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The addition of a BJS,"S&"-type coupling between the tunneling motion of one proton and the

tunneling motion of another to the Ising model in a transverse-field Hamiltonian, or the addi-

tion of the probably larger S,"F,"Q;-type pseudospin phonon coupling (describing the modulation

of the distance between the two equilibrium sites in an O —H 0 bond by nonpolar phonons},

results in a temperature-dependent renormalization of the proton tunneling integral. This is im-

portant close to T~, where the soft-mode frequency vanishes (vqr t 0. This may lead to large

isotope shifts in Tc on deuteration even for small values of the tunneling intergal and may ex-

plain some phenomena recently observed in PbHPO4 and squaric acid as well as the dependence

of the effective proton-lattice interaction constant on hydrostatic pressure in KH2PO~-type sys-

tems, This last effect may be also due to the presence of a S,"D,"Q; term in addition to the

Kobayashi S,'F, Q; term when coupling with polar optic phonons is taken into account. When

the lattice motion is so anharmonic that the lattice ions move in a double-well potential, and the

proton-lattice coupling so strong that the protons can tunnel in only one out of the two possible

lattice configurations, two Curie temperatures may appear.

I. INTRODUCTION

The pseudospin-
2

Ising model in a transverse field

(IMTF) has been extensively used to describe struc-
tural and, in particular, ferroelectric phase transitions
in hydrogen-bonded systems, where the transition is

triggered by the ordering of protons into one out of
the two equilibrium sites in the 0—H 0 bonds. ' "

The fact that the spontaneous polarization often ap-
pears in a direction which is perpendicular to the H

bonds has been accounted for by Kobayashi'by in-

troducing the coupling of the pseudospin proton tun-

neling modes with polar optic phonons. The IMTF
Hamiltonian is just a first approximation to the true
physical situation in systems like KH2PO4, where
four-body Sister-type interactions6 8 (which are in

KH2PO4 equivalent to introducing a pseudospin- —,

Hamiltonian) have to be included for a complete
quantitative fit of the thermal and dielectric prop-
erties, Nevertheless, it has been remarkably success-
ful in providing a consistent, simple, and qualitatively
correct description of both dynamic and static aspects
of structural phase transitions in widely different
classes of H-bonded solids such as KH2PO4, and

NaH3(Se03) 2, pseudo-two-dimensional squaric
acid, ' and pseudo-one-dimensional"" PbHPO4.
One of the most remarkable features of the IMTF
Hamiltonian is the prediction of the simultaneous oc-
currence of: (i) a soft proton tunneling mode'3'~

the frequency of which decreases on deuteration and
vanishes at Tc, (ii) an increase in the Curie tempera-
ture Tc on deuteration; (iii) a decrease in T~ with
increasing hydrostatic pressure" —or, what is the
same, increased tunneling probability' —leading to a
vanishing of ferroelectricity at high pressures. "' In
deuterated isomorphs, where the tunneling term is
smaller, ferroelectricity should vanish at much higher
hydrostatic pressure" ' than in undeuterated sys-
tems.

In all H-bonded systems studied so far these three
phenomena, which result from the presence of the
"tunneling" term, have been indeed found to coexist,
though the proton tunneling mode is, except at high
pressures, "usually overdamped,

Recent far-infrared, '8 submillimeter dielectric, '

and Raman' scattering experiments in PbHPO4 and
squaric acid, "however, seem to show some new
facts which cannot be, even qualitatively, explained
within the simple IMTF framework or the modifica-
tion introduced by Kobayashi, ' Whereas it follows
from the IMTF Hamiltonian that a significant isotope
shift in T~ on deuteration should be found only in
those systems where the frequency of the proton tun-
neling mode is comparable —though smaller —than
kT~, this rule seems to be broken in PbHPO4. " '
Here Tc shifts from Tc~=37'C to Tc 0=187'C on
deuteration, whereas the frequency of the "soft" pro-
ton mode (—I cm ') is by more than two orders of
magnitude smaller ' than k T~. At the same time
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another "hard" temperature-dependent proton tunnel-
ing mode has been observed below (but not above)
Tc.20 The situation is similar in squaric acid, where

TqH =97'C, Tc 0 =243'C and the sof' t-mode fre-
quency is rather low. "

The purpose of this paper is to investigate whether
the above phenomena can be understood within an
extension of the IMTF Hamiltonian where the effects
of the tunneling motion of one proton on the tunnel-
ing motion of another, either directly or via
pseudospin-lattice coupling, are taken into account.

In Sec. II a model Hamiltonian is derived which
takes into account the direct effect of the tunneling
motion of one H-bonded proton on the tunneling
motion of another, as well as the indirect coupling
between the tunneling motions via nonpolar and po-
lar optical phonons. The case of lattice motion so
strongly anharmonic that the protons can tunnel only
in one out of the two possible lattice configurations is
also considered. In Secs. III—VI the static and
dynamic properties of the above model Hamiltonians
are discussed in the molecular-field and random-
phase approximations.

