
PHYSICAL REVIEW 8 VOI UME 20, NUMBER 5 1 SEPTEMBER 1979

Condensed phase of liquid 4He
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The long-range order of the one- and two-body density matrices is analyzed for the ground

state of liquid aHe described by suitable Jastrow wave functions 4 = p,.&.f(r&). The conden-

sate fraction, pairing function, pairing energy, and related quantities are calculated as functions

of density. The evaluations are performed within the diagrammatic formalism developed by

Ristig and Clark. For the most part we employ the optimal correlation functions f{r) and asso-

ciated radial distribution functions g{r). Both quantities are determined self-consistently by per-

forming a paired-phonon analysis. The I,~merical treatment is based on the hypernetted-chain

procedure for the structure function as well as for the one-body density matrix. The condensate

fraction is found to be 0.113 at the experimental equilibrium value of the particle density, and

shrinks to a value —0.05 at densities in the solidification region of "He. The pairing functions

show remarkable intermediate structure. The pairing energy is negative, about —50 mK at sa-

turation density, and increases rapidly with increasing density. It changes ign at a density close

to the experimental melting point. It is found that the condensate traction depends only weakly

on temperature in the range of temperatures considered.

I. INTRODUCTION Dingle- Jastrow function'

It is generally believed that it is the long-range
coherence of the many-body system which may ac-
count for the macroscopic quantum properties of
liquid He associated with superi luidity. F. London
suggested an intimate relationship between the super-
fluid density and Bose-Einstein condensation which

may occur in liquid 4He below the A. point. ' The con-
nection, however, has not been rigorously esta-
blished. The subject still remains an intriguing ques-
tion of fundamental interest.

To clarify the possible role of the Bose-Einstein
condensate we shall concentrate in this study on a de-

tailed numerical exploration of the successive density
matrices. These quantities permit a complete descrip-
tion of liquid "He, particularly, its long-range order.

A plausible general form for the exact ground-state
wave function of a system of A interacting bosons is'

+o(rt. r2 rs
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It appears that a satisfactory first approximation to
the wave function (I) for iiquid 4He is the Bijl-

A

+(rt, r2, . . . , r„) = g f(r~),
i&/

where f (r) is a two-body correlation factor with

f(r) I as r ~ and appropriate behavior at dis-

tance r =0. In a following step of systematic approx-
imation scheme we could improve upon Ansatz (2)
by including the triple correlation factor f3, etc. '

It has been demonstrated for wave function (2)
that the zero-momentum single-particle orbital is ma-

croscopically occupied. s'o Ansatz (2) therefore can-

not shed much light on a possible absence of a

single-particle condensate. " To explore such a situa-

tion it might be necessary to adopt a differing approx-
imation procedure to take proper account of those
contributions which are distributed among all correla-
tion factors fs,f4, . . . ,fq. Here, we ignore this possi-

bility and assume the presence of a macroscopic Bose
condensate in liquid He. %e adopt further Ansatz
(2) to describe the ground state.

A very substantial and productive effort has gone
into a detaiied study of the form (2) and its conse-
quences. Particularly the liquid structure function
and the optimal radial distribution function have
been the objects of numerous studies in correlated
wave-function theory. """

In recent years interest has been focused also on
the exploration and enumeration of the one- and
two-body density matrices of quantum fluids. These
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quantities are defined at zero temperature by

(rill"ilrt') =
&

+'(ri, r2, . . . . rq) +(r~', r2, . . . , r„)dr2 dr„ (3)

(r&r21121&i r2 )= Jt'I "(r), r2, r3, . . . , rg)'P(r)', r2', r3, . . . , rg)dr, dry,
N

with W being the normalization integral.
The structure of quantities (3) and (4) for an ex-

tended system of bosons in the presence of strong
spatial correlations has been uncovered in a number
of publications. ' ' 2' The formalism developed by
Ristig and Clark provides powerful means for quanti-
tative evaluation of the matrices (3) and (4) and re-
lated quantities as the momentum distribution, con-
densate fraction, pairing function, pairing energies,
etc. , for liquid He. Numerical results for those quan-
titics have been published in Refs. 14—16 and 18.

