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We study the transitions to 2 X 2 ordered states which can occur in the triangular and honey-
comb lattice gases with first- and second-neighbor repulsions only. A simple renormalization
group which preserves the symmetry of such states, but not that of the (\/§>< \/-3-) R 30° phase,
is employed. We find that the 2 X 2 phases exist in a very narrow region of density. In addition

to phase diagrams, specific heats are calculated.

I. INTRODUCTION

There has been considerable activity recently, both
experimental and theoretical, in the area of order-
disorder transitions on surfaces.!™” Such transitions
are attractive experimentally because they occur in a
multitude of physisorbed and chemisorbed systems
and can be studied by numerous techniques. They
are also of theoretical interest for several reasons. In
physisorbed systems in which the interactions are of
short range, the transitions are thought to be in
universality classes which have been of particular in-
terest.! A case in point is the transition to a
(V3 x+/3) R30° structure which occurs in systems
adsorbed on a triangular lattice for a certain range of
interaction parameters. This transition is predicted?
to be in the class of the three-state Potts model, a
prediction which has received experimental sup-
port.>* Several theoretical calculations of the prop-
erties of these systems have been carried out by vari-
ous methods and for various interaction strengths
with considerable agreement between theory and ex-
periment.*~’ In chemisorbed systems, the determina-
tion of critical exponents is more complicated both
theoretically and experimentally: theoretically be-
cause the presence of long-range forces® will cause
the exponents to change from their short-range
values to (unknown) long-range values within some
(unknown) region near the critical temperature®; ex-
perimentally because the limited coherence of present
electron beams precludes the determination of ex-
ponents by low-energy electron diffraction (LEED),
the usual probe. However, calculation of the phase
diagram permits a determination of the values of the
short-range interactions which are of considerable in-
terest.

A transition which is of particular interest for both
physisorbed and chemisorbed systems is that to a

2 X 2 structure on substrates which present either a
triangular or honeycomb array of adsorption sites.
This transition has been predicted!® to be in the
universality class of the four-state Potts model whose
critical exponents are believed to be known. Experi-
ments on physisorbed systems which undergo such a
transition would therefore be of great interest. Two
chemisorbed systems which undergo this transition,
O on Ni(111),'" and H on Ni(111),"? have recently
been studied permitting interaction strengths to be
extracted.

In this paper we calculate the phase diagram and
specific heat of a system which exhibits the 2 x 2
transition; the triangular lattice gas with repulsive
first- and second-neighbor interactions. The 2 x2
transition on the honeycomb lattice is also studied.
Section II is devoted to the triangular case. Qualita-
tive features of the phase diagram which can be ex-
pected from ground-state energy arguments and con-
sideration of symmetry are presented in Sec. [IA. In
Sec. I B the approximate renormalization-group
methods we employ are discussed and in Sec. II1 C the
results are presented. The 2 X 2 transition on the
honeycomb lattice is discussed in Sec. III. We con-
clude with a brief summary.

II. TRIANGULAR LATTICE GAS WITH FIRST-
AND SECOND-NEIGHBOR REPULSION

A. Expected phase diagram

We consider a two-dimensional gas of atoms which
are restricted to a triangular lattice. They interact
with a repulsion of strength u;, u, between first- and
second-neighbors, respectively. A chemical potential
wu determines the density n. As is well known, such a
lattice gas is isomorphic to an Ising model with re-
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duced Hamiltonian

_BJC=K ES,SJ"}‘L 2 S;SJ
@) (i)

+H 3 S+NC S=+%1, (2.1
i

where the first and second sums are over nearest-
and second-nearest-neighbor interactions, respective-
ly. In addition K and L, which are negative (antifer-
romagnetic), are given by K =——1-Bu1, L =——:—Bu2.
Also

H =218 —3Bu; +uy) —1n\3/vol
and
= %[ﬁllo —3Buy +up) —1nNy/vl

where A7 and vy are the thermal wavelength and area
of the primitive cell of the substrate, respectively.
Thus we have a spin system with first- and second-
neighbor antiferromagnetic interactions in the pres-
ence of a magnetic field.

