occupied plane-wave states.
Hence, it is natural to expect that a( will also be the
orbital which is most affected by the presence of the
positron at the origin. This suggests that an approxi-
mate ground state for the Hamiltonian (2.2) could be
obtained by allowing the orbital in the right-hand side
of Eq. (2.5) to be different from a,. We are then led
to the following ansatz for the ground state:

|b) = B10) +;}7 s e i@, @)y
2.6)

Normalization requires that fd3Tb2(r) =1-282% and
for B to be determined unambiguously we must re-
quire that p be orthogonal to the occupied states

fb(r)e—fﬁd3“=0, k < kr . 2.7

We could now determine b(r) by minimizing the ex-
pectation value of the Hamiltonian (2.2) in the trial
state (2.6), subject to the above constraint for the
wave function b(r). However, in order to calculate
the momentum dependence of the partial rate R, it is

necessary to consider the following generalization of
(2.6):

la.b) =B10) +——2fd3?b(r)‘if,1(?)fdJT"a(r')‘i/,,(?')IO) : (2.8)

21/2
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where a(r) is a normalized wave function. In Sec.
ITI, we will show that the Fourier transform of this
wave function is closely related to the partial annihi-
lation rate. For a(r) to be determined unambiguous-
ly, we must impose the requirement

fd"r"a (r) e ®T=0, k>kp . 2.9)

In view of Eq. (2.5), our earlier ansatz (2.6) is a spe-
cial case of Eq. (2.8), obtained by setting
a(r) =ay(r).

Equation (2.8), together with the restrictions (2.7)
and (2.9), describes the class of trial ground states
which will be used to calculate the annihilation rate.
Before getting into the actual calculation of thé orbi-
tals a and b (which will be discussed in Sec. I1I), we
wish to make a few qualitative remarks on the impli-
cations of Eq. (2.8). Our ansatz has a simple in-
terpretation when 8=1 — € is close to unity. To ord-
er e, the trial state (2.8) can be obtained from the
uniform HF ground state by replacing the orbital
a (r) (which is doubly occupied) by the distorted or-
bital

(1—€/Dalr)+b(r)/212 .

Since only one electron of each spin is involved in
this replacement, it is clear that the short-range
correlations built into the trial state (2.8) have
single-particle character.

The screening effect, which is responsible for the
accumulation of electrons near a positively charged
impurity, is usually described in terms of collective
excitations (e.g., the random-phase approximation
(RPA) or its nonlinear generalizations>!?). Yet, our
ansatz (2.8) only contains a single electron-hole exci-
tation. To try and reconcile these seemingly contrad-
ictory descriptions, it is useful to simplify the prob-
lem and let the positron mass become infinite. The
problem then reduces to determining the response of
the electron gas to the Coulomb field of a proton.
Let us further simplify the problem by looking at the
high-density limit, where perturbation theory can be
used. To first order in the electron-proton potential,
an occupied plane-wave state IE') is transformed into
a scattering state | k) given by

L s
REREEAS> =

A . S— ) T
k'>kF k2/2m —k'2/2m ‘

(2.10)

where
Vi =—4me/| K —K'|?

and Vis the volume of the system. In RPA, ¥ also
contains the Coulomb potential of the induced charge
which must be determined self-consistently. Equa-
tion (2.10) can be rewritten as an equation for the
perturbed many-body ground state ll) in terms of

the unperturbed ground state [0)

H-l+ls 3 3l

o k<kpk'>kp k*/2m —k/2m

t

x dk'.oﬁk,olo> . a1

Here, 4, , annihilates an electron with wave vector K
and spin o. When one calculates the induced-
electron density p, to the same order in V, the only
terms in Eq. (2.11) which contribute to p, are those
with K'=K=q. For g >> kg, the induced density
could equally well be calculated from the approximate

- ground state

n=-1y-+-33 3 d¢. ol o10)

Vi
o k<kpk'>kg k'*/2m
(2.12)

since k is less than kr and can be neglected compared
to k'. The sums over k and k' in Eqs. (2.10)—(2.12)
are now decoupled, so that the state ll') is of the
separable form (2.8). Thus, we find that the ansatz
(2.8) for the perturbed ground state can account for
the large ¢ components of the induced-charge densi-
ty, hence for the short-range behavior of the wave
function in real space.

