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Phase diagram of the Kondo lattice

C. Lacroix and M. Cyrot
Laboratoire Louis Neel, Centre National de la Recherche Scientifique, J66X, 38 042 Grenoble Cedex, France

(Received 8 February 1979)

e discuss the phase diagram of the Kondo lattice: we generalize to the lattice a method pro-
posed by Yoshimori and Sakurai for the single-impurity Kondo problem; this method
transforms the Kondo exchange interaction into a fictitious s-f hybridization, and gives a reso-
nance of width T& at the Fermi level. e study the Kondo phase and compare its energy with

the energy of the magnetic phase. The Kondo state is stable when the exchange interaction is

larger than a critical value; this state is insulating when the conduction band is half filled.

I. INTRODUCTION

Some rare-earth compounds show anomalous mag-
netic properties. For the "normal" rare-earth com-
pounds, the 4f level is far below the Fermi surface
and these compounds have an integer number of 4f
electrons with a well-defined magnetic moment, and
a positive exchange interaction with the conduction
electrons. In the "anomalous" rare-earth compounds
the 4f level is close to the Fermi surface; thus a
large resonant scattering can occur. This scattering is
responsible for the Kondo effect occurring in many
rare-earth alloys and in some compounds. The
anomalous rare-earth compounds can also show a
mixed-valence behavior.

Among these materials, compounds with cerium,
samarium, and thulium are the most studied: for
example, CeAl2 (Refs. 1 and 2) and TmSe (Ref. 3)
exhibit magnetic ordering at low temperature and
above the Neel temperature, they behave like Kondo
compounds; CeA13 (Refs. 4 and 5) and Sm86 (Ref.
6) are nonmagnetic down to zero temperature.

Several theoretical works have been done in order
to explain these anomalous behaviors. Phenomeno-
logical models have been investigated by Benoit
et al. ' and Barbara et al. which'describe the prop-
erties of CeA12 in terms of a competition on each
cerium ion between the Kondo effect and an effec-
tive field due to the other ions.

Doniach' introduced the Kondo-lattice model,
which is a generalization of the Kondo Hamiltonian
to the concentrated case. On each site of the lattice
there is one rare-earth ion interacting with the con-
duction electrons. In this model the exchange in-
teraction between the conduction and 4f electrons is
responsible both for the Kondo effect and the
magnetism through RKKY (Ruderman-Kittei-
Kasuya- Yosida) interactions. The three parameters
of this problem are (i) the width of the conduction
band which will be equal to 2D in this paper, (ii) the
exchange parameter, J, between 4f and conduction
electrons; J is negative in the case of Kondo com-
pounds, and (iii) the number of conduction electrons

per site, n.

In order to solve this problem, Doniach' con-
sidered a one-dimensional analog, the Kondo neck-
lace. In the mean-field approximation he found that
the ground state is antiferromagnetic for low l J l/D
and it is a nonmagnetic Kondo sing1et for large
( J~/D These re. sults were confirmed by Jullien
et al. "' using a renormalization-group treatment.

Recently Jullien et al. "considered the three-
dimensional Kondo-lattice Hamiltonian in a mean-
field approach. They found that, for n =1, the Kon-
do state can be either metallic or insulating depend-
ing on the value of J/D; for n & 1, the Kondo state
is always metallic. However their method does not
allow them to investigate a magnetic ground state; in
fact such a magnetic ground state is expected for low
values of J/D

In this paper, we start from the Anderson-lattice
model, which seems a more physical approach to the
problem. This model has been considered by several
authors, either for the study of the magnetic
phases' "or for the mixed-valence problem. ""
However the methods used in all these papers are not
appropriate to the study of the Kondo effect; though
the purpose of all these calculations are not the same,
the results are very similar: a gap is opened in the
density of states, of the order of

~ Vkf ~'/D, around the
energy of the impurity level (Vkf being the Anderson
mixing parameter); the width of the resonance is also
of this order. Thus the resonance is fairly wide and
the number of electrons on the impurity can vary
easily. In the Kondo problem the resonance must be
much narrower, i.e., of the order, of the Kondo tem-
perature T», and the number of f electrons is a con-
stant.

