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When a type-I superconductor with a surtace nucleation f'ield H, ,3(T) ) H, (T) (thermo-

dynamic critical field) is thermally cycled in an axially applied magnetic field Ho between the

temperatures T(H, 3) and about T(H, ), experiments show that the magnetization changes re-

versibly. The latter is diarnnagnetic near T(H,.3) but can be paramagnetic just above T(H, ,).
This behavior is explained by assuming that the ffuxoid quantum number 6 is fixed at the tran-

sition from the normal to the superconducting state and retained at lower tensperatures. The

value of b is determined almost entirely by the flux at the transition which is enclosed by a con-

tour located at a distance (/1.7 from the surface inside the cylinder (( is the coherence length).

The temperature variation of the order parameter f at the surface of the cylinder, the magneti-

zation m, and the temperature at which m =0 f'or f &0 are calculated tor R )) (. Conserva-

tion of the fluxoid quantum number, while T is varied causes the two opposing surface currents

to become imbalanced. This is the source of' the observed para- and diamagnetism.

I. INTRODUCTION

In a previous publication' we have shown that the
magnetization of the superconducting surface sheath
of type-II and type-I superconductors is reversible, in

agreement with theoretical predictions, ' This agree-
ment is found when the persistent currents around
the sample circumference are quenched by plating a

strip of chrome parallel to the axis of the cylinder on
its surface. The magnetic field Ho was applied paral-
lel to the cylinder axis. Surface superconductivity is

partially or totally suppressed in the plated region,
and a singly connected surface superconducting
domain is obtained for temperatures between the sur-
face critical temperature T3—= T(H, 3) and that of the
bulk, T(H, ), for type-I superconductors.

If no plating is performed, the surface that is paral-
lel to the external field Ho wi11 form a multiply con-
nected superconducting region. Since the surface
sheath can sustain finite superconducti &g currents it

is possible that the currents are of such values that
the number of fluxoids enclosed in the sample is

conserved. If that is the case, the sample is not in

the lowest-energy state but in an excited state charac-
terized by the number of fluxoids b.

One obvious way of inducing superconducting sur-
face currents is by changing the external magnetic
field. This change is responsible for the absolute
value and direction of the induced current. If the
fluxoid conservation prevails over the lowest-energy

condition, the saniple will remain in a giant vortex
state, This state is thermodynamically metastable un-

til a critical current is reached. At this current level
an irreversible transition will take place, the number
of fluxoids will change and the state of the sample
will not be characterized by the same quantum
number b. This irreversible behavior has been ob-
served experimentally " and explained theoretically'
using the Ginzburg-Landau equations and imposing
fluxoid conservation.

In our experiments an external magnetic field was

applied parallel to the axis of a cylindrical sample.
The field was, kept constant and the temperature was

swept through the superconducting transition tem-
perature. Although the condition of' fluxoid conser-
vation is still valid it is not obvious how flux conser-
vation can determine the magnetic behavior of the
surface sheath when the temperature is the only
external variable. The experimental results show that
the magnetic flux in the sample changes with tem-
perature and, what is surprising, the variation of flux
changes reversibly from a negative (diamagnetic) to a

positive (paramagnetic) value when thermally cycled
between T3 and T(H, ). We believe that this
behavior is a consequence of fluxoid conservation.
The following theoretical analysis, based on the
Ginzburg-Landau equations, shows that the main
features of the experimental results, presented in Sec,
IV, can be explained by the temperature dependence
of the giant vortex state.
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II. THEOR Y

Superconductors with Ginzburg-Landau K values
larger than 0.417 have a surface sheath in large mag-
netic fields. This sheath exists for type-I supercon-
ductors for fields between H, and H, 3. The inside of
a cylinder, whose radius R is much larger than the
coherence length ((T), is then in the "normal" state.
The surrounding superconducting layer is assumed to
have an order parameter

&fr(r, 8) = p(r)exp( —ibg)

which is single valued. The value of b is therefore an
integer and is a measure of the fluxoid quantum state
of ihe giant vortex. '

Our explanation is based on the assumption that
the giant vortex settles into a fixed quantum state as
it is cooled through H, 3 in a constant applied field,
and that this quantum state is retained over a large
temperature range, namely, from T2 to about T(H, )
As long as the same fluxoid quantum state is main-
tained, the magnetization changes reversibly with

temperature. Near or at H, the quantum number b

changes abruptly, thereby expelling a very large
amount of flux from the sample, as the specimen
makes a first-order transition to the Meissner state.