If one is interested in the small ¢ (long-range)
components of the induced density, however, it is
clear that Eq. (2.12) no longer provides a valid ap-
proximation. In particular, the total induced charge
in the state |1') vanishes [as it does in our ansatz
(2.8)], since p, —0 as ¢ —0. To obtain the correct
limit 5, — 1, one must allow for collective excitations
of the electron gas in which all the orbitals away from
the proton are pulled in so as to screen the Coulomb
potential at large distance. These collective excita-
tions are represented by the terms with kK~k'in Eq.
(2.11), which cannot be approximated by a separable
electron-hole excitation as in (2.12).

To summarize the above discussion, we can say
that a state containing a single excitation such as Eq.
(2.12) provides a correct description of the short-
range behavior of the exact ground state. However,
one should add to Eq. (2.12) a "collective contribu-
tion" which is negligible close to the proton but is
dominant away from it. A more quantitative discus-
sion of these two contributions will be given in Sec.
IV, where we will compare our results to those of
Almbladh et al.'®* Whether or not the collective con-
tribution can be neglected depends on the quantity
one is interested in. It is clear from the definition
(1.1) that the total annihilation rate is a local quantity
for which a wave function of the form (2.8) should
provide an adequate approximation. Other quanti-
ties, such as the relaxation energy, depend in an

/
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essential way on long-wavelength density excita-
tions.!” A simple approximation for the collective
contribution to the relaxation energy will be discussed
in Sec. 1L

1. EFFECTIVE SCHRODINGER EQUATIONS
The goal of this section is to derive effective

Schrodinger equations for the electron and hole orbi-
tals that enter the trial ground state (2.8). These

equations will be derived by requiring that the expec-
tation value of the Hamiltonian in the trial ground
state be a minimium. This expectation value can be
expressed in terms of averages of products of field
operators in the noninteracting ground state, whose
evaluation is straightforward if somewhat lengthy.
We may without restriction we will assume that a and
b are real, and since our problem has spherical sym-
metry we will assume that both have s-like character.
The relevant averages can be written as follows:

2 2
S P | —a-py|4 3.1
—med3r[drb(r)] a B)[dra(r)]] 3.1)
H, =——fd3"n——b(r) +(1 - ﬁz)[——a(r)]] (3.2)
Hy=-208 [ @Fab) <~ [Tr(rE+ - [PTa(rE (3.3)
ee—-—fd’?d""b(r)b(r)—I—-—I—G(lr—r |)+(1—ﬂ2)fd3?d3—'a(r)a(r') En ‘ G(T-1'
—fdz"d3"' lb(r)2a (r)2+2fd3"d3_”a(r)b(r) —a(r)b(r') . (3.4

In these equations, H,(H,) is the expectation value
of the electron (positron) kinetic energy, and
H,(H,,) is that of the electron-electron (electron-
positron) Coulomb interaction. We have subtracted
from H, and H,, the corresponding HF energies of
the uniform N-electron system, so as to obtain ex-
pressions that are independent of the volume. We
have assumed that the electron gas is immersed in a
uniform background of positive charge in order to
avoid electrostatic divergences in H,, and H,. We
have also used the fact that a (r) is normalized to un-
ity and b(r) to the smaller quantity 1 — 82, and we
have taken into account the Pauli principle restric-
tions (2.7) and (2.9). The various terms in Egs.
(3.1)—(3.4) have the following interpretation:

(a) H, is the change in kinetic energy due to the
excitation of an electron from the orbital a to the or-
bital b.

(b) The positron kinetic - energy can be written as
1/2m (( K. +k,,)2), where K, and k, are the electron
and hole wave vectors in the trial state (2.8). Since
the cross-term (Ee ~l?,,) vanishes for spherically sym-
metric orbitals, we are left with a contribution similar
to Eq. (3.1) except that the hole term is now positive.

(c) The last two terms in H,, represent the
enhancement in Coulomb attraction resulting from
the replacement of a (r) by b(r). The first term is
what we call the "hybridization" contribution to the
energy. This term arises because the occupied states
are no longer plane-wave states. At high densities, 8

I
is near unity and b is of the order of the small quan-
tity (1 — 892 due to the normalization condition.
The hybridization term is then linear in (1 —g2)!/2
‘and provides the dominant contribution to the poten-
tial energy.