In Sec. II we introduce the model and develop the
approximations. We generalize a method due to
Yoshimori and Sakurai' for the single impurity case.
These authors transformed the initial Kondo interac-
tion into a fictitious s-f hybridization and this hybrid-
ization gives a resonance of width T~ at the Fermi
level. Then we discuss the phase diagram obtained
from this model. We compare the energies of the
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Kondo and magnetic states, as a function of the
conduction-band filling and the parameter

~
J~/D; for

low values of
~
J~//D the system is magnetic, fer-

romagnetic for small value of n and antiferromagnetic
for n of the order of one. For larger values of

~
J~/D,

we obtain a "Kondo state". We finally discuss the
validity of the Kondo Hamiltonian for the rare-earth
compounds.

II. HAMILTONIAN AND APPROXIMATIONS

A. The Hamiltonian

Let us consider the system of conduction electrons
interacting with periodically arranged magnetic ions,

described by an Anderson Hamiltonian

H = $ Kkck&ck~+ XEpd(~d ~+ U g d td td ld i
I 0' Ik, cr

ikR.
g

—ikR,.+ X Vkf(ck d, e '+d; ck e ')
k, e,i

ck and d, are the creation operators, respectively, for
an s electron of wave vector k and an f electron on
site i W.e neglect the orbital degeneracy of the f elec-
trons and Ep is the energy of the f level. We are in-
terested in the case of a large value of the Coulomb
interaction between f electrons, U, and a small value
of the mixing between s and f electrons, Vkf. In this
case, for the single impurity problem, Schrieffer and
Wolff' have shown that the Anderson model is
equivalent to the s-f Hamiltonian

H = X ekck~ck~ + 2
Jkk'[S& (cktck't cklck'l) +S; cklck't +S; ck tck't) + X 4 Jkk (d td t + d td t) (cktck t + c„tck t)

t w~ z t ~, + +t 1

k, e I kk'

with
2 Vkf k'f

kk'
(E E )

EF being the Fermi level, and S, is defined by

2 dtd(t —d;td;t), S;+=d~td, t, S; =d, ld;t

We use the same transformation to our Hamiltoni-
an and obtain

H =Hp+H(+H2
where

The term H~ describes the scattering of the conduc-
tion electrons by the impurity and is responsible for
the Kondo effect; H2 describes the polarization of the
conduction electrons by the impurity spin and gives
the usual RKKY interaction.

B. Functional integration method

In the following H2 is simply treated in Hartree-
Fock approximation

Hp X ekckncko'+ X Ep~i(r~&
k, a

i (k-k') R
Ht = —x 2

Jkk'(Ck t Cktd;id;te
k, k'

(4) H2=
2
J g (d, d; )c, c; +(c, c; )d;t ~d,

—
—,Jg(d, d; )(c, c; )

i (k'-k) R,.+ cklc„ td, td;te ')

i (k-k') R,.H2= $ —,Jkkd, „d, ck ck~e
k,k'

It is important to remark that this expression is ob-
tained only in the case (X d,

t
d, ) = 1, i.e. , this'

Hamiltonian can not describe mixed-valence prop-
erties.

In the following we assume that Vk', and then Jkk,
are independent of /c (however in some cases it is

'

important to consider the k dependence of Vk'p). In
this case H~ and H2 can be replaced by

The problem is to approximate the term H~ and ob-
tain a correct description of the Kondo effect. For
this purpose we use a functional integration approach
similar to that introduced by Yoshimori and Sakurai'
for the single impurity case. The partition function is

Z =Tr exp[ —P(Hp +Ht + H2)]

We can apply to Z the Stratanovitch-Hubbard
transformation, valid for any bound operator 3,

i/2

expuA' = — J" dx exp(nx'+2uax)