With the definitions

'7 && A =H (p, = 1 is assumed) one obtains for the z

component of the local magnetic field

R' dVH(r) =H, +H;' 2r dr
(6)

—r'(1 —F')
dr

Integrating between r =0 and r = R, with the boun-
dary conditions

t

dF
dr

=0, F(0) =0, (rQF) „=p =0

Then the change of flux through the cylinder of ra-

dius R becomes
ta R

Ad =2rr) (H —Hp)r dr =vrR H, re(R), (7)
0

while the total applied flux to the cylinder is

tb, =-nR Hp

Equations (2) and (3), when written in cylindrical

coordinates (r, H, z), can be rearranged with the help

of Eqs. (5) and (6). One obtains with the definitions

h =—H(r)/H, and hp=—Hp/H,

r —(h——hp) = (r Q F )——(2—r
1 2d 2 2 d 2 22 2d dF
2 dr dr dr dr

t

H(R) = Hp,
dr

=0

Q=( A+'74
ch

g '7'F = (F'+Q —1)F
2

)t2+ x + )( Q QF2 4~
C p

(2)

(3)

h. is the GL penetration depth and K =)t/g. Assum-
ing that the 8 component of the vector potential in

conventional units is

where Iqr
I is the zero-magnetic-field order parame-

ter, A is the vector potential, and '74 is the gradient
of the phase of the order parameter, the Ginzburg-
Landau (GL) equations are

using Eq. (7) and definitions F(R) =—f, Q(R) —= q,

and

(P, /Pp —b) g/R —= 8

(A$/$p) g/R —= N(/R = m

[N is the number of positive or negative flux quanta
in excess of the number of the applied flux quanta

/Qp (within +—,)] one obtains

R R

p
(h —hp) r dr — F r drJp

+ F r dr+2' hpm
2 f R

2A.

p

1

R2
Hpr + H, 0'(r) (4)

+f'[(8+m)'+ , f' 1] =0 . ——(9)

/2. d (r)
4p dp

(5)

Here we have @,(r) = err'Hp the applied flux over
an area of radius r and bp(r) = n R'H;r/2(r) the ex-
cess flux over the same area. From

where the function p(r) is to be determined below, it

follows that (Q = Qp):

The first two terms of Eq. (9) are one-half of the
normalized Gibbs free-energy difference per unit
volume between the normal state and the giant vor-
tex state [Eq. (3) of Ref. 6], that is,

—, (Gs —Gz)/(H, ' V/8m) —= —g

where Vis the volume.
Since in the experiments R )) g and F(r) is

essentially nonzero only near the surface where
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r = R, the third term in Eq. (9) is related to the
thickness of the surface sheath

surface of the cylinder. From Eqs. (5) and (13) it

follows that:

t R
F~r dr

Rf' P
(10)

1/2

1 — f —— E—1

2' R
(15)

Therefore Eq. (9) becomes

—g +2' b, m + f [(B + m)'+ f' —I—]

At 6t =0 the boundary conditions, f'=0 and N =0
should apply. Thus the following relation holds:

2t), f)
R

'

1

6
R

1/2

—b= 1 — F3
gp R

(16)

Consider the free-energy difference g whent'R
R » (. We may define F'r dr = f4RPE—, where

P is of order unity. Furthermore, the first integral in

Eq. (9) is always larger than or equal to zero. With
the help of Eqs. (3) and (6) this integral is cast into
the form below and, as shown in the Appendix, it

can be neglected compared to the second term of Eq.
(9). Hence (j —=j,)

1 4' t
R—g= t q'idr P .f" . ——

2H, c o
' R' (12)

q + f —I=— E— —
R

(13)

For T & T,3 we expect that g (0 in general, except
for possible "superheating" effects when it could be-
come slightly positive, Since the first term in Eq,
(12) is always positive the most negative value of g is

2P f b./R The—refore, the . order of magnitude of
~g~ is (5/R)f or smaller.

We are concerned with materials whose K values
are of order unity and cylinders whose radii are such
that 5/R are of order 10 4 for T & T„Since all the.

terms in Eq. (11), separately, are of this order of
magnitude except the terms (8+m)', f~, and unity
in the bracket, the sum of all these terms in the
bracket must also be of order d/R or smaller. We,
therefore, write for the bracket [Q(R) =B +m =ql

t

g R—b + —q
4p

(17a)

where in our case b3E3/R « 1. Thus the superfluid
velocity q3 at the transition must be finite (qi = I)
and therefore $,/@p can never be equal to the value
of b. This conclusion is consistent with the calcula-
tions of Saint-James' who calculated the phase boun-
dary between the normal and superconducting states
for a small solid cylinder for various quantum states
b. In his figure the vertical axis is (R/g) ~ (I —t)
and the horizontal axis can be labeled as 2$, /$p. At
the phase boundary ((3), that is, at the largest mag-
netic field at a fixed temperature, the value of @,/$p
is always larger than b and obeys approximately the
relation $,/$p —b = R/g3 for the larger values of b.

It should also be noted that this phase boundary is

essentially that measured by Little and Parks'9 (on a

hollow aluminum cylinder), by Michael and
McLachlan' on indium cylinders, and by Shablo and
Dmitrenko" on indium and indium alloy cylinders.