(d) The quantity G (r —r') in the expression for
H,, is defined as

(J’:(T) ch(?’)> =[p/22ag(|T-F]) .

see Eq. (2.3). The first term is the energy arising
from exchange between the excited electron and N
electrons inside the Fermi sea. The second term is
minus the exchange energy of the orbital a (r), which
becomes empty upon excitation of an electron. The
third term is the direct interaction between the excit-
ed electron and the positive background. In the uni-
form state, the background charge is exactly cancelled
by that of the electrons. Since an orbital a (r) has
been removed, however, the excited electron sees a
net charge ea’(r). Finally, the last term serves two
purposes: first,. it partially cancels the exchange ener-
gy of the excited electron, and accounts for the fact
that the excited electron can undergo exchange
processes with only N-1 electrons rather than N as
the first term in H, indicates. Second, it accounts
for the repulsion energy between two excited elec-
trons of opposite spin.

Having calculated the energy of our trial state
(2.8), we may now derive the effective Schrodinger
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equations satisfied by a () and b(r). Neglecting H,,
for the moment, the effective Schrodinger equations
for a and b are obtained by minimizing

He+Hp+He,—E{B2+fd3? bz(r)l
and ‘
HE+H,,+HE,,~E'fd3_r'az(r) ,

respectively. E and E' are Lagrange multipliers which
take care of the normalization conditions. In view of
the Pauli principle restrictions (2.7) and (2.9), it is
convenient to rewrite Egs. (3.1)—(3.3) in terms of

the Fourier transforms

b (k) =[p/21'7 f d*F e=*Th (r) (3.5)
and
a(k) =lp/" [ PFeFTa(r) . 36

The effective Schrodinger equations are then ob-
tained by taking functional derivatives with respect to
b(k) for k > kg, a(k) for k < kg and B. The equa-
tion for B is simply

EB=-2" [ @ a (b () (er) 3.7

and the momentum-space equations for « and b are

K? - &K' soon_4me? Ji12 ~con_ dme? -
— +e¢, b(k)—},. b(k')——= ———=£Eb(k), k >kr ,
2m ep{a} ( ) ‘fk>k’, (2,”)3 ( )|k_k'2 B.rk<k (2 )3 ( )|k—k"2 ( ) F
(3.8)
- 47re 4mre’ -
- B2 k -2 b(k")—= =E'a(k), k <kg . (3.9)
A=) foop, s grs B s e = .
¥
The positive quantity €, {a} is defined by the equations for a and 4. These potentials are
_ 3=t n2 e
€, lal fd’r——a(r)z (3.10) V'°°-a(r)—fd o) T-7| (.13)
= 3=t n2 e
We now discuss the contributions of H,, to the ef- Vioe(r) fd Fa(r) |T—7| G.14)

fective Schrodinger equations. The first two terms in
Eq. (3.4) yield contributions

le,la} — e (k)b (k)
and
(1= ek)a(k)

to the left-hand sides of Egs. (3.8) and (3.9), respec-
tively. The exchange energy €,(k) is given by

k +kp

— (3.11)
[k — kr|

_e Lep2
Ex(k)— kp‘l’?(kp/k—k)ln
mw

and €, |a} is the average of €,(k) calculated in the
hole state @ (k)

_l K
exlal m)?

The third term in H,, gives rise to local potentials in

a(k)e. (k) . 3.12)

Ved) ) = =phes(k)all) + ], (2 )s
d

(Veeb) (k) = lex a} — €, (k)16 (k) + K>ky Q)T

Finally, the last term in H,, gives rise to nonlocal po-
tentials V,;, and V,;,. The Fourier transforms of
these potentials are given by

an,n ( -E: E’)

_l6me’ & b(k+Pb6(K'—7)
o Qm)? PR . (3.19)
an,b(E'E')
_léwe? &7 a(k+a(k'-q)
ol s " . (3.16)

We may summarize our results in terms of the con-
tributions (V,.6) (k) and (V,.a) (k) which must be
added to the left-hand sides of Egs. (3.8) and (3.9)
when the electron-electron contribution to the energy
is included. We find

[Vn,a(k K) = Viea(K=KD1a (k") , 3.17)

[V,,,b(k K) = Vie s (K=K16(K") (3.18)
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where 17,05_,, and Vloc‘,, are the Fourier transforms of
the local potentials (3.13) and (3.14).

The variational ground state (2.8) is completely
determined by the effective Schrédinger equations
(3.7)—(3.9), with the electron-electron contributions
(3.17) and (3.18). Once these equations have been
solved, it remains to express the experimentally ob-
servable quantities in terms of the electron and hole
orbitals. In the remainder of this section, we derive
expressions for the partial annihilation rate, the total
rate, the induced density, and the relaxation energy.