It should be noted that the modulation of the tc.a-
neling integral and the pseudospin coupling constant
by acoustic phonons in H-bonded systems have al-

ready been discussed. '2 "
II. MODEL HA MILTGNIAN

A. Proton-phonon coupling

The total Hamiltonian of the coupled proton-
phonon system we are investigating is the sum of a
protonic term, a lattice term, and a proton-lattice in-
teraction term

brations

HL =
2 X(~e;P e.n-+~q, ega. g e,n-) ~

0.P

where Q~~, P~,~, and co~,~ are the normal coordinate,
momentum, and frequency of the pth lattice mode
with wave vector q.

The pseudospin-phonon interaction consists of
three different contributions

e, = JI,& i+0,~b&+H,~'i .

~(a) X gzFz g (sa)

describes the well-known interaction' of the pseudo-
spins with polar optical phonons, which makes the
two potential wells for proton motion unequivalent.

HI, on the other hand, describes the modulation
of the distance 2g between the two equilibrium sites
in the 0—H 6 bonds, and the resulting modula-
tion of the tunneling term 0 by nonpolar optic pho-
Ilons

0 (b) x gxpxg (sb)

This term provides an indirect coupling between
the tunneling motion of one proton and the tunnel-
ing motion of another, which may be larger than the
direct S,"S)"interaction.

Expanding the tunneling integral 0 in powers of
the lattice coordinates Q

n(g) =n(0)+ '

— g+",lan'
, 0

0 =Hp+HL+HI

The Harniltonian H~ of the "bare" 0—H 0 proton
system in a rigid lattice can be written in the usual
pseudospin-

2
operator formalism'

&.= —n X s'"—
—, X~v~'~f ;X&v~"—~&"

px
(lg i

If one, for the sake of simplicity, represents the
0—H 0 bond potential by a sum of two harmonic
potentials, displaced by 2(, one finds n as

(2) n =ED q exp(-q')4q (Sa)

where A is the proton tunneling frequency, .I) is the
pseudospin-pseudospin Ising interaction constant, and

8) measures the effect of the tunneling motion of
one proton on the tunneling motion of another. It
should be noted that the first two terms in expression
(2) represent just the usual IMTF Hamiltonian. '~
Whereas the tunneling term 0 is proportional to the
overlap integral s & 1 between the protonic wave
functions at the two equilibrium cmites in the
0—H 0 bond, 8 is proportional to the square of
the overlap, s2.

HL represents the usual Hamiltonian of lattice vi-

(= Co+ cg (8c)

one finds that F" is proportional to the tunneling in-

q' = 2mE()('/h'2

~here m stands for the proton mass and Eo is the
protonic vibrational zero-point energy in a given har-
monic potential well in the absence of tunneling. If
we further assume that the distance between the two
wells linearly depends on the phonon coordinates
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tegral fl

H&c) XSxD g (10a)

80 9$ = —(2 2 —1) Ac

, 0Q

F" is thus proportional to the overlap s and not to s
as the "direct" S"S"coupling constant. F" is positive
if the lattice vibration results in a compression of the
Q—0 bond distance so that c & 0. It should be noted
that F'g may be in some cases comparable to Q(0).

The third term in expression (3), HI"' represents
the coupling of the tunneling motion with polar optic
phonons. For crystals, which are not polar above T&,.

symmetry requires this coupling to be an even func-
tion of Q

In the above expression I stands for the lattice
ion tunneling integral which should be much smaller
'than its proton counterpart 0, ~hereas 4 measures
the possible asymmetry in the lattice double-well po-
tential.

In the following let us separately analyze the ef-
fects of the new terms we introduced in the model
Hamiltonians (2), (Sb), (10a), and (11).

III. DIRECT S"S"COUPLING

Let us first investigate the IMTF Hamiltonian with
the addition of the "direct" S,"S&" interaction term.
The Hamiltonian given by expression (2), can be in

the molecular-field approximation (MFA) replaced
b4

Ep = Ep(0) + dg~~ (lob)

so that one finds that BQ/Bg~ =0, 820/Bg~' =2D
where

D = —(2q —3) Ad
2Ep

(10c)

Polar optic phonons thus make the two potential
minima in the 0—H 0 bond nonequivalent [Eq.
(Sa) j and in addition produce a deformation of the
intervening potential barrier resulting in expression
(10a).

The deformation in the shape of the potential well
produces a fluctuation in Ep such as

HMFA (12)

The molecular field H; represents a vector in the
pseudospin space H; = (H„, O, H, ) with components

H, = 0 + X Bp (Sg") = 0 + Bp (S")
J

H, = X JIJ (S/) = Jp (S*)
J

(13a)

(13b)

In contrast to the usual IMTF not only H, but also
H„ is temperature dependent.