=
4 J X(etc;t+c, tdt) +(die;t+c~td~t) (7

H2 = ,
' J g d,'.d, .c,'.c,. —

I, 0'

This transformation can be done on the two terms of
Ht given by Eq. (7) and we obtain

f'P )Z = J/dx;(r) dy;(r)Z(x;, y;) exp Jl —,J(x +y ) dr
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where

tp
Z (x, ,y, ) =Tr T, exp —

&
H (r) d r

H(T) = Hp(r) + H, (r) + X 2
Jx, (r) [d,. l (r) c;l(r) + c, l (r) d;l(r)] + —,Jy;(r) [d, l (r) c;t(r) + c, t (r) d;t(r)] . (11)

x, (r) and y;(r) are fictitious time-dependent s-f mixing matrix elements coming from the transformation of H~
and T, is the time-ordering operator.

Now the problem is to soive the Hamiltonian H(r) with time-dependent parameters x;(r) and y;(r) and then
to make the functional average over all possible functions x; and y;. It seems that the initial problem has been re-
placed by a more complicated one, however, it turns out that the usual static approximation which restricts to
functions x; and y; independent of ~ is a good approximation: for the single impurity case the results are qualita-
tively correct, though the static approximation is a very crude one; the ground-state energy of the Kondo state
has the correct behavior for small values of pJ, AE = De' ~; the static susceptibility is finite and proportional to
1/Tx, the iow-temperature specific heat varies as T/Tx. However the method is not an exact one. The suscepti-
bility is half the correct one obtained by Wilson ' andNozieres. ' The advantage of this approximation is that the
problem becomes very simple and it can be easily generalized to the case of a lattice.

Thus in the static approximation we have to solve now the simple Hamiltonian

H =Ho+ V

where Hp is given by Eq. (4) and

V=qJxx(dtcIl+etd~t)+i Xy dl l+ ~tdt)+2JX(d; d, )c; e; +2JX(c, c; )d; d, „. (12)
I

The partition function Z can be written

Z=Zpz dx;dyiexp —,'PJ(x, '+y )+—,PJ X(d; d; )(c; c; ) expTrln(l —Vgp)I

=Zp '~exp[ PF(x;,y„(d—, d; ), (c, c; ))] dx;dy; (13)

Zo is the partition function corresponding to 00 and
60 is the Green's function for the Hamiltonian Ho.
The solution of H gives the energy F as a function of
the parameters x; and y;. Finally the integration on x;
and y; is replaced by a saddle-point approximation:
The parameters are determined by a minimization
of F.

III. PHASE DIAGRAM

number of conduction electrons per atom. These re-
lations imply that x; =y;. Moreover we assume that
the state is uniform, i.e., x; =y; =x independent on
the site i.

The Green's functions corresponding to H, given by
Eq. (12) can easily be calculated. The f-electron
Green's function is

In Sec. II we have introduced two kinds of parame-
ters. x; and y; describe the scattering of the conduc-
tion electrons by the f electrons and thus they are
nonzero if there is Kondo coupling. (d,.t d, ) and
(c,t c, ) describe the magnetism of f and s electrons
if they are different for up and down spin electrons.
In principle both Kondo effect and magnetism can be
present in the ground state. However we study here
only the cases where the solution is either a pure
Kondo solution, or a pure magnetic solution.

and the conduction-electron Green's function is

J'x6 = ~+ OJ Nk
—JC 4 1

4(pp —Ep — Jn)—
4

(14)

(15)

A. Kondo state

l. Ground-state energy

In the pure Kondo state, there is no magnetic mo-
ment and (d;t d; ) = 2, (c,t c; ) = , n, n being—the

If we assume that the conduction band has a constant
density of states, i.e.,

when —D & e&D1

pp(p) =
0, otherwise
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we obtain for the density of states of the 4f and con-
duction electrons