This paper reports on the results of refined calcula-
tions of the one- and two-body density matrices of
liquid He. Detailed results are presented to il-

luminate the dependence of the long-range order
described by expressions (3) and (4) on density and,
upon proper generalization, on temperature. The
functions f(r) and the associated structure functions
S(k) or, equivaiently, the radial distribution func-
tions g (r), serve as inputs in the calculations per-
formed. They have been obtained by carrying out a
self-consistent paired-phonon analysis in conjunction
with a hypernetted-chain (HNC) approximation. s

The interatomic interaction is described by thc
Lennard- Jones (6-12) potential.

Our evaluation employs systematically the
hypernetted-chain summation technique developed
recently for the function

Q(r) = Q(0) —In(r~lI ~lr2),

r =—
1 r&

—r21 (see Ref. 21). This version of HNC
procedure rests on the idea of series and parallel con-
nection of diagrams which is familiar from the HNC
scheme for the radial distribution function. '2 " '

The results presented for the condensate fraction
of liquid 4He are in fair agreement with our earlier
results which have been derived from the compact
cluster expansion of Ristig and Clark truncated at low
cluster order. '6 The new results on the density ma-
trix and pairing function of liquid 4He improve signi-
ficantly those of Refs. 16 and 18.

Adopting Schiff-deerlet's choice for the correlation
factor f(r) we find excellent agreement between the
results of their molecular-dynamics treatment and our
results for the pairing function. %e are therefore
convinced that the results of our present study pro-
vide reliable theoretical data on the coherent
phenomena in liquid 4He.

Section II collects the formal results of the Ristig

I

and Clark analysis of the one-body density matrix
and the pairing function. Fantoni's formulation of
the HNC scheme for the one-body density matrix is

summarized. Section III presents the results on the
quantities of interest for describing condensation in

liquid He and Sec. IV is devoted to the generaliza-
tion of the formalism to finite temperatures. The
condensate fraction of liquid He is studied as func-
tion of temperature.

II. LONG-RANGE ORDER

The density matrices contain complete information
on the properties of a many-body system. %e can,
for example, evaluate the kinetic energy if we know
the one-body density matrix. Other physical quanti-
ties which are of interest are related to the two-body
density matrix. Thc long-range behavior of both ma-
trices gives direct information on the coherent effects
of a quantum fluid. '

An approach which allows quantitative treatment of
the functions (3) and (4) for a Bose fluid in its
ground state described by Ansatz (2) has been
developed in a series of publications. ' ' ' The
program carried through in these studies yielded im-
portant structural formulas for the one- and two-body
density matrices and related quantities.

In this section we summarize thc formal results
which are needed for a description of the condensa-
tion phenomena in dense Bose fluids, in particular,
liquid He. The formalism may serve as a basis for
powerful and reliable approximation schemes which-

cmploy the HNC technique developed for the radial
distribution function and for the quantity

Q (r ) —Q (0) =—In ( r, 1

I',
1 r,)

by Fantoni. '

The wave function (2) exhibits long-range order in
the off-diagonal matrix elements of the one- and
two-body density matrices 'o'8'o

lim (rill ilr~') = pn, )0,
) r) -r)')—

lim (r~rql I'21rt'r2') =f(r) n (r)f(r') n (r'), (6)
I &g &y I

r, r' ( oo
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FIG. 1. Graphical representation of the function 0(r) in terms of successive distribution functions. The blob with two
(three) points on it represents the two-(three)-body distribution function,

with

r = r~ —r2 , r' = r~' —r2

Thus, the zero-momentum single-particle orbital is

macroscopically occupied at any density p, the con-
densate fraction being given by quantity n, . A strong
correlation exists between the members of pairs of
bosons with total momentum zero. " This coherent
effect is appropriately described by the pairing func-
tion f(r)n(r). Function n(r) is the density matrix
(3) which has the structure"

(r1~1'1~ r3) =n(r) = n, e O"

Quantity Q(r) and the fraction n, have been exten-
sively studied in Ref. 10. The function Q(r) is

known as an expansion in terms of the successive
distribution functions

g3(r1, r3) =g(r), g3(r1, rs—, r3), . . .

Diagrammatically, quantity Q(r) may be represented
by irreducible Ursell-Mayer cluster diagrams. ' '
Figure 1 depicts the graphic representation of that
function. The condensate fraction is given by

n =e~"'
C

The exponent Q(0) may be written'0

Function g3(r1, r3, r3), for example, is given in this
scheme by the expansion shown in Fig. 3. The quan-
tity g (r) —1 is graphically represented by a solid line.