The partial annihilation rate R, is the contribution
to the total annihilation rate from electron-positron
pairs having total momentum p. In our relative coor-
dinate representation, R, is given by

where ﬁ,, is the total momentum operator for elec-
trons and ld)) is the exact ground state. The mean-
ing of this equation is clear: after annihilation, the
electronic wave function is ¥ +(0)|#). The momen-
tum of the annihilating pair must be the total
momentum F“,‘ of the (N +1)-particle system (which
we assumed to be zero), minus the amount of
momentum left in the system after annihilation,
which is precisely the quantity expressed in the
right-hand side of Eq. (3.19). With our ansatz (2.8)
for the electronic wave function, the expression for
R, can be reduced to expectation values of products
of field operators in the noninteracting ground state.
A straightforward but lengthy calculation yields

R, =2\B%0(kr—p) +——1§b(0)d(p) +—2pAb(0)25 (@)2
p
+A f dTe T T2G (1) A4,(r) —a(HAB,(r) .

(3.20)

As before the Green function G (r) is defined as
(¥ Yo »(0)). The functions 4, and B, are de-
fined by

_2 &K w2
A,(r) (2")3 a(k) 3.21)
Bz(r)——f CK_o%T (k)2 (3.22)

Q)3
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Note that normalization requires
A,(0)=1, B,(0)=1-p8% .

The total annihilation rate is obtained by integrating
R,, which yields

R =\p+5(0)2+2(2)28a (0) 5 (0)
-1-8Ya02 . (3.23)

Next, we calculate the induced-charge density
8p(r) defined by

3p(r) =3 (¥ DIV, (T)|9) . (3.24)

The calculation is again straightforward, and one
finds after some algebra

3p(r) =2(2)'2Ba (r)b(r) + b(r)?
-1 =8Ya(r)? . (3.25)

We conclude this section with a discussion of the
relaxation energy E, of the positron. £, can be de-
fined as the amount by which the ground-state ener-
gy changes when the electron-positron interaction is
turned on. Since we have subtracted the energy of
the uniform HF ground state from the energy aver-
ages (3.1)—(3.4), the relaxation energy £, predicted
by our variational principle is

E\=H,+H,+Hy+H, . (3.26)

A little reflection shows that the right-hand side of
this equation is in fact equal to E, the eigenvalue of
the Schrodinger equation (3.8). Unfortunately, relax-
ation energies calculated in this way turn out to be
too high. Formally, we may use the Feynman for-
mula and write E, in the form

== [ e ([ PTEGUD —p)ye, G2D)

where the subscript indicates that the average should
be calculated assuming the positron has charge e’. It
is clear from this expression that E, is a sensitive
function of the induced density far away from the po-
sitron, unlike the total rate (1.1) which only involves
the electron density at the origin. As discussed in
Sec. II, our ansatz underestimates the induced densi-
ty far from the positron, hence also the absolute
magnitude of the relaxation energy.

To see how this defect of our theory could be
corrected, it is instructive to look at the high-density
limit. Since the RPA should become exact in this
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limit, Eq. (3.27) becomes

3= 2
Ecz_L d°q 4me 1 1l 328
2 Q2w gt |e(g) 3.28)

Here,
e(q) =1+ @me?/qH)m(q)

is the RPA dielectric function, but 7 (q) differs
slightly from the Lindhard function due to the recoil
energy of the positron

A S 2

32
Q)3 (K+3)2+ ¢ — k> (3.29)

w(q) =8m

Equation (3.28) is similar to the expression used by
Bergersen and Carbotte.!® Taking r, —0 in this equa-
tion, we find E, = —% (e2g1p), where g1p ~ 1/(r)1?
is the Thomas-Fermi wave vector. The main contri-
bution to £, comes from the region ¢ ~ gz << kf in
Eq. (3.28), which implies that most of the correlation
energy arises from long wavelength, collective excita-
tions in the electron gas. The relaxation energy
predicted by Eq. (3.26), however, only includes
short-range excitations and tends to a constant as

rs —0.- To see this, observe that the kinetic energy
term in Eq. (3.8) dominates the other terms contain-
ing b(k), and assuming d (k) =1 one finds

bk) =" Bme, (k) /k? Kk > kr . (3.30)

The normalization condition then gives

a2 (LR s
1-8 [p f(2”)3b(k) 00d)

so that 8 =1. Equation (3.7) for B8 then yields

4 d*k
- fk>kp(‘2;)76x(k)z/k2 .33

Rewriting the integral in terms of the variable

x =k /kr, one finds that £ =0(1) as r;,—0. If one
now uses Eq. (3.27) to calculate @ (k) from Eq. (3.9),
one finds that @ (k) depends weakly on k, with a
maximum at kr. We should in principle go back to
the equation for b and iterate until seif-consistency is
achieved, but it is clear that only quantitative changes
would result.