Several aspects of the phase diagram can be estab-
lished from a combination of ground-state energy
arguments and the Landau-Lifshitz theory of
second-order phase transitions. As we are interested
in physical applications we restrict our attention to .
the regime for which the ratio L/K =a does not
exceed unity.

Consider the ground state. It is clear from the na-
ture of the interactions that there are only four kinds
of ground state to be considered; (i) the paramagnet-
ic phase, (ii) the 2 X 2 phase shown in Fig. 1(a), (iii)
the (v/3 xv/3) R30° phase of Fig. 1(b), and (iv) the
2 x 1 phase of Fig. 1(c). A comparison of the

(2x2)
(a)
[ ] . . [ ) . - . o . ® .
. ° . . ° . ° .
o . . [ ] . ® 0 o . o
. ® . . . [ ) . .
W3x/3)R30° (2x1)

(b) (c)

FIG. 1. Three ordered ground states which can be ob-
tained with repulsive first- and second-neighbor interactions:

(@) 2x2, (b) (/3x+/3) R30°, (c) 2x1.

ground-state energies of the three ordered phases and
the paramagnetic phase at zero temperature yields the
following information:

Forl1=a > % (a) the 2 x 1 phase exists for

|H/K| <21 +a), (b) the (v3 x+/3) R30° phase
does not exist at 7=0, (c) the 2 x 2 phase exists for
2(1+a) < |H/K| <61 +a). For % =a, (a) the

2 x 1 phase exists for |H/K| < 12a, (b) the

(v/3 x/3) R30° phase exists for 12a < |H/K|

< 6(1 —3a), (c) the 2 x:2 phase exists for

6(1—3a) < |H/K| <6(1+a).

Additional information is obtained from the
Landau-Lifshitz!? theory of second-order phase tran-
sitions. As details of the analysis have been present-
ed elsewhere,! we simply quote the results. The 2 x 1
states can be reached by a continuous transition from
the disordered system only for H =0. At this point
the transition is in the class of the Heisenberg model
with cubic anisotropy. At nonzero field continuous
transitions from the disordered system are to a 2 X 2
state and in the class of the four-state Potts model.

(a)

agl!/5

(V3x+/3)R309

kgT=I/IKI

120 6(1-3a)
H/IKI

6(l+a)

(b)

1/5<ax<l

171Kl

2 (1+a) 6(l1+a)
H/IKI

FIG. 2. Schematic phase diagram for two ranges of a, the
ratio of the second- to first-neighbor repulsions: (a) a less
than %, (b) a between % and 1.
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Transitions from 2 X2 to 2 X 1 symmetry can be con-
tinuous and are in the class of the ferromagnetic Is-
ing model. Where transitions from the disordered to
the (+/3 x+/3) R30° phase occur, they are in the
class of the three-state Potts model. The above in-
formation leads to the schematic phase diagram of
Fig. 2, which is symmetric about H =0. Of note is
the lens-shaped region of 2 X 2 symmetry at lower
temperatures. The reader should not envisage that
the particular 2 x 2 state shown in Fig. 1(a), and
which represents the 2 X 2 ground state which exists
at zero temperature for a finite region of H, is a good
representation of the system in the lens-shaped re-
gion. Instead consider the most general state of 2 X 2
symmetry shown in Fig. 3, in which lattice-gas occu-
pations on identically labelled sites are the same. The
particular state of Fig. 1(a) corresponds to the special
case A =B =C # D or one of its permutations. In
the lens-shaped region we expect the occupations to
be almost equal in pairs; 4 = B # C = D for exam-
ple. The reason is that this state can make a continu-
ous transition to the 2 x 1 state which corresponds to
the special case 4 =B # C = D or permutations
thereof.