The thermal expectation values of the pseudospin
operators are now determined from the self-
consistency equations"

8. Proton-lattice pseudospin coupling (S") = —— tanh
1 Hx ~H
2 H 2

(14a)

Here we wish to present the model Hamiltonian for
the case where the lattice motion is so strongly
anharmonic that the lattice ions move in a double-
well potential and the proton-lattice coupling is so
strong that the protons can tunnel only in one out of
the two possible lattice configurations. In this case it
is convenient to describe the lattice motion in terms
of Pauli pseudospin- —, matrices

1

2
ga2

,
0

0
2

~X
1 0
2

and we can write the Hamiltonian of the coupled
proton-lattice pseudospin system

H = —0 $S,"(
2

—a.,') —
2 g J,)S,'SJ'

+ 5 $ a.,' —r R $a,"
i l

t

(Sg)
1 z

h pH
2 H

"n
2

(14b)

1

2n Pc& Jp= tanh
~o -&p,

,
2 Jp —~p

(1Sb)

The dependence of the transition temperature T~
on Bp is shown in Fig. I for two representative cases'.
(i) 20H ( Jp (undeuterated system) and (ii)
20o (( Jp (deuterated system). The transition tem-
perature of the undeuterated system T~ H decreases
continuously with increasing Bp and ferroelectricity

where H = (H2+H, ')' ' and P =1/kT Nonzero.
solutions for the spontaneous polarization, which is
proportional to (S*), are stable below the transition
temperature T&, This is given by

= tanh[ —,pc(O + Bp (S")c)l, (1Sa)
2 (0 + Bp (S")c)

0

where pc =1/k Tc and (S„)c = (S„)r .

Eliminating (S")c with the help of Eq. (1«), we
can rewrite Eq. (1Sa)
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200-

Deuterated: Q. = I'K, J0=850 'K

i ptgsq = J, &S*)Ssq~

I as;=(-J, &s) +B,&s))ss,"

+ (O' —Jq &S"))Ss'

i ~SS' =—n'SS"

(18a)

(1gb)
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FIG. 1. Dependence of Tc on the B&S,"S&"pseudospin

coupling constant Bp = QJ B&

i q ~ (r —r, )
where J»=$&Jie i ' as well as

i q (r -r.)
B, = Q, B„e'

The homogeneous system of linear Eqs.
(18a)—(18c) has a nontrivial solution only if the
corresponding secular determinant is identically equal
to zero. The resulting equation for the eigenfrequen-
cies is

vanishes (Tc 0) for

Bp~ Jp (16a)

O'= O+Bp(S") (16b)

In the same range of Bp values Tc 0 does not
depend on Bp so that the isotope shift in the Curie
temperatures (Tc o —Tc H)/Tc o continuously in-

creases with increasing Bp and reaches the value of 1

for Bp = Jp —20H. It should be noted that Fig. 1

closely resembles the experimentally observed depen-
dence of T~ on hydrostatic pressure" in KH2PO4 and
KD2PO4. In KH2PO4 T~ ~» 0 at -16 kbar, whereas
no vanishing of Tc D was observed in KD2PO4 even
at much higher pressures. " %e shall see later that a

similar effect is produced by the indirect S,"S&"cou-
pling via phonons (F"%0).

It should be noted that the presence of the S"S"
coupling term amounts to a temperature-dependent
renormalization of the tunneling frequency

i tp[ tp2+ O—'(O' —Jq &S"))+ Jp&S ) (Jp —Bq)] =0

One solution which corresponds to longitudinal ex-
citations is

Ql& =0 (20a)

The frequency of transverse excitations which
represent the free precession of the pseudospins
around the molecular field, is, on the other hand,
obtained as

CIJ2 3
O'(O' J» &S")) +Jp &S ) (Jp Bq) (20b)

and approaches zero as q 0, T T~, where Tc is
given by expression (15). It should be noted that the
B,S,"S", term renormalizes the soft-mode frequency
(20b). The renormalization effects are significant
only close to T~ where they, as discussed above, in-
crease the isotope shifts in Tc.

For T & Tc we get
The renormalization is not significant at high tem-
peratures, T ~. For T ~ Tc, however, we find

tp2 3
= O'(O' —Jq &S )), T ) Tc (20c)

Jp0'= 0 (16c)

Expression (16c) shows that the S"S"term may result
in a significant increase of the effective tunneling in-

tegral close to T~ if Bp is positive and close to Jp. In
such a case there will be a large isotope shift in Tc
even for a small value of O.

Let us now study the dynamic properties of the
above system.

Introducing collective variables as Fourier
transform of the pseudospin operators, ' we can
rewrite expression (2)

which is the same as in the IMTF model except for
0' instead of A. At high enough temperatures

0'=0 1+ 0Bp

4kT
(21)

I . S"qFqgq COUP NG

so that the soft-mode frequency is the same as in the
absence of the BS,"S&" term though T~ is different.