Jx
Pa(~) =

8D (~ Ep Jn)
(16)

when co1 & co & ~2 and ~3 ( ~ & ~4, and pq =
p& =0

otherwise. ~1, ~2, ao3, and ~4 are given by

~&=2( D+Ep+4J(1+n)1 1

—[[D +Ep ——,J(1 —n)]'+ J'x'}'/')

o)2 = —, (D +Ep+ —,J(1+n)

—[[D Ep+ —,—J (1 —n) ]'+J'x'}'/')

&u =3—,(—D+ Ep+ —,J(1+n)1 1

+ ([D + Ep —
4 J (1 n) ]' + J2x'}' 2)

o)4= T~(D+Ep+ ~
J(1+n)

+ [[D Ep + J(1 n)]2+ J2x2}1/2)

Figure 1 shows the schematic behavior of pq and p, .

As soon as x ~ 0, there is a gap in the density of
states, which is of the order of J'x'/2D if the Fermi
level is near the middle of the band, i.e., n =1. The
width of the peaks, on each side of the gap, is also of
this order of magnitude.

The position of the f level, Ep, and the Fermi level

EF must satisfy the following relations, in the case
n ( 1 (we restrict to this case, the case n ) 1 can be

obtained easily because of the electron-hole sym-
metry):

(d, d;)= —,

J'x'
8D co —E ——Jn EF Ep —Jn1 1

1 P 4 4

(c, c; ) = ,
'

n =—(EF—co))
1

where EF is in the lower band. For n =1, EF is in
the gap. These equations can be solved and we ob-
tain the relation between Ep and n, and the expres-
sion of EF,

Ep= ——.(1 —n)D1

2'

(17)

(n D2+ nJ2x2)'/2+ —J(l —n)

J xp

D2 (1 e2D/J)2
=4n

which gives for d E (x),
82DIJ

4E~ = —nD
1 —e

(20)

EF =
2

nD —
2

(n'D + nJ x ) '/~ + Ep+ Jn—1 2 2 2 2 1/2 1

x is then determined by minimizing the energy differ-
ence BE(x) between the Kondo state and the state
without s fmixing, the-f electrons being localized at
the energy Ep,

EE = ——(n2D2+ nJ2x~)'/2 ——Jx2
2 2

+ Jx ln(n D +nJx)' —nD+& D (18)
4D (n D +nJ x)' +nD

The minimum is found to be

I

cAP 1 Wg

FIG. 1. Schematic density of states in the Kondo state,
for the conduction band and for the f electrons.

We first can remark that we obtain a minimum at
xp only if J (0; if J )0 the expression (20) is posi-
tive and the minimum is obtained for x =0; thus the
model gives a Kondo effect only for J & 0 as it is ex-
pected.

When J (0 the Kondo ground-state energy is
found to have the usual variation De'/'/ (where p is
the density of states at the Fermi level), as for a sin-

gle impurity; the width of the resonance is also of
this order.

In order to compare more precisely with the single
impurity case, we have calculated the ground-state
energy of a single Kondo impurity as a function of
the number of conduction electrons, by the same
method. 23 For }J}/lD =0.5 the results are shown in

Fig. 2. The following conclusions can be derived: (i)
For n =1 the ground-state energy hE~ is lower for
the Kondo lattice than for a single impurity. For
J/D = —0.5, AEx/D is —0.45 x 10 for a single im-

purity and —1.85 X 10 for the lattice. In fact when
the number of impurities increases, the singlet wave
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Thus other methods should be used in order to find
if a metallic Kondo state can be stable in three di-
mensions for n =1.

As we mentioned in the Introduction, several au-
thors also obtained the same qualitative density of
states, ' "with a much larger gap of the order of

~ Vkf ~ /D, instead of hE» Thi.s is certainly valid for
the mixed-valence compounds: In these compounds
the Schrieffer-%olff transformation cannot be applied
and our model does not work. %e will return to this
point in the conclusion.