The difference between the two 2 X 2 states can be
easily formulated in terms of the Landau-Ginsburg-
Wilson Hamiltonian which describes the transition to
the ordered state characterized by a three-component
order parameter ¢; (i =1,2,3). This Hamiltonian is,
to fourth order in ¢,

Hiow=r 2,01 + 3, (V)* + upops

+w (D +v 3yl

Just below the transition the largest anisotropic term
is the cubic term which, for ¥ # 0, favors a 2 x 2 state
for which || = |y2| =|ws]. This corresponds to
three sublattices being equally occupied. As the tem-
perature is lowered, the anisotropic fourth-order term
must be considered. If v is negative, this term also

L] o L L[]
A B A 8
¢ D ¢ )
L] L] L] L]
A B A B
¢ 0 ¢ b

FIG. 3. Most general labeling of a 2 X 2 state. Lattice-gas
occupations of indentically labeled sites are the same.

favors the state in which three sublattices are equally
occupied and the ground state of Fig. 1(a) will ulti-
mately be reached. If v is positive however, this
term favors the state |y, ]| = |y,| =0, 3 #0, which is
in fact a state of 2 X 1 symmetry. In the lens-shaped
region, the terms in ¥ and v are in competition.

It should be noted that the ground-state energy ar-
guments cannot identify any. phases which exist solely
above some finite temperature. For example there is
no (v/3 x~/3) R30° ground state for L/K > ;— It is

conceivable, however, that this phase could be stable
at finite temperatures. This could also be the case
for other ordered phases. Thus it must be recognized
that the information obtained in this section is not
necessarily complete.

B. Approximate renormalization-group
calculation

We now develop a position-space renormalization-
group (RG) calculation appropriate to the study of
the Hamiltonian of Eq. (2.1). In a previous publica-
tion® we have studied the transition to the (~/3 x/3)
R 30° phase for the case of L =0, using a
renormalization-group calculation based on dividing
the original triangular lattice of adsorption sites into
three separate sublattices. To study the 2 x 2 and
2 x 1 ordered phases, represented in Figs. 1(a) and
1(c), it can be seen that a division of the lattice into
four sublattices is appropriate. This is illustrated in
Fig. 4. In what follows, we shall confine our atten-
tion mainly to the transition leading to the 2 x 2 and

B c

A A

B c
c B

D A ‘ A D
X D X

¢ c B B
B X c

A D D A

A
B B c c

FIG. 4. Division of sites into cells. Each cell contains
three sites from one sublattice only. Crosses denote four
different cells used in the renormalization group.
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2 x 1 phases, and thus a four sublattice formulation
of the problem shall be employed, even though the
(/3 x/3) R30° structure cannot be adequately
described in such a manner.

Once the lattice has been divided into sublattices
appropriate to describe the ordered phases of interest,
one must then choose a suitable grouping of lattice
sites to form cells. As has been demonstrated in pre-
vious calculations,>!* it is crucial that the choice of
cells reflect the underlying symmetries of interest in
the system. Foremost among these, in the present
case, is the requirement that the four sublattice sym-
metry, which is essential in describing the 2 X 2 and
2 x 1 ordered states, be maintained under the
renormalization-group transformation. Thus, if the
initial state of the system is one of the possible 2 x 2
states, a state in which only the A sites are occupied,
for example, then one must guarantee that this state
will be mapped onto a renormalized system in which,
again, only A sites are filled. With complete sym-
metry in the way the A4, B, C, and D sublattices are
treated, all possible 2 X2 and 2 x 1 states will be thus
preserved. The cells shown in Fig. 4, each of which
consists of three-site spins chosen from a single sub-
lattice, will clearly preserve the sublattice symmetry.
The RG described here consists of choosing one of
these cells from each of the four sublattices (e.g.,
those cells marked with an x in Fig. 4) so that each
sublattice is treated equivalently. Thus a total of
12 spins are considered. Note that while the above
choice has been designed to preserve the 2 x 2
and 2 x 1 states, it fails to preserve the (/3 x /3)

R 30 ° states since these cannot be represented in
terms of four sublattices. In fact, a system initially in
a (v/3 x+/3) R30° state will be mapped to a
paramagnetic state on the first iteration of this RG.
Only a larger calculation, involving more sublattices
and more cells, can simultaneously preserve the
2x2,2x1, and (+/3 x+/3) R20° ordered states.