Let us now discuss the coupling of the pseudospin
tunneling motion with nonpolar optical phonons,
which results in an indirect S,"S&"coupling. The cou-
pling of S' with polar optical phonons5 is taken into
account.

and obtain the linearized random-phase approxima-
tion (RPA) Heisenberg equations of motion for the
spin deviation operators SS»e'"' = S» —&S ) as

OSp XJqSqS —q 2 XBqSqS q(17)—
q q
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The Hamiltonian of our problem is now

H 0 XSz
2 XJiS;Sj XS qFqzQq(1)

QSz Fzg (2) + 1

X X (P(p)P(p)

(~sg "' = SP "'

i ~sg "' = SP '"

i0)SP ' =—m Sg ') +F"qSS"

i~SP(2) =co—2 Sg"'+F' 5S'

(26d)

(26e)

(26f)

(26g)

+~»,qg» 'g~»')
~ (22)

H„= 0 + F" (Q (')
)

H, = J() (S') +Fo (Q(2))

~here

&g(1)) (Fz/ 2 ) &Sz)

(23a)

(23c)

where Qq
' is the normal coordinate of a nonpolar

optic phonon, interacting with S"and Q»
' the normal

coordinate of a polar optic phonon interacting with
$2

The thermal expectation values of the pseudospin
operators are —within the MFA —again determined by
the self-consistency equations (14a) and (14b). The
components H„and 0, of the molecular field are,
however, now given by

The above system of linear equations has nontrivial
solutions if the corresponding secular determinant
vanishes. The resulting equation for the eigenfre-
quencies of the coupled proton-phonon modes can be
written in the form

CUg' = Cdg +g2 2 2

01J) = 0"(0"—Jq (S"))

0"= 0+F" (Q
' )

J &Sz) +Fz &g(2))

~„4 = 0"lF,*l2(Sq,

(28a)

(28b)

(28c)

(28e)

((»' —0))'q) (01' —z»2'q) (z»' —4»2') ) —co„' (4»' —z01', )

—40c4(co2 —ra22») =0, (27)
where

0)4 g lFzl2 (Sz) (28f)

(Q"') = (F3/~2 0) (S') (23d)

Nonzero solutions for the spontaneous polariza-
tion, which is proportionai to (S ), are stable below
the transition temperature Tq. This is given by

The frequency of the longitudinal excitations, i.e.,
fluctuations parallel to the molecular field is zero
both above and below Tc.

For T ) T„(S')= (Q(") = cuc4 =0, and we find

20
Jo+ b —a

2 1

Pc0 Jo+ b= tanh—
2 Jo+b —a

t
and

QJ = OJ 1,q (29a)

where /3c =1/kTc and (2 = IFO I /~(. o b = IFO I /z»z, o.
Equation (24) is analogous to Eq. (15b). Expression
(24) shows that at Tc proton-phonon interactions re-
normalize the tunneling integral
0 0(JO+ b)/(Jo+ b —a). For a = b =0, we ob-
tain the equation for T~ of the IMTF Hamiltonian. "
Since a is proportional to the square of the tunneling
integral, the renormalization of 0 is mass and pres-
sure dependent. A no@vanishing solution for T& ex-
ists only if

20 ( Jo+b —a (25)

i ZzZSS»z= (J() (S') + Fz() (Q ))SS»Z

1 SS;=-(J,&S*) +F; &g("))SS,"

+(0 —Jq(S") +F() (Q
' ))SSq

Fz &Sz) 5g (2) + Fz &Sz) 5g (1)

i 015S» = —(0 + F() (Q
'

))SS»z

(26a)

(26b)

(26c)

Introducing, as before, Fourier-transformed collec-
tive variables, we find [using expression (22)) for the
linearized pseudospin and phonon deviation operators

fzZ (z) (Zzl2) + ZzZ2 q) + Zzl1)Ct12» ZzZg
=0

The dispersion relation (29b) is equal to the
Kobayashi5 result if only 0 is replaced by the
temperature-dependent renormalized frequency 0".
The frequencies of the two coupled transverse modes
are given by

Zz14=
2 ((Zz)2, »+ZzZS) + [(ZzZ2, » ZzZS) +4Z0 ] j

T)Tc . (30)

where co~ is the soft-mode frequency of the "renor-
malized" protonic system given by Eqs. (28b) and
(28c).

The cu mode describes the in-phase motion of the
pseudospin system and the lattice, whereas in the
"hard" so+ mode the two systems move with opposite
phase. It should be noted that the coupling with the
polar phonons occurs via the F'. term, whereas the
nonpolar phonons are above Tc decoupled from the
proton modes.

The stability limit of the paraelectric phase is deter-
mined by the temperature Tc [expression (24)1



1996 BLINC, ZEKS, SAMPAIO, PIRES, AND Sa BARRETO 20

where co vanishes.