We assume that the value of b is locked-in as the
specimen is cooled through the transition in a con-
stant magnetic field, and that this value of b is re-
tained at lower temperatures. The quantity which is

measured in our experiments is A'which can be
readily obtained from Eq. (15) with boundary condi-
tion Eq. (16).

where E is some function of f and m, which must
be of order unity or smaller, and which will be es-
timated below. Defining t = T/T„ t, = T3/T, and

(t, —t)At= M0
(1 —t3)

the normalized Gibbs free-energy difference, Eq.
(11), is

or

1/2

1/2

(17b)

I f3 iV (t) (2 —E)5 fP(t) (14)
R (I+at)' R

where n=6.8K'g3/R. The value of $(t3) —= g3 is a

constant and t3 is defined by the relation

Hp = H, 3
= 1.7 (2' ) tt H, (0) (I —t3 )

In our case, terms of order b/R « I can be safely
neglected in Eq. (17b) to first approximation, and if
f(t) were known, Eq. (17b) would be the desired
solution. Equation (17b) shows that tV may be zero
not only when f =0 at b, t =0, but also when b, t &0
and f A 0, that is, when

or bp=1.7 (2' )tt/(I +b.t) near T,
Consider now the "superfluid velocity" 0 at the

2htp
,fo (18)
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Whether such a "cross-over" point of W exists will

depend on the temperature dependence of f when Hp
and b are constant. Since fp must be smaller or
equal to unity, ktp must be bracketed by 0 ~ Atp « 1,

It should be noted that Eq. (17a) can be obtained
also from the fluxoid quantization relation

0.2

0.1

bgp=(@, +A/) + X~ —

&
(j ds)

C

when evaluated at r = R and use of Eq. (3) is made.
Also q = I —, f' from—E,q. (15), implying that at the

transition betwen the normal and superconducting
states, the superfluid velocity reaches approximately
its maximum value. The supercurrent density, how-
ever, approaches zero, because the density of the su-
perelectrons approaches zero [F'(r) =0].

Since the observed magnetization is reversible, we
believe that the quantum number b is locked-in and
uniquely determined at the transition when the tem-
perature is swept at constant magnetic field. We,
therefore, have a situation which is akin to the giant
vortex state, '6 where the magnetization as a function
of the applied field was obtained at constant tempera-
ture. There it was shown' that the Gibbs free ener-

gy has a minimum at which the magnetization be-
comes zero [(1)G/BHp) r = —m]. Adapting this result
to the present experiments we may write for Eq. (12)

Hp Hp
g = 2P f'=g —+p~-R' H, g H, p

Hp+O-
H, g

Hp

H, g

(20)

, (pb)p btp bt-
' (Pa) Atp(l +At) (21)

One would expect that the ratio (PA)p/PA is only

weakly temperature dependent and we set this ratio

where g =gp is the minimum value of the energy
which occurs at Hp= H g(5 p) tat which point N
changes sign. 3 and D are constants. Near T, the
value of H, q changes linearly with temperature and,
therefore, Hp/H„p = 1.7/(I + b t) If the magnetiza-.
tion increases with infinite slope as the temperature is
lowered through t3, then the value of D =0. 1f the
value of D ~0 then the magnetization varies linearly
with temperature near t3. Both cases are being con-
sidered here.

We shall proceed by discussing the first case
(D =0) in detail and then stating the results of the
second case (D NO). Both cases lead to similar
results. Since g in Eq. (20) is normalized by H,'(t)
the minima of g and G~ —6/v as a function of tem-
perature do not coincide. Since f =0 at At =0 and

f = fp at b, tp, one obtains from Eq. (20) with Eq.
(18),

K=0.54

-0.1 '

0.6

0.2

0
0.5 04 0.3 P.2 0.1

equal to unity in what follows.
Equation (21) shows that near b, t =0 the value of

f' varies as (b.t) 't' and N behaves similarly, as can
be checked by substituting f into Eq. (22).

One then finds to a high degree of accuracy the
value of N by substituting Eq. (21) into Eq. (17b)
and neglecting the terms AE/R and E,F3/R which
are certainly very small and of no importance at this
point. Results of N and f as a function of b, t are
shown in Fig. l, However, the parameter Atp is still
undetermined at this point and we shall find it from
the temperature dependence of the function E near
At =0.

E is calculated self-consistently from the energy,
that is, from Eqs. (14) and (12) with

N g3/ R = [(I + b t) (I ——,f~) ] 't ~ —1 (22)

F1G. 1(a), Number of flux quanta N in excess of the
number of "applied" flux quanta vrR Hp/$p is shown as a

function of temperature At =(t3 —I)/(1 —I3), where t3 is

the normalized temperature at Hp = H, 3 and (3 ((I3). The
curves are calculated from Eq. (22) and apply when Hp is

held constant and the temperature is varied. The curve with
the cross-over temperature Alp=0. 187 is calculated using

Eqs. (27) and (29) for K =0.54 and that with h, tp=0. 268
with Eqs. (21) and (2S) for the same K value. For the form-
er result O ~0 in Eq. (20) for the latter D =0. (b) Order
parameters at the surface of the cylinder, corresponding to
the solutions of N(b, t) in Fig. 1(a), are shown as a function
o t

tern

perature 6 f.
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and Eq. (21). This leads to

and

E3 = 2.—1,7K

2
Atp =

I +4(2p —I)/1. 7 K2

(24)