We now study the four cells chosen above by em-
ploying the cell-cluster method of Niemeijer and van
Leeuwen, ' together with the standard majority-rule
projection of site spins to cell spins. Also, the 12

spins we consider are taken to be periodically extend-
J

~B3%(H.K.L,P,ORC)=H 3.S,+K 358,+L 3
i @ @

where the primes denote summation over the ap-
propriate groups of spins.

The partial partition functions are now calculated in
the standard fashion.!® The notation to be used is
Z(S4,S8,5¢,Sp), where this stands for the partition
function calculated when the cells 4, B, C, and D are
constrained to have cell spins equal to
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FIG. 5. Interactions which are propagated by the renor-
malization group. Two-spin, three-spin, and four-spin in-
teractions are shown in (a), (b), and (c).

ed over the entire lattice, and the cell spins, similarly,
will be treated periodically. This choice of periodic
boundary conditions will guarantee that the correct
zero-temperature behavior, as depicted in Fig. 2(b),
will result. As the transformation does not preserve
the (/3 x /3) R30° state, its phase boundaries at
zero temperature will not be obtained.

As is generally the case with RG transformations,
additional interaction parameters, not present in the
original Hamiltonian, will be generated under itera-
tion of the group. These additional interactions will
include interactions among all possible subsets of the
cells which define the RG. Since, in this case, the
RG is defined in terms of four cells, it is possible to
generate interactions coupling zero, one, two, three,
and four spins at a time. The zero-spin interaction is
simply the constant term which contributes to the
free energy, while the single-spin interaction is the
magnetic field. The possible two-, three-, and four-
spin interactions are shown in Fig. 5. Note that the
four cell spins form a diamond-shaped configuration,
and the possible interactions are represented by the
solid lines. Two-spin interactions can connect
nearest- or next-nearest neighbors and these interac-
tions are designated by K and L, respectively.
Three-spin interactions can be of two types, labeled P
and Q, and the four-spin interaction, R, couples all
four spins in the diamond-shaped figure. Thus the
most general Hamiltonian which transforms under
the present RG is

5S,+P 38855 +03 S8S+R "SS5S +NC ,
A

2.2)

r

S4, Sz, Sc, and Sp, respectively. Since the parame-
ter space consists of seven independent interactions,
including the zero-spin interaction, seven indepen-
dent partial partition functions are necessary to speci-
fy them all. However, only five partition functions
are independent; namely, Z (++++), Z(+++-),
Z(++—-), Z(+——-), Z(———-). This results
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from the fact that all the sublattices are treated
equivalently, and thus, Z (S, Sz,S¢,Sp) is invariant
under arbitrary permutation of its arguments. There-
fore, the only independent partition functions are
simply those for which zero, one, two, three, or four
cell spins are "down". As a result, all seven interac-
tion parameters cannot be uniquely specified. In fact,
the recursion relations are found to be

i N ZEHHD 22+ +)
ST 7 row—

. Z(+++H)Z(———-)
K'+L'=51In P T— ] :
' i1 N ZEH+H Z2 ()

L 2.
R o a— e 29
R' = p | ZGAD 2G4 Z (- =)

192 Z(————) Z¥(+++-) '

C'=3C + o InlZ (+++4) Z*(+++-) Z8 (++—-)
x ZH(+——=)Z (———)] ,

so that only the combinations K'+ L' and P'+3Q'
can be determined, and not K',L',P', and Q' indivi-
dually. Of course in the initial Hamiltonian all in-
teraction parameters can take on any value one may
choose; only after iteration of the RG do K',L' and
P',Q' lose their individual identity. Thus on subse-
quent iterations it is necessary to assign a relationship
between K', L', P', and Q'. As no obvious way ex-
ists to distinguish between the various two- and
three-spin interactions, the simple choice K'=L"' and
P'= (' has been used throughout. With this prescip-
tion, plus the recursion relations (2.3), we are now in
a position to calculate all quantities of interest within

the context of our approximate renormalization group.