If Fq =-0, we find for T ) Tp that o)+=co2,q and
co = co~. Below Tc we obtain in this case

(s')
0.43

J /2~~ 20
a=0.2

and

OJ =M2,g (31a)
0.33--

Joi2~ = 3
a=5

(c) (t),tJ, -O.5
~+ = —, I(~t'q+ms) + [(~t'q —ots)' +4~c)' 'I,

T (?c (31b)

where ets and &oc are given by expressions (28a) and
(28f). The frequency of the at mode approaches
zero at Tc for q =0, whereas the so+ mode varies
only weakly with temperature.

The above results show that the S"qF~Qqiti cou-
pling renormalizes the frequency of the "proton-like"
mode eo both above and below Tq, but makes the
"nonpolar-optic-phonon-like" mode frequency, co+,

different from tat q only below Tc where (S'), and
hence co~, are different from zero. This is quite dif-
ferent from the S'qF,'Qqt" coupling' where the
"polar-optic-phonon-like" frequency co+ is different
from ~2~ for T & T~ as well as T & T~. The differ-
ence is the result of the fact that (S') WO only below

Tc, whereas (S") %0 both above and below Tc.
In looking for S"qF~Qqt'i effects on the lattice vi-

brations-we should thus study the temperature
dependence of the lattice modes' below T~ and not,
as in case of S'qF~Qqt'i coupling, above Tc.

The temperature dependence of the "soft" cv and
"hard" t0+ modes is presented in Figs. 2(a) and 2(b)
for F'=0, whereas Fig. 2(c) shows the temperature
dependence of the spontaneous polarization, (S*).

The dependence of the paraelectric soft-mode fre-
quency cv on the strength of the F" coupling is
shown in Figs. 3(a) and 3(b) both for a deuterated
(Qp = I 'K, Tc p = 213 'K) and an undeuterated sys-
tem (QH =144'K, Tc, H =122'K).

The strength of the F" coupling is measured in
terms of the parameter a = Ja(F")2/4rut2Q2 which
should be —in view of the proportionality of F" to
0—mass independent. Whereas the F"coupling
practically does not affect the soft-mode frequency
and Tc in the deuterated system, it affects co of the
undeuterated system close to T~H and T~H itself
even for rather small values of a. For a = I, (et )H
&0 down to T =0, whereas (ta ) and Tc p are not
changed at all. The high-temperature value of (ta )H

is as well only insignificantly higher than for a =0.
The dependence of T~ H and T~ D on F" is present-

ed in Fig. 4 ~hereas Fig. 5 shows the dependence of
the normalized isotope shift (Tc p Tc H)/Tc p on

F.l'4Q act for Qp=l K, JH= In=850 K
and different values of QH.

The F„coupling thus provides a mechanism which
allows for large isotope shifts in Tc even in systems

0
0 0(9 ()22

~+do
0.57—
0.52

'
I

I

I
I

I

I
I

I

I I

'

I

0
O.t9 O.Z2

l

Ie-/Jo
0.40

(b)

kT/Jo

kT/Jo

O.I9-—

0)9 0 PP kT/Jo

FIG. 2. Temperature dependence of cu, ~+ and (Sr) in

case of S,"F"Q; pseudospin phonon coupling. Here a is
Ja[Fxl2/(4~ Q21

e(K)
I,UO-

(a) Deuterated

0
0 Tc,o =213 639

= I.68; I t 0
= I05

+ (~K)

l35

I06 I22

( b ) Undeuterated

a = I.68 (No Transition)
—".-.-".a= I 0-----a= 0

j

639

FIG. 3. Dependence of cv on temperature and strength
of the S,"F"0;pseudospin phonon coupling
a = JalF"I /4cut202 for a deuterated (Qp =1'K,
Jp = 850 K) and an undeuterated system (OH = 144 'K,
Jp =544'K).

with relatively low 0 and low proton-tunneling-mode
frequencies. At the same time it could also account
for the observed rather different dependences of T~ H

and Tc, D on pressure.
The effects on Tc are qualitatively similar to those



20 ISING MODEL IN A TRANSVERSE TUNNELING FIELD AND. . . 1997

T(oK)
pression (16b). It should be noted that here the
proton-lattice coupling always increases the effective
tunneling integral.

V. S~"D~ Q~ COUPLING

For the sake of completeness let us now also look
into the coupling of the tunneling motion with polar
optical phonons. In crystals with a nonpolar high-
temperature phase, this coupling is of the form
S)"DJQ&. The linear coupling term vanishes due to
symmetry as Sf S)", Q&

—Q), Sj SJ' o—n inver-
sion.