In the low-density limit, it is easy to see that 8 —0
and Eq. (3.8) reduces to the Schrodinger equation of
Ps in terms of center-of-mass coordinates. As dis-
cussed in the Introduction, the only effect of collec-
tive excitations in this limit would be to transform Ps
into Ps~. Since the binding energy of Ps™ is small,
the relaxation energy essentially reduces to the single
excitation contribution £, = —% a.u.

For intermediate values of s, the contribution £,
of collective modes to the relaxation energy can be

estimated from the following physical argument. Let
us write the total induced density as

Pind(’)=Pl(’)+Pc(’) , (3.32)

where p; is calculated with our ansatz (2.8) and p, is
a collective contribution. Although p; alone leads to
a vanishing induced charge li.e., —e | &*Tp,(r) =0],
it tends to cancel the charge density ¢ 8(T) of the po-
sitron at short distances. We may look at p, as the
response of the electron gas to the charge density
e8(T) —ep;(r). Since the potential induced by this
charge density is much weaker then the bare potential
—e?/r, we may calculate p, in linear response theory.
The dielectric constant that relates p. to the potential
should in principle take into account the presence of
a particle-hole excitation in the wave function (2.8).
However, in the high-density limit where the collec-
tive contribution is important, we have seen that
B=1in Eq. (2.8), so that the variational ground
state essentially reduces to the uniform HF ground
state. We may then use the RPA dielectric function
and write p. in the form

pelq) = (1-pi(g)) , (3.33)

_ 1
: e(q)]

where p. and p, are the Fourier transforms of p. and
p1. The corresponding approximation for the collec-
tive contribution to the relaxation energy is then

g1 d*q 4me?
coll ™ 7 (271_)3 qz

x—p@P|——1] . (3234
e(q)

In the high-density limit, 5,(g) is much less than un-
ity for ¢ < kp, so that one recovers Eq. (3.28). At
low densities, p;(q) rapidly increases to a value close
to unity, while the last factor in the integrand of Eq.
(3.34) tends to zero as q/kr becomes large. Since

kr ~1/r, tends to zero, we see that E.,; vanishes in
that limit.

For intermediate values of r;, we do not expect the
RPA formula (3.34) to be accurate. First, the distor-
tion in the wave function (2.8) near the origin be-
comes important, so that the dielectric function used
to calculate p, should be that of the distorted state
rather than the noninteracting state. Second, the
presence of an extra "screening charge" will add new
contributions to the effective Schrodinger equations
for the electron and hole orbitals.” We will show in
Sec. IV that such corrections could significantly modi-
fy the momentum dependence of the partial annihila-
tion rate. Although some of the simplicity of our an-

“satz would be lost, including these corrections would

be worth the effort since much work has been devot-
ed to the observation of partial rates. We hope to re-
turn to these problems in a future publication.
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IV. RESULTS AND DISCUSSION

An often used criterion for deciding the validity of
a theory of positron annihilation is whether the
theory can reproduce the experimental annihilation
rates in simple metals. Less attention has been paid
to the partial annihilation rate R,, which will be dis-
cussed in this section along with other quantities of
interest. Following tradition, we have plotted in Fig.
1 the annihilation rate R as a function of r, for me-
tallic densities. The continuous curve was calculated
by solving numerically the effective Schrodinger
equations derived in Sec. III. For the electron orbital
b we use a mesh of 200 points separated by 0.2 a.u.
in real space. The values of the Fourier-transformed

hole orbital were specified at 20 equally spaced points .