The Iwamoto- Yamada expansion of function Q (r)
in terms of the entities g(r) and g(r) —1 may thus
be written'0

Here, [AQ(r)]'" ' is the n body clu-ster contribution
which is represented by irreducible diagrams with two
external and n —2 internal field points (Fig. 4).'

Estimates of the function Q(r) for liquid 'He have
been reported in Ref. 16. The calculations are based
on expansion (11) truncated at the four-body level.
The apparent success of the HNC approximation in

determining the radial distribution function' suggests
strongly that one exploit the technique of series and
parallel connection of diagrams to derive an analo-
gous partial summation of expansion (11). This task
has been successfully achieved in Ref. 21. In the fol-
lowing we summarize briefly the results for a system
of bosons.

Let us begin with a structural decomposition of the
Fourier inverse

Q(0) =2D [g] —D [vj],

where the functional D depends on the bare correla-
tion factors

Q(k) =p J Q(r)e'"'dr,
—Q (k) = Q13 (k) S(k) + Qe(k),

(12)

$(r) =f(r) —1, rt(r) =f (r) —1 . (10) where S(k) is the liquid structure function" associat-
ed with Ansatz (2). The components

Quantities (10) are represented graphically by wavy

and dashed lines, respectively. (See Fig. 2.)
To perform partial summations of the expansions

defining Q(r) and D it is best to represent the suc-
cessive distribution functions

Q1(r) = p '(24r) J Q1(k)e'"'"dr

g3(r1 r3. r3) g4(rl r3 r3 ~ r4)

in terms of the radial distribution function g(r).

Ap[g]-,~~ + 1 + &

2! 31
+ 4 ~ ~

FIG. 2. Same as Fig, 1, but for the functional D[(].

+ + ~ ~ ~

FIG. 3. Graphic representation of the three-body distribu-

tion function g(r&, r2, r3) in terms of the radial distribution

function.
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FIG. 4. Three-, four-, and five-body cluster contributions to function Q(r) in terms of functions ((r) and g(r) —1.

Q, (r) =f(r)e ' ' —Q2(r) —1,
Q2(k) = Ql(k) [S(k) —1],

(13)

where quantity Q2(r) collects the contributions of no-

Qe(r) = p '(2m) '
J Qe(k)e'"'"dr

may be represented by non-nodal and elementary di-

agrams, respectively. The leading cluster contribu-
tions to both functions are depicted in Fig. 5.

The function Ql(r) obeys the HNC equations"

dal diagrams. Function Qqe(r) may be characterized
by elementary diagrams which have wavy lines at-
tached to one external field point and solid lines to
the other one. The corresponding cluster expansions
are shown in Fig. 6.

Relations (13) and (14) permit a "dressing" of the
bare correlation factor g(r) in analogy to the well-
known renormalization of function q(r) which yields
the radial distribution function.

In a similar manner we may achieve a partial sum-
mation of the expansions defining the functionals
D [f] and D [g] which determine the condensate frac-
tion (8) and (9). Fantoni gives the formula2'

D[g] = lim [Ql(k) —Q2e(k)] —(2n) '
J( [Qt(k) +Q2(k)][Q2(k)+2Q2e(k)] dk+E[(] .

k-0+ 2p
(15)

The functional E[/] —= E[gl] represents the contribu-
tion of elementary diagrams. The leading cluster
term to this quantity is depicted in Fig. 6. The
Fourier transforms of all quantities involved are de-
fined in the same manner as shown explicitly for
function Ql(r).

The analogous expression for functional D [gl may
be generated from Eq. (15) by performing the re-
placement

Ql(k) + Q2(k) Ql(k)S(k),

Q, (k) [S(k) —1]/S (k)

and ((k) q(k).

+ +, + + ~ ~ ~ )

Q2(r) =

Q2E(r) = + ~ ~ ~

+ ~ ~ ~

&E(r) =g + ~ .1 + ~ ~

FIG. 5. Leading terms to the cluster expansions which
define the functions Q~(r) and QF(r).