The Hamiltonian of our problem can be thus writ-

ten
'I

H = —0 XS,"—
2 X JpS;Sf —XS,*F Q;

i I'j I

—XS;D;Q; + —X(P;2+tp2hQ;2)
i l

(32)

Within the molecular-field approximation we now
find that

H,MFA = —H . . S.—F!(S~) Q:

3.087
FIG. 4. Dependence of Tc H {OH=144'K, Jo=544'K)

and Tc D (0D
= 1 K, Jo = 850 K) on the normalized

strength of the SI"F"Q; pseudospin phonon coupling
a =

i
F2i/4u)20

where

+
2

[P;2 + (tpp'a —2D (S")) Q;2]

and

H„= II +D (Q2) = f) +D (Q ) 2

(33a)

(33b)

px0'= 0+
2 (S")

1, O

(31c)

provided by the "direct" S,"S&"coupling but are prob-
ably more significant in view of the larger magnitude
of the S"sF)Q~t') term as compared to the BS)S"s
term. The proton-lattice coupling again results in a
temperature-dependent renormalization of the tun-
neling integral

H, = Jp (S') + Fp (Q) (33c)

Fz (Sr)
(33d)

The expression for Tc is given by

In expression (33b), the fluctuations in the polar
phonon coordinates are neglected. The expectation
value of the polar phonon coordinate is now obtained
as

so that the term Fp /p)t2 p plays the role of Bp in ex- 20 = tanh( —,P, n),
Jo,c

(34)

~cp ~c,H

%p
l o0

~
s I

t.0, K
o )

)OIO) 0 ) 0 ) J*Jp 850 K0l IA 0 ) tf) ) 0
)

) ) I0.5-. » ] ) )
) ) I I

) ) II
I I

I I
I

I'I I
/ I r r

r r
~ rP

yaA
I

0 28 6l l6 ~ c)CXt&OJ K)

FIG. 5. Dependence of the reduced isotope shift
(Tc o —Tc H)/Tc o on a = ~F2~/4cu)202 for different values

of O.

where Jo c stands for the renormalized pseudospin
interaction constant

(Fp)'
Jo= Jo+

teach
—2D (S")

(35)

at T = Tc. The proton-phonon interactions thus re-
normalize the Ising pseudospin interaction constant
Jp Jp. Since both D and (S ) are proportional to
0, the renormalization is strongly mass and tempera-
ture dependent. This might be at least in part
responsible for the fact that (J)H & (J)o in H-bonded
ferroelectrics. The mass-dependent renormalization
disappears in the Kobayashi model where D =0.
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where

Ql&h =
02&h 2D (S )

~B = n(n —Jo(s")) + (Ja(s'))2

n=-n+D(Q)

(36b)

(36c)

(36d)

The resulting equation for the eigenfrequencies of
the coupled "transverse" proton-polar optic phonon
modes 18

~+ =, ~(~ph+ ~B) + ~(~p~ —~B)2 & . 2 2 2 2 2

+4(co„' + 02c —run)]' 'j, (36a)

~4 = n ~F* ~2(s )
4 4D2J (S2)2 (Q)2

02D4 2DF——O (n +Jo(s")) (S*) (Q)

(36e)

(36f)

(36g)

Expression (36a) is valid both for T ) T~ and
T & T~. Above T~ our result is equivalent to the
one obtained by Kobayashi except for the mass and
temperature-dependent renormalization of the pho-
non frequency 02,h ~,'h —2D(S"). There is, howev-
er, a considerable difference below Tc. The coupling
term co& +co~ —cuD is in the Kobayashi model given
by n ~FO ~

(S"), whereas it is in the present case ob-
tained as

4+ 4-,4=(sqn ~F;~2+ — J,(s)'(Q)'- — J,+—(s*)(Q)
4D2, 2 FOB

n (s") n ,
(s") i

The renormalization of the coupling term is critically
temperature dependent and vanishes at T ~ Tc. In
addition it is also dependent on the mass of the tun-
neling particle and on hydrostatic pressure thus ex-
plaining the strong dependence of this term on pres-
sure in KH2PO4-type crystals below Tc.

where Jo = X,. JJ. It should be noted that the lattice
motion will be always biased (l.e., (o. ) WO) in view
of the coupling with S"even if the intrinsic asym-
metry in the lattice double-well potential 4 is zero.
The lattice pseudospins introduced above thus
represent a nonpolar optic lattice mode in crystals
with a nonpolar high-temperature phase.

Expressions (39a) and (39b) can be rewritten

VI. QS,"(2 —cr ) COUPLING Hs = —Hx, s~"—&;s~' (40a)

Let us finally investigate the case where the motion
of the lattice ions which couples to the proton tunnel-
ing is so strongly anharmonic that we have a double-
minimum-type single-particle lattice potential. Limit-
ing ourselves to the two lowest-lattice energy states,
we can express the relevant lattice Hamiltonian in
terms of pseudospin-2 Pauli matrices o-', cr", and cr".

We thus deal with two interacting pseudospin systems
instead of with a proton-phonon system as before.

If we further assume that the coupling between
these two systems is so strong that the protons can
tunnel only in one out of the two possible lattice con-
figurations, we can write the Hamiltonian of our
problem in the form

with

e, , = n( —,
' —(~')),

H, ,s = Jo (S*)

e„~=r
e, .= -(a+ n (sq) .