-210—
/

/
/

/
/

/

0.5

FIG. 2. variation of the ground-state energy b F~ with.

the number of conduction electrons, for the lattice (dashed
line) and for the single impurity (solid line) when

J/D = —0.5.

functions associated with each impurity are mixed
and this mixing is responsible for the decrease in en-
ergy. It would be interesting to study the ground-
state energy of a concentrated Kondo alloy. Hoshino
and Kurata' discussed this model recently in the
coherent potential approximation, but-did not calcu-
late the ground-state energy. %e will discuss this
problem in a forthcoming publication. (ii) When the
number of conduction electrons decreases, the Kon-
do energy decreases more rapidly in the lattice:
when there are less conduction electrons per site, it
is more difficult to screen the impurity spins. For the
single impurity, this is not very important as there is
only one impurity to screen; in fact hE~ is almost
constant for 0.7 & n ( 1.

The gap is of the order of AE~ and exists for all
values of J/D, which is not the case in the calculation
of Jullien et al. ' They found that the gap disappears
when

~
J ~/D (0.33. However we will see in Sec.

III B that for low values of
~ J~/D the ground state

is magnetic and the mean-field method used by Jul-
lien et al. is not appropriate to the case of a magnetic
ground state. By the renormalization-group tech-
nique they also found a disappearance of the gap in a
one-dimensional lattice, ' however, this method can-
not be generalized to a three-dimensional lattice.

2. Kondo temperature of the lattice

For a single Kondo impurity the Kondo tempera-
ture is not a well-defined temperature. It can be cal-
culated from high-temperature expansions: Tg is
then the temperature at which the perturbation ex-
pansion diverges; it can also be estimated from low-
temperature properties: T~ is the inverse static sus-
ceptibility-. For a single impurity T& and T~ are pro-
portional to each other" and also proportional to the
ground-state energy AE~.

In the case of two Kondo impurities, this is no
longer true. Tsay and Klein"' found from high-
temperature expansion that the Kondo temperature
varies as Tx"(I —W'/Tz")'~', where W is an effective
molecular field on the impurity site; thus the "high-
temperature value of T~" is reduced by the impurity-
impurity interaction. Matho and Beal-Monod ' ob-
tained the same qualitative result. However Ishii'
calculated the ground-state energy of a pair of impur-
ities and did not find the same behavior for the ener-
gy.

In the case of the lattice, we have found a ground-
state energy proportional to De' ~ . The high-
temperature expansion of Tsay and Klein must be
valid in a lattice and would give a decrease of T~,
compared with the single impurity case, %e have
also calculated the static susceptibility of the irnpuri-
ties at T =0. The result is for n && e

g PB +g pa(J/4D)
/De D~ —J /16D

(21)

where g and g' are, respectively, the Lande factor of
the f and s electrons. This expression shows that
there is no proportionality between AE~ and X ',
contrary to the single impurity case.

Equation (21) shows that X diverges below a criti-
cal value of

~
J~/D; thus if we define Txo by the in-

verse susceptibility X ', Tg vanishes at the critical
value. The same behavior is obtained from the high-
temperature result: The Kondo temperature vanishes
for large value of PV/Tx, i.e. , for low value of pJ.
This divergence of X indicates that the ground state is
magnetic below a critical value of

~
J)/D. In Sec. III B

we discuss the magnetic ground state.
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B. Magnetic state

We restrict to ferromagnetic and antiferromagnetic
structures, but in principle the RKKY interaction can
lead to more complicated structures, as it is found in

CeA12.
03

1. Ferromagnetic state

In this case we have x; =y; =0. As there is no
scattering between s and f electrons, the f moment
must have its maximum value, Thus we put in Eq.
(12),

(d,Id;t) =1, (d, ttd;t) =0

(c,tc;l) = —, (n —p,), (c, lc;t) = , (n + p,)—
p, = (c;lc't) —(c,ic;t) is the magnetic moment of the
conduction electrons and the total moment is then
equal to 1 —p, . The self-consistent equations can be
solved easily and we obtain

(i) when n ) J/4D, —

0.1

0.1 04 ]J( Q5

D

FIG. 3. Magnetic moment of the conduction electrons in
the ferromagnetic phase (dashed line) and antiferromagnetic
phase (solid lines).