(25)

The value of E3 should be interpreted as an "average"

value for a fixed value of b in the limit that

$3/R « l. In this limit we have ignored changes of
b which are of order unity and any quasiperiodic pro-
perties of E3. When the magnetic field and the tem-

perature are varied such that the superconducting
normal phase boundary is followed' and b is con-
stant, the actual value of E3 varies from a positive to
a negative value or vice versa. At the points when b

changes by unity, E3 changes sign and its absolute
value. ' In Eq. (24) the value of K should be restrict-
ed to values such that our assumptions A/R « I

and g/R « I are not violated.
It follows from Eqs. (24) and (16) that the fluxoid

quantum number b is given by

1.7 R R
b = ' ———+ —E

2 (3 $3 2
(26)

and is mainly determined by the radius of the
cylinder and the coherence length at the transition.
The term

2
(E,) is of no significance in our case, but

the term R/g3 is of importance since it is this term
which makes q3 always nonzero. The physical signifi-

cance of the term R/g3 in Eq. (26) is the following.
The current density in the surface sheath is a spatially

rapidly varying function over the first coherence
length of the surface sheath, measured from the sur-

face,"over which distance the order parameter F(r)
is fairly constant. The current density, Eq. (3), be-

comes zero at a distance 5 from the surface at which
point Q(R —8) =0. The currents to the left and
right from this point flow in opposite directions. As
shown in the Appendix and Ref. 2, the value of 5
near H, 3, that is near At =0, approaches 5=0.59(3.
Thus we may write R/$3 =2m R8H, 3/Qo Since.
2m R 88,3 is the applied magnetic flux within an area
2mR8 (8 « R), the ratio R/g3 corresponds approxi-

(2 —E)Af ~=PAf' —(aR) —' . (23)
R (I+At)'

At Ar =0 we obtain the value' of A3 = g3 and we find
from Eq. (23) that near Ar =0 the temperature
dependence is

(2 —E)A =C, + C, (Ar)

where Cp is a constant and C~ is a function of Atp.

Since q3-I —A3E3/R and q(Ar) is given by the flux-
oid quantization relation, Eq. (17a), we find by

matching terms of equal powers of (At)o, (At) 'r',

(At)', etc. , of Eq. (13) near At =0 that

mately to the total number of flux quanta, within a
distance 5 from the surface. These are excluded
from the total number of "applied" flux quanta,
—, [1.7(R/g3)'], in setting the quantum number b of
the order parameter at the transition (At =0).

We consider now the case of a second-order phase
transition at At =0 for which D AO in Eq. (20).
Proceeding similarly as above one finds with fo given

by Eq. (18) and dg/d At =0 at Ar =0 that

(pA),
(PA)

'I 2'
4tp —At

~ Arp(1+Ar)

Near At =0, f' and Ware proportional to At Sinc.e
dg/dAt =0 at Ar =0 for a second-order phase transi-
tion, it follows from Eq. (14) with Eqs. (27) and (22)
that

F3 = 2 —1.7K'/2 (28)

Substituting the temperature dependences of f' and
N into Eq. (23) one obtains (2 —F) A = Cp + C] Ar

near ht = 0, where C] is a function of b tp. Matching
terms of equal powers of (Ar)o, (Ar)', (Ar)', etc. , of
Eq. (13) near At =0 leads to

2
b, tp =

I +8(4p —3)/1.7~' (29)

Substituting Eq. (28) into Eq. (26) determines the
value of b.

The results of the cross-over temperature 4tp,
[Eqs, (25) and (29)l, of E3 [Eqs. (24) and (28)] and

of the order parameters [Eqs. (21) and (27)] at the
surface of the cylinder are quite similar, when D =0
and D AO in Eq. (20). The main difference is that
f' and N vary as (At)'r' for D =0 and as At when

D WO near At =0. Making the term (pA)o/pA = I
in Eqs. (21) and (27) may have a slight effect on the
accuracy of the results of the cross-over temperature
Ato which depends also on p. The latter value is not
known exactly except that p should be smaller but
close to unity. If the sheath order parameter F(r)
w'ere a step function then p = I; for a Gaussian

p = I/2'r2. Since the sheath is closer to a step func-
tion than to a Gaussian we substitute p =0.9 into
Eq. (29) and find that for K =0.54 the value of
Ato =0.187. Similarly, one finds from Eq. (25) that
6tp =0.268.

Regardless of which solution for f' is substituted
into Eq. (22), the function iV(3/R is a universal func-
tion of At for a fixed value of Atp. Since b, tp is not a

function of the applied fi'eld Ho, and g3 ~ (Hp)
the excess flux N ~ Hp . Therefore, when N is

measured on one specimen for various constant mag-
netic fields, all values of W must scale as (Ho)'r' (see
Figs. 9 and 10).