FIG. 6. Same as Fig. 5, but for quantities Q2(r), 02~(r),
and ECgj.
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III. BOSE-EINSTEIN CONDENSATION
AND PAIR CONDENSATION

Numerical application of the formalism of Sec. II to
describe the condensed phase of liquid 'He is based
on the HNC equations (12)—(14) for the function
Q(r) and the functional D given by Eq. (15). The
procedure requires as inputs a suitable ground-state
correlation factor f(r) and the associated spatial dis-
tribution function g(r) or the structure function

Our main calculations employ the optimal Jastrow
wave function (2), at the given particle density p, ob-
tained by performing a paired-phonon analysis
(PPA). s " Numericai results are presented on the
condensate fraction n„ the pairing function

f(r) n(r), and related quantities for liquid 4He at the
experimental saturation density p =0.0218 A ', and
at higher densities up to densities in the solidification
region (p —0.026—0.028 A '). lt should be men-
tioned that the paired-phonon model saturates at a

density appreciably lower than the experimental
value. However, there is no point in doing calcula-
tions at that lower density. We stress also that the
model and experimental density scales are different.

The present improvement on the calculations of
Ref. 16 lies in the incorporation of the hypernetted-
chain diagrams into the approximation scheme for
quantities Q(r) and D, which we did not consider in

our earlier study. The HNC procedure adopted here
begins with the HNC-0 approximation which omits
the contributions of the elementary diagrams,

Qz(r) = Q&z(r) = E []]= E [q] —0 . (16)

The next step of approximation includes the contri-
butions from the basic four-point elementary di-

agrams. The resulting approximation is called HNC-4
in analogy to the procedure familar from the treat-
ment for the radial distribution function. '

For the functions of interest we find that the
HNC-4 results do not differ significantly from the
corresponding HNC-0 results. We believe therefore

n(r j/p

0.6

0.5

0.4

0.3

0.2

0.1

0

-0.1 I

4 r[Aj

FIG. 7. One-body density matrix of liquid 4He at satura-
0

tion density p =0.0218 A for Schiff-Verlet choice of corre-
lation factor, in HNC-0 and HNC-4 approximation. Curve
MD depicts the result of Ref. .24 based on a molecular-

dynamics treatment.

f(r) =exp ———1 I
2

(17)

with 6 =2.965 A at experimental equilibrium density
of liquid 4He. Schiff-Verlet's results for the quanti-
ties in question are derived by a molecular dynamics
technique and are sho~n in Table I, column MD,
and Fig. 7, curve MD. For the same trial function
(17) the HNC approximation adopted in present
work yields the results called HNC-0 and HNC-4 in
Table I and Fig. 7. The numerical results of differing
approximations for quantity n, are in fair agreement.
Even the result of Ref. 16, based on the compact
cluster expansion truncated at low cluster order, is

quite good. The function f (r) n (r) vanishes for dis-
tances r & 2 A since the correlation factor (17) is ex-
tremely small at such distances. We get, therefore, a

that the HNC scheme provides an accurate approxi-
mation for the quantities (5) and (6).

Our confidence is strongly supported by comparing
the results of Schiff and deerlet for the condensate
fraction and one-body density matrix with those
results derived by the HNC treatment. The calcula-
tion of Ref. 24 employs the trial correlation factor

t i 5

TABLE I. Condensate fraction of liquid 4He at experimental saturation density, p=0.0218
0A, and vanishing temperature, for Schiff-Verlet choice of correlation function (SV), Eq. (17), and

in.paired-phonon analysis (PPA).

Ref. 16 HNC-0 MD'

SV

PPA

0.119
0.129

0.121

0.120

0.113

0.113

0.105 + 0.005

'Results of Ref. 24 employing a molecular-dynamics method.
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reliable result for the pairing function appearing in
Eq. (6) if the one-body density matrix is known with
sufficient accuracy for distances r ) 2 A. Indeed,
Fig. 7 sho~s excellent agreement among the various
approximations adopted for quantity n (r), r & 2 A.
Figure 8 demonstrates the rapid convergence of the
successive HNC approximations for function 0 (r) at
density p = 0.0218 A with the optimal structure
function as input. The results for the condensate
fraction of liquid 4He at experimental saturation den-
sity obtained by performing a paired-phonon analysis
are listed in Table I.