(40b)

(41a)

(41b)

(41c)

(41d)

The thermal expectation values of the pseudospin
operators are now determined from the self-
consistency equations

H = —n $S,"(——o. ) ——$JJS Sf

+ 5 X a,' —ra X o,"

In the MFA, expression (38) decomposes into a
"proton"

(S') = — ' tanh( —PHg)
1 H.,s
2 Hs

(S") =— ' tanh( —pes)1 &xs
2 H

(o*) =— *' tanh( —pH )

(42a)

(42c)

e„=-n(—,
' —(~q) s,"-J, (s*)s~

and a "lattice" part

H. , r'~;+(=n —(s") +a)~;,

(39a)
(cr") =— "' tanh( —pH )

where

(42d)



20 ISING MODEL IN A TRANSVERSE TUNNELING FIELD AND. . . 1999

and

Jfs = (Ns + Ns) 'i'

0.=(0,'. +H„2.)'i'

/3c = I/kTc (43a)

where (o') c has to be determined from Eq. (42c)

(o') c = —, tanh —(-,—(o*)c)p. 0'
0

(43b)

%e thus deal with a system of two self-consistency
equations for Pc. The solutions of this system are
shown in Fig. 6, where kTc/Jp and (o.*)c are plotted
as functions of Jp/20.

For Jp/20 ) 1, there is a single Tc separating the
high-temperature paraelectric from the low-

temperature ferroelectric phase.
For Jp/20 =1 ferroelectricity appears below

kTg ='0.2Jp but the ferroelectric phase becomes un-

stable at T =0. This is a corisequence of the fact that
Eq. (43b) has now two solutions for (o*)c

(o') c~, ~~
= —

2
and —(J2 —1)/2 (44a)

corresponding to

Expressions (42a) —(42d) and (41a)—(41d) show that
we are dealing with a strongly temperature-dependent
renormalization of the tunneling frequency. The
paraelectric-ferroelectric transition temperature Tc
determines the boundary of the region where a
nonzero value of (S') becomes stable. Since the stat-
ic properties of the system are not significantly affect-
ed, if we put ~-I =0, let us determine T~ for this
case. From Eq. (42a) we find the equation for Tc

20(—,
' —(~') c) QP,= tanh (——(o') c),J 2

(20efr) T Tc 20(2 (o )) Jp

For Jp/20 ( 0.922 there is no solution for Tc and
the paraelectric phase is stable at all temperatures.

The temperature dependence of (S'), which is pro-
portional to the spontaneous polarization, is present-
ed in Fig. 7 for Jp/20 =1.5, Jp/20 = I, and
Jp/20 =0.95. The existence of two second-order
transition temperatures, Tc~ and T~~h separating the
polarized phase from two disordered phases is clearly
seen for Jp/20 =0.95.

Introducing Fourier-transformed collective vari-
ables, we find the linearized RPA Heisenberg equa-
tions of motion for the pseudospin fluctuations
around the MFA solutions as

i rp5Sq = Jp (S') 5Sq~

i ra5Sq~ (0/2 0 (o. ) Jq (S ))5Sq

—Jp (S') 5Sq —0 (S*)5 rrq

(45a)

(45b)

(s')
0.45-

~q

q ~
~ +

~+

r

~0
el

~ ~ ~ lt~

4
oa

".-".""- J /2A, ~I 50
----- Jo/2W~ 1.00

J,/2m= 0.95

(kTc/Jp)tu 0 and J2/[8ln(1+%2)] . (44b)

For 0.922 ~ Jp/20 ~ 1 we have two Curie tem-
peratures, T~~ and T~~~, and the ferroelectric phase is
intermediate between a high-temperature 'paraelectric
and a low-temperature paraelectric phase. ith in-

creasing B the upper T~ decreases and the lower Tq
increases so that the ferroelectricity disappears at
Jp/20 =0.922 where

(O') 00-
Tc

0.30-

-03- (a)

-0.5
0

0 25-kT/Jo

0
0

(b)

Jo/2Q.

Flo. 6. Dependence of kTc/Jp and (o')r on Jp/2II in
C

case of OS"{
2

—a') proton-lattice coupling. The dotted

line shows the dependence of kT~/Jo on Jo/20 for the sim-

ple IMTF Hamiltonian.

r

II
I \I:

f
I 1
I

I
I

/
/r

0 ~.