At Ar =1.7 (2' ') K —I the thermodynamic critical
field is reached. At this temperature a transition to
the Meissner state will most likely occur. For
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K =0.54 this value is At =0.30. This is above the
temperature for which the f2 functions cease to exist
for the above Ato values. A metastable "supercooled"
state is possible in this instance but less likely to oc-
cur. If Ato should be closer to zero, our solutions of
f for a constant b value cease to exist before the
Meissner state is reached. In that case the value of b

must change at a temperature At ) 1.7 (2'~') K —l.
Thus when b is locked-in at the transition from the

normal to the superconducting state and maintained
as the specimen is cooled in a constant magnetic
field, the magnetization may reverse sign because of
the temperature variation of the order parameter.
The latter variation is similar to that of the giant vor-
tex state at constant temperature but varying magnet-
ic field. The following experimental results support
this suggestion.

III. EXPERIMENTAL METHODS

The samples used in these experiments were
cylinders of Pb99T10~ atomic per cent alloy. The alloy
was prepared by melting the components in an inert
atmosphere inside a pyrex tube lubricated with a solu-
tion of silicon oil in acetone. The samples werc an-
nealed a few degrees below the melting -temperature
for several hours. After annealing, the specimens
were chemically polished. %hen plating was neces-
sary, the sample was first chemically polished, then
partially coated with 7031 GE varnish, which was
then baked at 100'C and the uncovered region was
electroplated in a chromic acid bath. The electroplat-
ed chrome was approximately 10 p, m thick.

Thc samples were thermally anchored to a copper
rod that was connected through a thermal resistance
to a helium evaporator maintained at constant tem-
perature. The sample temperature was changed by
means of a heater wrapped around the upper part of
the copper rod. The temperature was determined by
a calibrated germanium thermometer connected to
the copper rod, below the heater.

The evaporator, the copper rod, and the sample
were located inside a vacuum jacket, surrounded by a
helium bath at 4 K,

The variation of the magnetic flux at the sample
was measured by a SQUID (superconducting-
quantum-interference device) magnetometer. The
sample was magnetically coupled to the SQUID by a
superconducting transformer made with Nb wire.
The secondary was placed inside the SQUID and the
primary was wound around the vacuum jacket at the
center of the sample. The transformer was designed
to have a ratio of flux measured at the sample to that
seen by the SQUID of approximately 100. The
transformer and the SQUID were kept at 4 K. The
SQUID was magnetically isolated from the environ-
ment by means of a superconducting shield. A mag-

netic field parallel to the axis of the sample, up to
300 Oe, was applied by a superconductlng coil operat-
ed in the permanent mode. The ambient magnetic
field in the experimental region was reduced to 10 '
Oe by proper magnetic shielding.

The magnetic-flux detection system was calibrated
by measuring the total explusion of the magnetic flux
at the superconducting transition at low fields. Prop-
er precautions were taken to avoid flux trapping in
the sample by cooling it in zero applied field well

below the transition temperature, . Then the field was
increased to a constant value and the sample was
heated through the transition. This procedure was
repeated for various fields, In this way the
transformer ratio was found to be 94.

The measurements were done at constant magnetic
field while sweeping the temperature. The analogue
output of the SQUID was plotted on a x-y recorder as
a f'unction of the resistance of the germanium ther-
mometer. The rate at which the temperature was

swept was adjusted in such a way that the measured
flux variation was time independent.

IV. EXPERIMENTAL RESULTS

All the samples were cylindrical, but the geometry
of the surface sheath was of two types. Some experi-
ments were done with, a sheath that was singly con-
nected, that is, part of t& sheath was suppressed by

electrodepositing a strip of chrome on the sample
parallel to its axis. This produced a normal region
that prevented supercurrents from flowing in the sur-
face sheath around the sample. Other experiments
were done without plating; in this case the sheath was

multiply connected. Between T3 and T(H, ) there
was a normal core at the center of the cylinder com-
pletely enclosed by a superconducting region, around
which a net supercurrent could be maintained, The
experiments on the partially plated sample were per-
formed in order to determine the superconducting
parameters of the samples and for the purpose of
comparison with the results of the same sample when

multiply connected,
Typical results for a partially plated sample, S-mm

diameter and 26-mm long, are sho~n in Fig. 2. The
change of magnetic flux at the sample expressed in

number of flux quanta is plotted as a function of
temperature. In this sample the plated region
covered 30% of the total surface of the cylinder. It
can be seen that the sample became increasingly di-

amagnetic until a temperature T(H, ) was reached, at
which there was an abrupt change in the magnetiza-
tion, too fast for the SQUID to follow because of its

long time constant (=1 sec). This change is associat-
ed with the explusion of flux when the sample enters
the Meissner state. With these T(H, ) we constructed
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FIG. 2. Change in flux at the sample as a function of temperature tor different magnetic t'ields. A strip of chrome was elec-
trodeposited along the cylinder, making the surface sheath singly connected. Change in flux is plotted in number of' flux quanta

for fields: 0, 288 Oe; 5, 240 Oe; x, 192 Oe; G, 144 Oe; + 96 Oe;C', 48 Oe. The arrows indicate the point at which T(H, .) is

reached and the SQUID cannot follow the change in flux.