C. Results

The RG developed in Sec. II B will now be studied
in detail. We begin by considering the ferromagnetic
transition, for which an exact solution is known.'®
The result for the critical coupling is K. =0.181
(0.275 exact), while the two relevant exponents are
vy =1.388 (1.875 exact) and y; =0.64 (1.0 exact).
The fact that these results are significantly smaller
than the corresponding exact values is consistent with
our previous experience’; namely, that sublattice re-
normalization groups of the type presented here sys-
tematically underestimate critical exponents.

Consider now the antiferromagnetic regime, that is,
the Hamiltonian of Eq. (2.1) with both K and L neg-
ative (i.e., repulsive). The expected behavior for this
case has been represented schematically in Fig. 2.
The phase diagram which results from our RG treat-

ment is determined by the intersection of the global
(H,K,L,P,Q,R) critical surfaces with the surface K,
L <0, P=Q =R =0. Figure 6 shows the phase di-
agram for the particular case L = K (note that this
choice of L =K for the initial Hamiltonian has no
connection with the choice made above of L'=K',

“which holds only after the first RG iteration). This

phase diagram is in qualitative agreement with recent
Monte Carlo simulations.!” However, significant
differences do exist between the behavior found here
and that which was outlined in Sec. Il A. In particu-
lar, the region around H =0 does not possess the
lens-shaped feature shown in Fig. 2, but rather exhi-
bits only a single transition. Furthermore, for H =0
the system should exhibit a transition in the univer-
sality class of the Heisenberg model with cubic aniso-
tropy, and for nonzero H the transition should have
the critical behavior of the four-state Potts model. It
follows that one would expect a fixed point at H =0
which is relevant with respect to the magnetic field,
and that another fixed point, possibly the same one
that governs the low-density 2 X 2 phase, would con-
trol the transition for finite “lelds. A fixed point is
found at H =0 for this approximate RG; however it
is irrelevant with respect to the field and thus
governs the entire high-density phase boundary.
Another fixed point is found which governs the low-
density 2 X 2 phase. Presumably, the magnetic ex-
ponent for the H =0 fixed point has been underes-
timated by this RG to the extent that it has become
irrelevant, thus changing the qualitative appearance
of the phase diagram.

08— —
(2 x2)
06— —

1/1KI
~
X

0.2

H/IK I

FIG. 6. Calculated phase diagram for the ratio a =1. The
ordinate and abscissa are temperature and magnetic field.
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FIG. 7. Same diagram as in Fig. 6 but converted to tem-
perature and coverage.

In Fig. 7 we have converted the phase diagram of
Fig. 6 to temperature versus coverage. Note, in par-
ticular, that the 2 X 1 and 2 X 2 transitions are peaked

1 1 .
about coverage 5 and -, respectively. Also, the

phase diagram is symmetric about n = % The fixed

point governing the 2 X 1 transition is located at
H*=P*=Q*=0, K*=L*=-0.341, and
R*=0.145. The relevant exponent is yr =0.886
which implies a« =—0.26. This is not too different
from the value yr =0.92 calculated by Domany and
Riedel.'® The heat capacity taken at n ='7 G.e.,
H =0) is shown in Fig. 8. The slope of the specific
heat is infinite.at 7,. As the ratio of the amplitudes
of the singularity above and below 7, is negative,
there is no cusp.