between 0 and kr. The Coulomb contributions
(3.17) and (3.18) were included in the calculation,
and the annihilation rate was calculated from Eq.
(3.23). The experimental results of Weisberg and
Berko® for Al, Mg, Li, Na, and K are indicated by
open circles. The full circle is the rate for Al report-
ed by MacKenzie er al.,* which is in better agree-
ment with recent experiments.?! Although the agree-
ment between theory and experiment is quite good,
the experimental data contain contributions from
band structure and core annihilation effects which are
not included in the theory. Bhattacharyya and Singwi
estimate'? that core annihilation contributes about
15% to the total annihilation rate of the heavier ele-
ments. Correcting the data of Weisberg and Berko in
this manner, we obtain the squares in Fig. 1 which
are in better agreement with the theory of Ref. 12
than with ours. Band structure and core annihilation
effects are not quantitatively understood, however,
and one will have to wait for satisfactory treatments
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FIG. 1. Annihilation rate in nsec™! as a function of s, in

atomic units. Continuous curve: present theory; dashed
curve: theory of Ref. 12. The circles are the experimental
values of Weisberg and Berko (Ref. 2); the squares
represent the valence electron contribution as estimated by
Bhattacharyya and Singwi (Ref. 12).

of such effects before using experimental data as an
accurate test of electron gas theories. Given that un-
certainty, our theory does as well as previous ones
(Refs. 3, 8, 12—14) for r, < 4. At low densities, our
theory yields a rate which tends smoothly toward the
Ps value, in contrast to the ~matrix approximation?® !°
which leads to a divergence and to the theory of
Bhattacharyya and Singwi which yields a vanishing
rate."? 4

The total annihilation rate is proportional to the to-
tal electron density at the position of the positron.
Much more information can be obtained from the in-
duced density 8p at finite distance from the positron.
According to Eq. (3.25), 8p is the sum of (a) a hy-
bridization contribution 2(2)'28a (r)6(r), (b) an
electron contribution 6(r)?2, and (c) a hole contribu-
tion —(1 —B%a(r)%. These three contributions are
plotted in Fig. 2 for ry=3.1 (top) and 4.1 (bottom).
The hybridization contribution dominates as r;—0,
since in that limit 83— 1 and 6 (r) is normalized to
the small quantity 1 — 8% For r, — 3, the electron
and hybridization contributions are about equal. The
electron orbital remains-quite localized, and resem-
bles the wave function of Ps (for which
p(0) = %77 =0.040). The oscillations in 5 (r)? at

r 2 rg come from the requirement that b(r) be
orthogenal to the occupied electron states. The hole
orbital, on the other hand, becomes less and less lo-

rg =3.07

DENSITY (a.u)

x 100

-0 \ 2 /

: s
-02(— 2 ,

FIG. 2. Contributions to the induced density from hy-
bridization (dashed curves), electron (continuous curves)
and hole (dash-dotted curves) terms. For comparison, the
electronic density at the origin in positronium is 0.040 a.u.
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calized as r; increases. The reason for this behavior
is not difficult to find: it is the result of.a competi-
tion between the "hybridization energy" (the first
term in the expression (3.3) for the average
electron-positron interaction) and the Coulomb repul-
sion between the positron and the hole (the last term
in the same expression). At high densities, 8 is large
and the hybridization energy dominates, leading to a
localized hole. At low densities, 8 —0 and the repul-
sion term dominates, pushing the hole orbital away
from the positron. -

The above discussion sheds light on the rather re-
markable agreement between the rate predicted by
many different theories in the range 2 < r; < 4.

Since electron-gas correlations are important in that
range, one would have expected that differences in
the treatment of correlation effects would lead to a
significant spread in the predicted values of the an-
nihilation rate. The induced densities depicted in Fig.
2 suggest that correlation effects should in fact play a
marginal role, since the electron orbital is localized
within a region smaller than a sphere of radius r;. To
confirm this interpretation, we have repeated our cal-
culations without the Coulomb contributions (3.17)
and (3.18) to the Schrodinger equations. We find that
the resulting change in R is small (about 1% for

re =2 and 5% for r;=4), although individual terms in
Egs. (3.17) and (3.18) have a large effect on R. The
smallness of the overall change must be due to a
large amount of cancellation among the electron-
electron contributions. There is an interesting paral-
lel between this result and that obtained by Carbotte
and Kahana,’ who also found a near cancellation of
higher-order contributions to the +~matrix approxima-
tion. In view of the considerable differences between
our approach and that of Ref. 7, it is likely that the
cancellation is not accidental, but reflects the fact that
the annihilation rate is dominated by short-range ex-
citations.