the phase diagram shown in Fig. 3. The experimen-
tal points were fitted by least squares to the equation

H, (T) =866[1 —( /T7. 098) 2]

This agrees within 10% with that reported by Decker
et al. ' for pure lead. This shows that this alloy has a

Ginsburg-Landau parameter K (0,7 as expected from

previous results. "

The determination of the surface critical tempera-
ture T3 was not so straightforward because the mag-
netization shows long diamagnetic tails. When plot-

ting the logarithm of the change in flux as a function
of temperature, a change in slope at a well defined
temperature is seen in Fig. 4, We define this tem-
perature to be T3. The resulting phase diagram is

shown in Fig. 3. The experimental points are well

300

200

100

6.2 7.0

FIG. 3. "Phase diagram" of the Pb99 Tlo~ alloy used in our experiments. T(H, ),O, and T3, 5, are obtained from our data in

the manner described in the text. The surface critical field is fitted by a straight line H, 3(T) =304(T —7.069) and the bulk

critical field by a parabola H, (T) =866[1 —(T/7. 098) ]. The corresponding Landau-Ginzburg parameter is K =0.52.
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FIG. 4. Logarithm of' the change in flux of a sample as a function of temperature for different magnetic fields: 0, 288 Oe; 6,
240 0e; &, 192 Oe; c], 144 0e; +, 960e;Q, 48 Oe. The change in slope is associated with T3.

fitted by H„3(T) =304(T —7.069). Using these
values for H, 3 and H, we calculate
K = H 3/1 7H, =0.52,. in agreement with values re-
ported by other authors. "

Theoretical' and experimental results' show a
universal behavior when the magnetization and field
are plotted in the reduced variables p, a(~) and

H/H, 2(T) The value o. f pa (~) is proportional to
the magnetization per unit volume of a sample of di-

mensions larger than the thickness of the supercon-

ducting sheath, Ho is the applied field, and
H„2 = u(T —T,). The curves are universal regardless
of the value given to o. but only for a unique value of
'T, . This value is found to be 7.07 +0.01. From our
measurement of H, 3(T) and H, q= H, 3/1. 7 the value
of 0. is found to be 179 Oe. The value of T, neces-
sary for a universal plot, as shown in Fig. 5, agrees
with that obtained by adjusting H, (T) and H, 3(T) by
least squares, and also with the measured T, at zero
field, which is T, ='7.10+0.02 K. Figure 5 shows the

1.0

0.8—

0.6—

0.4—

0.2—

+'gf xm a
I to +otw 46

1.2 1.4 1.8 2.0 2.2 2.4

P/ C2

FIG. 5. Results shown in Fig. 2, plotted in the normalized units as used in Ref. 2 as explained in the text, for a semi-infinite
half space. The full line represents the theoretical curve for K.=0.55. Magnetic fields are: 0, 288 Oe; d, 240 Oe; x, 192 Oe; 0,
144 Oe; +, 96 Oe;0, 48 Oe.
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FIG. 6. Change in flux ot the sample as a function of temperature in difterent magnetic fields: 0, 288 Oe; 5, 240 Oe; &&., 192

Oe; C), 144 Oe; +, 96 Oe;0, 48 Oe. The sample is multiply connected. Change in flux is plotted in numbers of flux quanta.

results of Fig. 2 after plotting in reduced variables.
Figures 6 and 7 show the results of two experi-

ments made on the same sample with an unplated
surface. The differences between these results and
those of Fig. 2 are apparent. One important point is
that the results of the partially plated sample are al-

ways reproducible, except for minor contributions to
the tails of unknown origin above T3. In the case of
unplated samples, the results are not exactly reprodu-
cible; they depend on surface conditions in an un-

known way. The results shown are from the same

sample with the same heat treatment. The bulk
critical field and critical temperature coincide in both
experiments, in agreement with those of Fig. 3. The
difference between the experiments shown in Figs. 6
and 7 is that after completion of the experiment the
sample was taken from the cryostat and chemically
polished again, using the same procedure as that used
in all other experiments. This nonreproducibility
after similar surface treatments was also observed in

other samples.
Another result is that the diamagnetic tails of the
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FIG. 7. Change 'in flux as a function of temperature for different magnetic fields: 0, 288 Oe; 5, 240 Oe; x, 192 Oe; 0, 144
Oe; +, 96 Oe;&&„48 Oe. The sample was multiply connected as it was the case in Fig. 6 and the orily difference was in the sur-

face treatment, as explained in the text.
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FIG. 8. Comparison of the magnetization as a function of temperature f'or different sample conditions. Magnetic field is 240
Oe for all the curves shown. 0, Partially plated sample —Singly connected surf'ace sheath. +, Completely plated sample—
Partially suppressed surface sheath. 0, Unplated sample —Multiply connected sheath. The temperature was decreased from
above T3. 6, Unplated sample —The temperature was increased from a value sllightly higher than T(H, ).

unplated specimens above T3 are larger than those of
the plated (singly connected) samples. In Fig. 8 we
show the results, measured in a field of 240 Oe, of
an unplated, a partially plated, and a completely plat-
ed sample. Until now we have not been able to con-
trol the surface treatment in such a way as to obtain
quantitatively reproducible results.