The condensate fraction is insensitive to the de-
tailed form of correlation function f(r) at any densi-
ty considered. The very short-range Schiff-Verlet or
the long-range paired-phonon choice give essentially
the same result (Fig. 9). Quantity n, decreases with
increasing density, the fraction being about 5'/o in the
experimental solidification region. Several studies are
available which support the possibility that a Bose-
Einstein condensate might indeed be present in a
quantum solid, '" " However, the simple Ansatz
(2) presumably gives a very poor description of 4He

in the solidification region. "
Information on the coherent effects associated with

the off-diagonal long-range order of the two-body
density matrix of liquid 'He is stored in the pairing
function f(r) n (r) which may be interpreted as an
average macroscopic field. ' Figure 10 depicts that
quantity as function of distance r in HNC-4 approxi-
mation corresponding to the optimal correlation fac-
tor f(r) at two differing densities, at the experimen-
tal saturation density, and at density p =0.027 A
The pairing function approaches the value pn, as
r ~ and shows remarkable structure at intermedi-
ate distances. The amplitude of the oscillations ap-
pearing in the pairing function depends sensitively on
the detailed form of correlation function f(r). It is

significantly larger in the paired-phonon than in the
Schiff-deerlet model.

~O
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I l l
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An interesting portion of the ground-state energy
of the fluid is the pairing energy"'

f
Ep=—

&
h(r)f(r)n(r) dr,

2p

with the pairing potential

&(r) = u'(r)f (r)—n (r),
where quantity u'(r) is the effective potential

(18)

V'(r) = u(r) — Alnf(r) .
2 Ptl

(20)

The interatomic potential u(r) is assumed to be of
Lennard-Jones (6-12) type. Quantity Ep is that com-
ponent of the expectation value of the ground-state
energy with respect to the correlated wave function
which is associated with boson pairs having zero total
momentum. Our results for the potential A(r) are

f {r}n{r}/n,{103A s}

30

p =00218 A
3

l

He IppAj

60

FIG. 9. Condensate fraction of liquid 4I-Ie as a function of
density in HNC-0 and HNC-4 approximation employing the
optimal Jastrow correlations.

2.6

2.2

20— — 40

10- p =0.027A 20

0.6—

0.4 2.0 2.8 3.6

I

10

FIG. 8. Function g(r) for liquid He at experimental sa-
turation density in HNC-0 and HNC-4 approximation em-
ploying paired-phonon analysis.

FIG. 10. Pairing function for liquid 4He in HNC-4 ap-
proximation based on optimal correlation factor, at t~o

0
differing densities, left scale p 0.0218 A, right scale
p=0.027 A 3.
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Z (r)/n, [K] -Ep/Anc2 [K]

p =0.0218 A

-03—

,
'

p =0.027 A

I

-2.1

FIG. 11. Pairing potential of liquid 4He in HNC-4 approx-
irnation based on the PPA model at two differing densities.

22 26
[

28 30

represented in Fig. 11. The pairing potential is repul-
sive at small distances r & 3 A and has a rather long
attractive tail at intermediate distances.

It is worthwhile to express the pairing function and
pairing potential by the Fourier transforms,

FIG. 13. Same as Fig. 9, but for pairing energy Ep/A.

and

X(k) =—'~~ [f(r) n (r) —n, p] e' ""d r,

A(k) = p „~~ b, (r) e'""d r,

(21)

Ep= —(2m) 3J~ [A(k) —5(0)]X(k) dk . (23)
2p

a(kj]r, [KJ

-10

-20

p =0.027 A

FIG. 12. Same as Fig. 11, but for quantity b, (k).

respectively. Function (22) permits the energy (18)
to be cast into the form

Formulations (21)—(23) suggests a close analogy to
the BCS treatment of superfluidity in the ground
state of an extended system of fermions. Figure 12
depicts the function h(k) and its variation with den-
sity.

Insertion of our numerical results for the pairing
function and pairing potential in Eq. (18) yields an
estimate of the pairing energy in liquid 4He as func-
tion of density (Fig. 13). In the density range con-
sidered we find a negative value for the energy. Fp,
i.e., the attraction present in the pairing potential is
sufficient to create a bound pair. The energy Ep/A of
the boson pair in paired-phonon approximation is
abou'. 50 mK at saturation density and decreases ra-

pidly with increasing density, becoming positive at
0

density p
—0.029 A '. The pairing energy corre-

sponding to the Schiff-Verlet choice of correlation
function shows a similar dependence on the density.
However, the magnitude of quantity Ep/A is rather
sensitive to the choice of the correlation function.