As a further test of our approximation, we have
calculated the induced-charge density in the limit of
an infinite positron mass. The Schrodinger equations
(3.8) and (3.9) and the Coulomb contributions (3.17)
and (3.18) are easily adapted to this case, and have
been solved numerically for r;=2.2. If we add to Eq.
(3.25) the contribution (3.33) of collective exci-
tations, we obtain an induced-charge density which
agrees with the results of Almbladh et al.'® to within
5% at distances from the origin less than 2 a.u. Re-
peating the calculation for rg =4, we again obtain
good agreement at short distances, although the
Friedel oscillations in our calculated induced density
are smaller than found in Ref. 18. This is probably
due to the inadequacy of the RPA formula (3.33) at
low density.” As discussed in Sec. 111, the collective
contribution to the charge density is small in that re-
gime, so that the error introduced by the RPA at
short distances is not significant.

Returning to positron annihilation, let us discuss
the partial rate R, given by Eq. (3.20). It is con-
venient to use the "enhancement factor” €(p),? de-
fined as R,/R; where R =2\ is the Sommerfield
partial rate. Our results are qualitatively similar to
those of Refs. 3 and 7, where it is found that; (i)
e(p) increases monotonically from 0 to kg, and (i)
e(p) is negligible for p > kr. However, the max-
imum in our e(p) curves is much more pronounced
than found in Ref. 3. According to a recent investi-
gation of the Kahana equation,? the extrapolation
procedure used in Ref. 3 is incorrect and the ~matrix
formalism predicts a singularity in e(p) for p = k.
This would be consistent with our numerical results.
Interestingly, the enhancement factor calculated by
Kahana® is in very good agreement with the angular
correlation experiments of Donaghy and Stewart?® on
Na. The sharper maximum found here and in Ref.
22 thus spoils the agreement between theory and ex-
periment. The quantity that is measured experimen-
tally is (apart from a normalization constant)

k ’ k
Ny=J" a ke(k)/j;de ke(k) . “.1)

For a free-electron gas, e(k) =1 and the above equa-
tion becomes N,% =1—(p/kg)?. The continuous
curve in Fig. 3 is the deviation N, — N9 from free-
electron behavior predicted by our theory for r; =4,
The dashed curve is the prediction of the -matrix
theory as calculated by Kahana,® which agrees very
well with the experimental data.?> The dash-dotted
curve shows the result of the improved ~matrix cal-
culation of Ref. 22. As in our discussion of the total
annihilation rate, we must emphasize that the experi-
mental determination of N, involves the substraction
of a (p dependent) core contribution and that there
are uncertainties associated with this procedure.
However, the discrepancy between our results and
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FIG. 3. Deviation from free-electron behavior of the nor-
malized counting rate, Eq. (4.1), for r;=4. Continuous
curve: . present theory; dashed curve: theory of Ref. 3;
dash-dotted curve: theory of Ref. 22.
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those obtained in the matrix formalism is significant
and deserves some discussion.

The excessive bulge predicted by our theory is a
consequence of the rapid increase of the enhance-
ment factor €(p) near kr. To understand the physi-
cal origin of this increase, let us go back to the ex-
pression (3.20) for the partial rate. The main contri-
butions to R, are the terms involving b(0)a (p),
whose momentum dependence is governed by that of
the hole orbital @ (p). At low densities, one finds
that this orbital tends to be concentrated in a thin
shell p = kr in momentum space. This corresponds
to an extended orbital in real space, and we saw in
our discussion of the induced density that the origin
of this behavior is the repulsion energy between the
positron and the hole. One possible reason for the
excessive delocalization of the hole orbital may be
that some of the correlation effects neglected in our
theory tend to cancel the positron-hole repulsion.
The effective Schrodinger equations do not account
for the collective contribution p to the induced-
charge density [Eq. (3.32)], which ensures that the
total induced charge is —e. Physically, one expects
that p. will be spread over a region of size ~r;
around the positron. Although the additional
Coulomb potential due to p, would be too weak to
affect the localized electron orbital b(r), it would be
strong enough to prevent the hole orbital from escap-
ing to infinity in the low-density limit.

We may summarize our discussion of the annihila-
tion rate as follows. The total annihilation rate
depends only on the shape of the electron wave func-
tion near the origin, which in turn is determined by
the strong electron-positron attraction. In particular,
the total rate is insensitive to the shape of the hole
orbital. We have repeated our calculation, assuming
that @ (p) =1 [or equivalently using a trial ground
state of the form (2.6)]. For r,=4, we find that R
increases by a mere 1%. The partial rate, on the oth-
er hand, directly reflects the momentum dependence
of the hole orbital. Since the hole extends over a re-
gion of space of radius comparable to r,, the partial
rate provides a probe of electron correlations away
from the positron. Our discussion suggests that an
improved theory of the partial rate could be obtained
from a more careful treatment of collective effects,
such as outlined at the end of Sec. III.