The following describes what we believe is charac-
teristic of a fluxoid quantum state. It can be seen in

Figs. 6 and 7 that the multiply connected samples
show an increase of the diamagnetic magnetization
above T3 when the temperature is decreased until a
maximum near T3 is reached. The diamagnetism
then decreases towards zero magnetic moment and
eventually it becomes paramagnetic, before the di-
amagnetic bulk transition at T(H, ) takes place. The
change in sign of the slope of the magnetization is a
general characteristic of the magnetic response of the
multiply connected samples when the temperature is
swept at constant magnetic field. This behavior was
verified by several experiments after repolishing the
surface of the sample, All the experiments had in
common: (a) the inversion of the slope of the mag-
netization, and (b) a nearly linear decrease of the di-

amagnetism below T3.
Similar behavior was also found for samples of the

same alloy whose diameters were 2 mm.
In order to detect if our results were due to

currents induced by possible thermal gradients in the
sample, produced by heat losses, the heater at the
copper rod was switched off and the thermal sweep
was accomplished by applying heat through the sam-
ple at the opposite end. The results obtained in this
way were the same as the ones previously obtained
with the heater in the copper rod, Since the tempera-

ture gradient established in the sample was much
larger than that produced by any thermal loss, it was
concluded that the induced currents had no origin in
thermal gradients. From the measured thermal con-
ductivity of this alloy and the known applied heat
flux it was determined that the maximum tempera-
ture difference in the sample was a few millidegrees;
this explains why the magnetization curves were not
different from the ones taken at uniform tempera-
ture.

V. DISCUSSION

Studying the fluctuation-induced diamagnetism in
type-II superconductors, Gollub et al. ' reported a

change in the slope of the magnetization at T3, simi-
lar to the one found here, They proposed no expla-
nation for their observations. Since they were in-

, i

terested in measuring the bulk-induced diamagne-
tism, they plated the surface of the sample with a
normal metal and made no further detailed study of
the aforementioned observations. Up to now we
have not considered in our discussion contributions
of the fluctuation-induced diamagnetism to the total
variation of magnetic flux. The tails above T, (H) in

the totally plated samples are of the same order of
magnitude as those measured' for similar alloys.
The low sensitivity of our transformer does not allow
for a detailed comparison with those results.

Knowing that our alloy is a type-I superconductor
and using the results of Ref. 14, we conclude that the
fluctuation-induced diamagnetism is small when com-
pared to the values of the magnetization obtained for
the giant vortex state. However the possible contri-
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FIG. 9. Change in flux times (3/R Qo as a function of b, t. The reduced variables are defined in Sec. Il. The points
correspond to those plotted in Fig. 6: 0, 288 Oe; ~, 240 Oe; &, 192 Oe; 0, 144 Oe; + 96 Oe; 0, 48 Oe. The diamagnetic tails
above T3 (i.e., ht & 0) also superimpose when plotted in reduced variables.

bution of the fluctuations to the induced sheath
currents on the surface sheath is not known.

The enhancement of the values of the tails above
T3 in the unplated samples is not due to bulk fluctua-
tions because the enhancement is reduced when par-
tially plating the surface of the samples.

In a constant magnetic field, the magnetization of
the Meissner state varies only very slightly with tem-
perature due to the temperature dependence of the
penetration depth. The shielding current flows in
one direction only, and the magnetization does not
reverse sign. In the surface sheath state the magneti-
zation may reverse sign, however, because there are
two surface currents of large magnitudes, flowing in

opposite direction. Due to a change in field or tem-
perature, an imbalance of these currents may cause
the net current to be in either direction. It is there-

fore reasonable to expect different temperature
dependences of the magnetization in a constant field
for the Meissner and surface sheath states when the
fluxoid quantum number is conserved.

Before comparing the experimental results with the
theory of the temperature dependence of the giant
vortex state, let us analyze some of the experimental
facts that induced us to believe that they are the
manifestation of a temperature dependent quantized
macroscopic superconducting state. First of all it is
very difficult to think "classically" of a mechanism
that could induce currents in opposite directions
when temperature is the only external variable. If
fluxoid conservation is imposed instead of minimum
energy, the direction and magnitude of the current
will be adjusted by the quantum state which has been
locked in the sample. One characteristic of this quan-
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FIG. 10. Change in flux reduced variables as in Fig. 9. The points correspond to those of Fig. 7: 0, 288 Oe; 5, 240 Oe; x,
192 Oe; 0, 144 Oe; +, 96 Oe; &&, 48 Oe.
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turn state is that the magnetization should behave re-
versibly, as long as the state is characterized by the
same number of fluxoid quanta. If by sweeping tem-
perature there is a change in the number of quanta
the variation of magnetic flux should be irreversible.
Figure 8 shows the reversible variation of flux as a
f'unction of temperature, at a constant magnetic field
of 240 Oe, when the temperature is increased and de-
creased. On the other hand if the temperature is