J J2
p, =—,DEE- =—D�' 32D

(ii) when n (—J/4D,

p, =n, AEr=n(q J+
2

nD)1 1

(22)

(23)

We can remark that the value obtained for the s elec-
trons polarization, given by Eq. (24), can be much
larger than in the ferromagnetic case, especially if
n =1. Figure 3 shows the variation of p, in the two
cases n =1 and n =0.5.

p, is the RKKY polarization which is very small for
the usual values of J/D; when J & 0, this polariza-
tion is opposite to the f electron spin.

2. Antiferromagnetic state

(c,tc; ) =
2

(n —o.p, e ')

As in the ferromagnetic case, the self-consistent
equations can be solved" and we obtain

1

[&& J +(1 —n) D ]'~ —(1 —n)D
p, = — ln

4D [
~ J2 + D2] 1/2 D

(24)

DEAF =
&
Jp, +

2
(1 —n) [,6 J + (1 —n)2D2]' 2

—
—,
' (—,', J'+ D') '~2+ ,

'
Dn (2 —n)—(25)

In this case the lattice is divided in two sublattices
and we have (d,t d; ) =0 or 1 alternatively:

ipR,.(dt d; ) =
2
(1+o e ') where p is half a reciprocal-

lattice vector. For the conduction electrons we have

C. Phase diagram

The relative stability of the three phases, Kondo,
ferromagnetic, and antiferromagnetic, can be ob-
tained by comparing the energies given by the ex-
pressions (20), (22), (23), and (25). The results are
shown on Fig. 4, (a) For low values of

~
J~/D the

ground state is magnetic; the Kondo state is obtained
only for

~
J ~//D larger than a critical value which

depends on the band filling. This is in agreement
with the earlier studies of the Kondo lattice of
Doniach. '0 (b) Antiferromagnetism is obtained only
when the Fermi level is near the middle of the band;
when the number of electrons decreases the fer-
romagnetic structure becomes stable. This is a conse-
quence of the oscillating behavior of the RKKY in-
teractions; when n decreases, kF decreases also, and
the interaction which is proportional to (cos2krr)/r'
becomes positive between the nearest neighbors.

We have only considered pure Kondo and pure
magnetic states; however it ~ould be interesting to
study the mixed states, i.e., states where x;, y; & 0
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with magnetic moments. As shown by the expres-
sion (21), the susceptibility diverges at a critical value
of

~
J~/D which is higher than the value calculated by

comparing AEF and b, E~. Thus this indicates that
the mixed state is the stable state at least between
these two critical values.

IV. CONCLUSION

I

05
FIG, 4. Phase diagram, The stability region of the Kon-

do, ferromagnetic, and antiferromagnetic states are indicated
by the letters K, F, and AF.

We have obtained the phase diagram of the
Kondo-lattice model at zero temperature; the formal-
ism is simple enough to generalize it to the calcula-
tion of finite-temperature properties. At zero tem-
perature we obtain magnetic and nonmagnetic states,
metallic or insulating depending on the band filling
and the parameter

~
J~/D.

However for large values of
~
J l/D the question ar-

ises of the validity of the model. The Schrieffer-
Wolff transformation'9 is valid only for small

~
J ~/D;

J is given by 2 V /(Eo —EF), but the transformation
works only if ~EO

—EF ~
is larger than the width 6 of

the virtual bound state in the Anderson model,
rrp(Eq)

~ Vkf) . Thus the condition (Eo —EF( ( 6
can be written

~
J ) (1/rrp(EF) =4D/rr, and the

phase diagram (Fig. 4) must be restricted to
i J~/D & 1; in this case the Kondo state can be ob-
tained only if the number of' conduction electrons is

greater than a critical value n, =0.2. For values of
~
J~/D larger than 1, the model has no physical mean-

ing and we must return to the Anderson model.
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