For the 2 x 2 transition the fixed point occurs at
zero temperature, and thus at infinite values of the

25 T T T T
2.0 a=1.0 ]
n=05 :
| .5 —
[+e]
E3
4
~N
o
1.0 -
05| _ .
0 | 1 1 1
07 08 09 1.0 I.1 1.2

T/Te

FIG. 8. Specific heat vs temperature at coverage of %
The ratio a =1.

6 a=10
n=025

o L | f 1 ! 1 1 ! L
05 06 07 08 09 1.0 LI 12 L3 14 I5

. 1
FIG. 9. Specific heat vs temperature at coverage -of e
The ratio a =1.

interaction parameters. In particular, H* = oo,
K*=L*=—o0o, P*= Q%= %00, R*=—00; and these
go to infinity in such a way that

+H* +6(K*+L*) t6(P*+3Q*) +12R*
=1 1n[+(v/85-9)]=-1.10

The relevant exponent for this fixed point is
yr=1.03, so that « =0.059. Thus the heat capacity
for this transition diverges as the temperature ap-
proaches T,.. In Fig. 9 the heat capacity at n = l— is
shown. The value of a expected for the 2 X 2 transi-
tion is that of the four-state Potts model, which is be-
lieved!® to be a= % Here, again, we see that our
sublattice RG greatly underestimates the critical ex-
ponents of the system.

Finally, while investigating this model for L =K is
instructive, we do not expect physical systems to be
well described by this condition. In fact, for phy-

| 1 1 | | |
020 021 022 023 024 025 0.26 027
n

(o]

FIG. 10. Region of existence of the 2 X 2 phase on the
triangular lattice for a =0.1. The region of existence for in-
finite nearest-neighbor repulsion, a =0, is the same.
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FIG. 11. Specific heat vs temperature at coverage of %.
The ratio @ =0.1.

sisorbed systems we expect that K >> L, and thus
we investigate our recursion relations for the limit in
which @ = L /K tends to zero. As a practical matter,
we find that calculations for @ =0.1 are sufficient to
yield the limiting behavior as a —0. We now consid-
er some results from our RG for a =0.1. First, since
K >> L it will be extremely unfavorable for nearest-
neighbor sites to be occupied, and thus the coverage
will not easily exceed one-third. Therefore, the 2 x 1
transition will not be seen, and so, in Fig. 10, we
show the 2 x 2 transition for @ =0.1. Note the small
range in coverage over which the transition is ob-
served, and also that the temperature scale is now
given by 1/|L]|. Second, in Fig. 11, we display the
heat capacity taken at a constant coverage n = 7’; Ex-

tremely close to the peak the specific heat must be
poor due to our incorrect exponent. It is hoped that,
as in our previous calculation, the results away from
T, are rather good.

III. 2 x2 TRANSITION ON
THE HONEYCOMB LATTICE

In order to study the transition to the nonprimitive
2 x 2 state of the honeycomb lattice shown in Fig. 12
we consider a lattice gas with first- and second-
neighbor repulsions of strengths #; and #,. The
problem maps onto the Ising model with the same re-
duced Hamiltonian as in Eq. (2.1). The sole differ-
ence is that a site on the honeycomb lattice has only
three nearest neighbors instead of the six of a tri-
angular lattice. This is reflected in the expressions
for the magnetic field and the constant term which
now read

H =21Bu—2Bu +2u) —InA}/vol

C =118p—28Gu; +2up) —InNb/vgl

FIG. 12. Nonprimitive 2 X 2 structure on the honeycomb
lattice.

As before, the reduced interactions, K =—%Bu1 and
= ——«l—,Buz, are negative.

The honeycomb lattice consists of a triangular Bra-
vais lattice with a basis of two sites per unit cell. It is
desirable to exploit this relationship and construct an
RG very much like the one described in Sec. 11 B.
We do this by carrying out a prefacing transformation
which maps the original system on the hexagonal lat-
tice to a renormalized system on a triangular lattice.
Once this has been done the RG of Sec. II B can be
used to carry out subsequent iterations.