O. t5 .

I

0.1250 0.250 kT/Jo

FIG. 7. Temperature dependence of (S') in case of
x & sQS"{

2
—cr') proton-lattice coupling for Jo/I'2A =1.5, 1.0,

and 0.95.
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i ruSsq = —(n/2 —n (rr*)) Ssq~

i~su= —(n(s") +a)8~ ~,
i rph rr ~ = (n (S")+5)8o-"

+ r'8~,*+n (~")gs,",
i co5(rq = I" Saq

(45c)

(45d)

(45e)

(45f)

0.25---

Jo/2 &=0.95----- J /2Jl. =t.000-"""""J /2&=t 500

The two longitudinal-mode frequencies are again
zero, coj 2=0, both above as well as below T~, The
frequencies of the four coupled transverse modes are
obtained as

I

0.2 4 0.48 k 7/Jo

~ ~ ~le ~~ y ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ + ~ 0 ~ ~ ~ 1~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

cd+ =
2 ((Qlg + cala) + [(Qlg (dg) +4C] }

where now

(Jp=(sp))'+ n'(n' J, (-s")),

,'=(r')'+(n(s") +~)',
and

C = Jp n 2 (r") (S') ((r")

(46a)

(46c)

(46d)

u)-/Jo

~ ~ ~ ~

0.37 "''

O.t2 ~ 0 ~ os ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

with 0' standing for the renormalized tunneling fre-
uency

n'=n(-, ' —(~q) . (46e)

For T ) Tc, (S*)= C =0, and we get a soft
"proton-like" and a hard "lattice-like" mode

(47a)

and

CO+ = GOg
2= 2

VII. CONCLUSIONS

The obtained results show that:
(i) The introduction of "direct" 8&S,"Sf coupling

between the tunneling motion of one proton and the
tunneling motion of another, or the introduction of

The temperature dependence of the "hard" co+ and
"soft" ru modes from expression (46a) is shown in

Fig. 8 for Jp/2n =1.5, 1.0, and 0.95. For sake of
simiplicity we assumed that I ~=A =0. It should be
noted that ~+ corresponds to an "out of phase" and
cv to an "in-phase" motion of the proton and lattice
systems.

For Jp/2n =1.5, qp vanishes at kTc =0.2375Jp,
and increases with decreasing temperatures close to
Tc in ferroelectric phase. For Jp/2n = I, o) van-

ishes both at kTc=0.2JO and T =0, whereas it van-
ishes for Jp/2n =0.95 at kTct =0 18Jp and

kTc~~ =0.9SJO, but is nonzero at T =0. The frequen-
cy of the hard mode, co+ increases with decreasing
temperature in all three cases discussed above and
shows no critical temperature dependence.

024 0.48 k7/Jo

FIG. 8. Temperature dependence of 0)+ and OJ in case of
x ' zOS"(2 —a') proton-lattice coupling for Jo/20 =1.5, 1.0,

and 0.95.

the probably larger "indirect" coupling of this type via

S; F"Q; pseudospin-phonon interaction describing the
modulation of the distance between the two equilibri-
um sites in an 0—H 0 bond by nonpolar optical
phonons, may lead to a situation where large isotope
shifts in T~ occur on deuteration though the un-
renormalized tunneling integral 0 and the renorrnal-
ized frequency of the proton tunneling modes are low
even far away from T~. This is qualitatively different
from the predictions of the pure IMTF Harniltonian
and may perhaps explain some phenomena recently
observed in PbHPO4 type systems" ' and squaric
acid." The physical reason for this effect is the fact
that the mass and temperature-dependent renormali-
zation of the proton tunneling integral is important
only close to T~ where eo 0 and not far away from
Tc

(ii) The increase in the "coupling constants" Bi or
F"—which are both functions of the tunneling in-

tegral and thus very sensitive to the shape of the
0—H 0 bond potential —with increasing hydros-
tatic pressure leads to a decrease in T~ H and an
eventual vanishing of fer'roelectricity in undeuterated
systems, ~hereas Tc D of a deuterated system is, for
the same range of 8& or F"values, not affected at all.
The corresponding T~ H vs F"or B&~ curves are simi-
lar to the Tc versus hydrostatic pressure curves ob-
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served in many H-bonded systems. " .

(iii) The S"F"Qand S"DQ' couplings lead to a sig-
nificant change in the dynamics of the coupled
proton-phonon system below T~ and could be the
reason for the observed large pressure dependence of
the proton polar optic phonon interaction constant in
KH2PO4-type crystals. ""This might also explain
the presence of the "hard" proton tunneling mode co+

[expression (31b) or (36)] observed in PbHPOq
below Tc.20

(iv) When the lattice motion is so anharmonic that
the lattice ions move in a double-well potential, and
the proton-lattice coupling so strong that the protons
can tunnel only in one out of the two possible lattice
configurations, two Curie temperatures may appear
for 0.922 & Jo/20 & 1 as a result of the T-dependent
renormalization of the tunneling frequency so that
the ferroelectric phase is bounded by a high-
temperature paraelectric and a low-temperature
paraelectric phase.

It should be noted that all above results have been
obtained in the MFA and RPA approximations and
that the finite width of the soft modes and damping
effects" have not been taken into account. A recent
continued fraction calculation' has however sho~n
that the MFA and RPA represent useful first approx-
imations for the statics and dynamics of the Ising
model in a transverse tunneling field Hamiltonian so
that the above results are still qualitatively meaning-
ful. The basic predictions agree with those recently
obtained by a variational treatment of the proton-
phonon system in KH2PO4.
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