Next, we discuss the relaxation energy E. of the
positron. According to the discussion in Sec. III, £,
is the sum of the single-excitation contribution E,
given by Eq. (3.26) and a collective contribution E
given by Eq. (3.34). We find that for 2 <r; <35 the
single-excitation contribution is nearly constant,
E,=-0.29 Ry. This is consistent with our analysis
of the high-density limit carried out in Sec. III.
When our estimate (3.34) of the collective contribu-
tion is added, we obtain the curve shown in Fig. 4
where the result of Bhattacharyya and Singwi?* is also
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FIG. 4. Relaxation energy (in a.u.) as a function of r.
The continuous curve is obtained from the present theory,
the dashed curve from Ref. 24.

plotted for comparison. The agreement is not bad,
given the crudeness of our estimate of the collective
contribution. [t is also interesting to compare our
value of E| to that obtained by Bergersen,? who also
used a variational method. His trial function can be
described in terms of ours in the following way. If we
set 8=0 in our ansatz (2.8) and made the special
choice d (k)% « 8(k — kg) for the hole wave function,
we obtain the s-wave contribution to Bergersen’s trial
function. The remaining contributions are similar,
but involve partial waves of higher order. There are
two main differences between his and our wave func-
tions: (a) due to the lack of hybridization (8=0),
Bergersen’s relaxation energy tends to zero as r; —0
while ours remains finite; (b) the presence of
higher-order partial waves in his wave function yields
a lower positron kinetic energy, and in the region

rs >4, where hybridization becomes less important,
his relaxation energy is lower than our E,. Since
higher-order partial waves do not contribute to the
density enhancement at the origin, it is clear that
Bergersen’s wave functions include some of the col-
lective effects which we have estimated in Eq. (3.34).
This again points out the need for an improved treat-
ment of correlation effects.

Finally, let us briefly indicate how our variational
method could be applied to nonuniform systems.
The relative coordinate representation which we have
used up to now must of course be abandoned. In the
spirit of the Kohn-Sham local density approxima-
tion,?¢ it is natural to look first at systems in which
the electron density is a slowly varying function of
position. In that case, one expects that the electronic
wave function will be largely determined by the local
electron density at the position of the positron. A
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natural generalization of our simple ansatz (2.6) is then (neglecting spin for simplicity)

l¢) = | @Fo®V V() [Boin + | @F b o IV IT+TNT (D) |O) , (4.2)
P

where b, is the variational wave function appropriate
for a uniform gas of density p and the subscripts dif-
ferentiate between electron and positron field opera-
tors. Minimizing the energy leads to an effective
Schrodinger equation for the wave function of the
"dressed" positron. To leading order, the contribu-
tion of electron-positron correlations to this effective
Schrédinger equation is a local potential E,[p(T)].
Gradient terms will give rise to negative contributions
arising from the polarizability of the dressed positron
as well as positive contributions coming from the
density dependence of the variational wave function.
We plan to explore these ideas further in a future
publication.

V. CONCLUSION

The main result of this investigation is that a wave
function of the form (2.8) containing a single
electron-hole excitation can account for most of the
correlation effects which are important in positron
annihilation. Our approach provides new insight into
the nature of these correlations and their effect on
observable properties. The success of our theory in
explaining the behavior of the total annihilation rate
stems from the fact that the density enhancement
resulting from the electron-positron attraction is

r

highly localized in space. The relaxation energy and
the partial annihilation rate are more sensitive to the
long-range tail of the induced density, for which a
single-excitation wave function is not adequate. We
have argued, however, that collective contributions to
the induced density could be treated in linear
response theory, since the positron potential is par-
tially screened by the electron-hole excitation present
in our variational wave function. A generalization of
our variational calculation, including such collective
excitations, should shed light on the momentum
dependence of the partial annihilation rate.

Since our method is variational, it lends itself to
systematic improvement. The emphasis in this paper
has been on the uniform electron gas, which best il-
lustrates the basic physical principles. Most impor-
tant applications, however, involve nonuniformities
which arise from band-structure effects or from the
presence of surfaces or vacancies. It is hoped that
the simplicity and the flexibility of our approach will
make it a useful tool for the quantitative analysis of
such nonuniform system.
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