The close agreement between the results in HNC-0
and HNC-4 approximation (Fig. 13) suggests that the
hypernetted-chain approach provides a reliable ap-
proximation scheme for the pairing energy of liquid
4Hz. Our results call clearly for an investigation of
the effects of the boson pairing phenomenon on the
excitation spectrum of liquid He.
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IV. CONDENSATE FRACTION AT
LOW TEMPERATURE

no(T) =1 —(T/T, )'/' . (24)

The condensate vanishes at the transition tempera-
ture T,. For a system of interacting bosons models
have been developed which rest on the assumption
that certain types of elementary excitations exist at
finite temperatures propagating freely through the
liquid.

The paired-phonon model developed by Feenberg"
assumes that the elementary excitations in liquid 4He

are phonons and rotons which do not scatter,
coalesce, or split. They may be described by the
Bijl-Feynman excitation spectrum"

@2k'

2mS(k)
(25)

It is possible to generalize the paired-phonon model
appropriately to take account of a substantial part of
the effects generated by the interaction between and
among the elementary excitations. "

Adopting Feenberg's model for a description of
liquid 4He at finite temperatures the condensate frac-
tion may be evaluated from

( )
(T/To) /8 0(r}

C (26)

Information on the condensate fraction of liquid
4He can be extracted from experimental data which
are available from neutron scattering measure-
ments. Woods and Sears ' have given a value
n, (T) = (6.9 + 0.8)% for the condensate fraction at
T -1.1 K. At present no measurements have been
reported which allow one to draw definite conclusions
about the dependence of the condensate on tempera-
ture. Theoretical attempts on this problem have
been made in Refs. 33 and 34. However, only the
condensate fraction of the noninteracting Bose gas is
known exactly, '.

(27), have the same graphic representation (Fig. 2).
However, the ingredients (10) which are depicted by
wavy and dashed lines are dependent on temperature
and derive from a correlation factor

f(», T) =f(r)f,„(r,T),
e'"'d k

S (k) (exp [a(k) /k T] + I }
'

(28)

(29)

Expression (28) describes the optimal ground-state
correlations as well as the thermal correlations
present at finite temperatures. The solid line
represents the radial distribution function which is as-
sociated with the correlation factor (28). Exploiting
separability in the paired-phonon analysis it may be
shown that the corresponding temperature-
dependent structure function has the simple form

S(k, T) =S(k) coth[ —, (ak)/k Ts] .

The paired-phonon model just described should
provide a good approximation for the condensate
fraction of liquid He at temperatures T & 1.5 K.
Of course, if scattering, .coalescing, and splitting of
phonons and rotons become important or other types
of elementary excitations appear in liquid He the
adopted model is no longer valid and must be proper-
ly reformulated.

A preliminary numerical evaluation of the conden-
sate fraction for liquid He at low temperatures has

, been reported in Ref. 36. The calculation was based
on the Iwamoto- Yamada cluster expansion for the
function Q (T) truncated at the four-body cluster lev-
el [cf. Eq. (13) of Ref. 36]. Applying the HNC for-
malism with the correlation factor (28) as input, we
have evaluated quantity (27) in HNC-0 and HNC-4
approximation as described in Secs. II and III.

Table II presents our refined results for the con-
densate fraction n, (T) at the experimental saturation
density. The HNC results do not alter the qualitative
behavior of our earlier results observed in Ref. 36.

For vanishing temperature, expression (26) reduces
to the formula (8) discussed in Sec. II. The tempera-
ture To is defined as

To= [p(gs) /ms ks]'

TABLE 11. Condensate fraction of liquid 4He at experi-

mental saturation density as function of temperature based

on the paired-phonon model.

Q (T) = 2Dr[((T)] —Dr[7I(T)] . (27)

The functionals Dr and D, appearing in Eqs. (9) and

with the velocity of ordinary sound s and Boltzmann
constant ks. At saturation density p =0.0218 A. we
find the value TO=2.195 K. Quantity Q(T) can be
viewed as an appropriate generalization of Eq. (9) to
finite temperatures, '

0

1.0

1.4

1.8

2.2

HNC-0

0.120

0.119
0.116

0, 113

0.1 1 1

HNC-4

0.113

0.112

0.109

0.107

0.104
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The condensate fraction depends very weakly on
temperature. The model adopted limits the validity
of our calculation for liquid 4He to temperatures
below T =1.5 K. At higher temperatures an ade-
quate description of liquid He should reflect that the
condensate fraction vanishes at the superfluid transi-
tion temperature. The expected behavior is not
reproduced by the model adopted. In contrast, the
function n, (.T) remains almost independent of tem-

perature signaling the breakdown of the paired-
phonon model in the critical region.
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