swept below T(H, ) and then increased above this
value the resulting flux variation is completely ir-

reversible. The flux jumps are so large and fast that
the SQUID cannot follow them, unitl temperatures
near T3 are reached. The expulsion of flux from the
bulk of the sample at T(H, ) induces critical currents.
An increase in temperature reduces the critical
current, thereby maintaining the critical surface state.
This means that the surface is not able to conserve
the fluxoid number and transitions to different quan-
turn states take place. Results for other fields and
samples have similar behavior but are not plotted for
clarity. We see that these experimental facts support
the idea of a locked quantum state as discussed in

Sec. II. This is not the only evidence of fluxoid con-
servation. It was shown in Sec. II that the inversion
of the slope and sign of the magnetization, as indicat-
ed by Eqs. (25) and (29), are characteristic of the
temperature dependence of the vortex state, as ob-
served experimentally. It is also indicated in Sec. II
and shown by Eq. (22) that the variation of flux as a

function of temperature should be a universal func-
tion, when the change in flux is multiplied by (3/R (j)o

and the temperature expressed in the form
(r f3) /(r 31 ) . In Figs. 9 and I 0 we show the
results of such a normalization for the experimental
results of Figs. 6 and 7. The excellent superposition
of all curves can be seen. In these graphs f3 is deter-
mined from the experimental values of H„(r), as
shown in Fig. 3. We see that the universality and the
order of magnitude of the change in flux are in

agreement with the predictions of the theory, Fig, 1.
On the other hand, exact quantitative agreement can-
not be expected until the influence of the surface
preparation is fully understood. The latter deter-
mines the quantum number b which the sample
locks-in at T3. It is seen from our results that the
surface of the sample is capable of sustaining induced
supercurrents above T3, where T3 is obtained from
the partially plated sample. It is possible to think of a

thinner surface superconducting "sheath" of a higher
K value, in the' outermost part of the cylinder. This
thin layer would give a small contribution to the mag-

netization for the partially plated samples due to the
larger K value, but when multiply connected, it could
lock the fluxoid number above T3. The experimental
results could be a superposition of two curves, one
arising from the larger ~ value with a Atp much larger
than the one. for ~ =0.52.

In conclusion we are able to explain the reversible
change in sign of the magnetization of a supercon-
ducting cylinder in a constant applied (axial) magnet-
ic I'ield, when thermally cycled between T(H, 3) and
T(H, ), by the concept of the giant vortex state.
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APPENDIX

Jt @(r)j (r) dr )0 (AI)

We know from the exact solutions of the giant vor-
tex5 that P(r) is a spatially slowly varying function
over the first coherence length from the surface
(boundary condition dp/dr =0 at r =R) (Ref. 5, Fig.
4). However j(r) ~ —Q(r)F (r) changes very rapid-

ly over this distance. From Eq. (5) it follows that
Q(r) =0 at r = R —g, where the distance g from the
surface is

f 't

g 0.59
I

P(R —g) 6 ~
I + At P(R) R

(A2)

At Ar =-0 the last term of Eq. (A2) is zero. In that
limit 5=0.59/3. Generally @(R —5)/$(R) = I, and
in our case

~
N g3/R ~

~ 0.2, so that the distance from
the surface at which j (r) =0 varies from 0.59(3 to
about 0.50(3 (at most), and Q(R) from unity to
about 0.9 (at most), in our case. Therefore Eq.
(A I) is approximately

I =—
J j (r) dr = —y(R)V(R) 4~ "'. i Hanoi

—Ho

2H, . c 2 H,

where H„~ is the uniform field inside a solenoid of
radius R and of wall thickness 5 (& R, generated by

f R

a current per unit length J i (r) dr
. 0

Here we may apply the results derived from the
surface sheath on a semi-infinite half space with dif-
ferent applied fields on each side of the sheath. "

We show that the first term on the right-hand side
of Eq. (12) is much smaller than the second term.
Consider the integral I,

pR
/= t (h —ho) rdr

R2 JP
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This, with H„= H„~, is approximateiy

2

2/f2 ' 2' R
(A4)

(A5)

Because H ~+H'p —2Hp, Eq. (A3) can be expressed
in terms of 5f'/R, and when Eq. (A.3') is then sub-
stituted into Eq. (12) one obtains

I ~ I/1»s «o««unity. I I (3/R & 0.2 and
g3/R & 10 in our case. Also N ~,f2 near Ar = G.

Thus the first term on the right-hand side of Eq.
(A.5) is always very much smaller than the second,
except perhaps when f 0 for 5( & A to. This tem-
perature is, in our case, below that at which the tran-
sition to the Meissner state occurs. Checking the nu-
merical results of Refs. 5 and 6 reveals that for di-
mensions of R /( —3 —5 this term is also of no im-

portance as far as the total oibbs free-energy Eq.
(12) is concerned.
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