To construct the prefacing transformation we
divide the hexagonal lattice into four sublattices,
shown in Fig. 13. Cells are now chosen to consist of
two spins both from the same sublattice and
represented by a dashed line in Fig. 13. Each sublat-
tice is treated equivalently and the total sublattice
symmetry is preserved. Furthermore, the cell spins
form the same diamond-shaped configuration
displayed by the cell spins in our triangular lattice RG
of Sec. II. Thus, performing one iteration of this
prefacing transformation will map the hexagonal lat-

FIG. 13. Division of the honeycomb lattice into four sub-
lattices. The sites are grouped into cells of two sites from
one sublattice. Dotted lines connect sites in the same cell.
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FIG. 14. Region of existence of the nonprimitive 2 x 2
phase on the honeycomb lattice for ¢ =0.1. The region of
existence for infinite nearest-neighbor repulsions, a =0, is
the same.

tice onto the triangular lattice, and in so doing, gen-
erate the same set of interaction parameters as be-
fore. Further, the 2 x 2 state of Fig. 12 is mapped
onto the 2 x 2 state of the triangular lattice.

For the prefacing transformation. eight spins are
used, and these are considered to be periodically ex-
tended over the lattice, as are the cell spins. Again,
the cell-cluster method of Niemeijer and van
Leeuwen is employed. The most general projection
operator for a two-spin cell can be written

p(8851,8) =51 +u(S,+5)51 ,

in which S; S, are the site spins and S’ is the cell spin.

. . 1 .
The choice used here is ¥ = 7, corresponding to ma-

jority rule with the following proviso; if the sum of
S1,8, is zero for a given state, then it is projected
equally onto S'= *1. Using this projection the partial
partition functions can now be calculated. Just as for
the triangular system, only five partition functions,
Z(+++4H), Z(+++-), Z(++—), Z(+——),

Z (———-), are independent. Moreover, since the
cell spins are in exactly the same array as in Sec. II,
the renormalized couplings are again given by Egs.
(2.3). So, Egs. (2.3) are used on each iteration, the
difference is that the partition functions used for the
first step (the prefacing transformation) will be dif-
ferent from those employed in subsequent steps.

Fixed points and exponents are, of course, those of
Sec. IIB. Thus universality has been incorporated in
a trivial way. Nonuniversal features do differ be-
cause of the different first step.

The parameter range of physical interest is presum-
ably that for which the nearest-neighbor repulsion is
very large so that a =L /K is vanishingly small. By
examining the phase diagram in temperature (in units
of the second-neighbor interaction) versus coverage,
we find that there is little change for values of a
smaller than 0.1. The diagram for this value of a is
shown in Fig. 14 for coverages near % Note that

1 . .
coverages beyond 3 are inaccessible, and the cover-

age range over which the phase exists is very narrow.
It is interesting to note that a continuous transition to
some 2 X 2 state in the system O on Ni{111) was re-
cently reported to occur in a very narrow coverage
range.!! Conversely, we have recently argued? that
the broad coverage range over which a transition to
the 2 x 2 state of Fig. 14 occurs in H on Ni(111) indi-
cates the presence of third-neighbor attractions in
that system.

IV. SUMMARY

The transition to a 2 X 2 structure on the triangular
lattice is in the particularly interesting class of the
four-state Potts model. We have studied a simple
model which displays this transition; the triangular
lattice gas with repulsive first- and second-neighbor
interactions. Qualitative features of the expected
phase diagram were extracted from symmetry and
ground-state energy arguments. A position-space RG
calculation was then employed which preserved the
symmetry of the 2 X 2 structure. The resulting phase
diagram has deficiencies in density regimes other
than the one in which we are interested. In that re-
gime it would appear to be an adequate approxima-
tion. A simple extension of the RG permitted calcu-
lation of the boundary of the analogous phase on the
honeycomb lattice. Results for the physically in-
teresting regime of large first-neighbor repulsion are
shown for the triangle and honeycomb in Figs. 10
and 14.°
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