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Mixed state in magnetic superconductors
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The boson theory is reformulated in a form applicable to the mixed state in the rare-earth
compounds, RRh4B4, R„Mo6S8, and R„Mo6Se6. The magnetic field induced by the persistent

current of vortices, and the spin magnetization magnetized by this field are self-consistently cal-

culated. A nonuniform spin magnetization with the periodicity of a flux-line lattice appears in

the crystals. The total flux which is the sum of the spin and current contributions is quantized.
This quantization effects the current inversion and thus the attractive interaction between the
vortices. The calculated magnetization has a tendency of becoming the type-I or type Il-l super-
conductor even for a large K. The fact that H, 2 is drastically depressed near the Curie or Neel

temperature explains the experiments on Dy„Mo6S8 and Er„Mo6S8.

I. INTRODUCTION

Recently, the rare-earth compounds R Rh4B4,
R„Mo6S8, and R„Mo6Se8 with x =1.0 or 1.2, were
found to exhibit superconductivity, although these
compounds contain the magnetic moments of rare-
earth ions. ' ' In these compounds, rare-earth ions
are placed at the lattice points with regular crystal
periodicity. The superconducting and magnetic prop-
erties of these compounds show many characteristic
features. Some of them are as follows. Supercon-
ductivity in ErRh484 and Ho„Mo6S8 is quenched by
onset of ferromagnetic order at a low tempera-
ture. ' On the other hand, in Dy„Mo6S8 and
Er„Mo6S8 superconductivity coexists with an antifer-
romagnetic order at low temperatures. " The upper
critical field H, 2 of Er„Mo6S8 and Dy„Mo6S8 has a
maximum at a finite temperature above the
magnetic-phase-transition point. '

The following model for the compounds is implied
from the experimental facts. ' ' Electrons responsi-
ble for superconductivity are the 4d electrons of Rh
and Mo. The rare-earth ions carry magnetic mo-
ments, and the interaction. between them mainly ori-
ginates from, the indirect coupling through the spin
polarization of the Sd and 6s electrons of rare-earth
ions. The spin-dependent interaction between super-
conducting electrons and rare-earth ions is extremely
weak.

We believe that the effect mentioned below is most
important for understanding the physical properties
of the magnetic superconductors, especially of those
with low-critical fields. In the compounds, the

superconducting-phase-transition temperature is usu-
ally higher than the magnetic-phase-transition tem-
perature, Let us consider the mixed state in the tem-
perature region between the superconducting- and
the magnetic-phase-transition temperatures. The per-
sistent current of vortices induces a magnetic field.
This magnetic field polarizes the spins of rare-earth
ions" and produces a nonuniform spin magnetization
with the periodicity of a flux-line lattice in the cry-
stals. Since this spin-polarization effect becomes
large near the magnetic Curie temperature, this
nonuniformity may be observed by neutron scatter-
ing. Along with the vortex current, the spin magnet-
ization contributes to the magnetic flux in the mag-
netic superconductors. The total flux of a single vor-
tex which is the sum of spin and current contribu-
tions is quantized. Therefore, the flux quantization
leads to the following situation: the vortex current is
drastically affected by the spin magnetization and the
current inversion occurs in some portion of the vor-
tex. The current inversion causes the attractive force
between the vortices. The magnetization curve is
strongly influenced by the attractive interaction. As a
result, the magnetic compounds have a tendency to
become a type-I or type-II-1 superconductor even
when they have a large K. When temperature ap-
proaches the magnetic-phase-transition temperature,
0,2 is drastically decreased. This fact explains the
experimental results that H, 2 has a maximum at a
temperature above the magnetic-phase-transition
temperature in Dy„Mo6S8 and Er„Mo6S8.'

When the spin-dependent interaction between con-
duction electrons and rare-earth ions exists, the fluc-
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tuation of the rare-earth spins inside a Cooper pair
acts as a pair breaker and weakens the BCS coupling
constant. " '" Since the spin fluctuation is dependent
on temperature and magnetic field, the BCS coupling
constant becomes dependent on these quantities. In
some of the magnetic superconductors, this effect
should be taken into account. However, in the
present paper, we neglect this effect and concentrate
ourselves in discussions of the spin-magnetization ef-
fect mentioned above, assuming that the BCS cou-
pling constant is independent of temperature and
magnetic field. The effects of the spin splitting of
conduction bands and the spin-orbit scattering are
also neglected.

In Secs. II—IV the magnetic properties of rare-earth
compounds will be presented. To prepare for a pre-
cise analysis of superconductivity, we need three rela-
tions which should be derived from the BCS theory,
The first one is the Maxwell-type equation which
determines the local magnetic field inside the metal.
This equation is obtained when we determine the
current as a function of the electromagnetic vector
potential. An old example of an equation of this type
is the Pippard equation. A usual way of calculating
the current is to use the order parameter. The most
well-known equation for the order parameter is the
Gor'kov equation. Since the Gor'kov equation con-
tains the internal electromagnetic vector potential, it
should be coupled with the Pippard-type equation.
Finally, we need the Gibbs free energy in order to re-
late the internal field to the external magnetic field.
When the internal field and the external field are ap-
proximately equal, the Maxwell-type equation and
the Gibbs free energy are unnecessary since we can
then simply relate the external field to the order
parameter through the Gor'kov equation. Such a si-
tuation occurs, for example, when one calculates H, 2

with high-vortex density. The situation becomes
more involved when the internal field is considerably
different from the external field. In such a case, the
internal field should be determined by the Maxwell-
type equation and the Gibbs free energy determines
only the vortex density. A main contribution of the
boson theory" " to the study of superconductivity
has been the derivation of a precise form of the
Maxwell-type equation from the BCS theory. Let us
call this equation the new Pippard equation or the
Maxwell-type equation.

In the boson theory all of the observables become
functionals of the so-called boson-transformation
parameter f(x); the currentj [f], the electromagnetic
vector potential a [f], the order parameter A[f], etc.
In this way, the quantities j, a, and 5 are related to
each other through the function f. Calculating j[f]
and feeding it into the Maxwell equation, we obtain
the new Pippard equation. This is the Maxwell-type
equation in the boson theory. Since this equation re-
lates the vector potential a to the boson-

transformation function f, a and 5 are implicitly cou
pled to each other through this equation. This is the
reason why the current in the boson theory can be
obtained directly from the Maxwell-type equation
without any use of the equation for the order param-
eter. Presence of the function f (x) makes this
Maxwell-type equation quite different from the old
Pippard equation. Another improvement in the
derivation of the net Pippard equation lies in the cal-
culation of the form factor (i.e. , the c function) in
front of the vector potential. This form factor ori-
ginates from the proper self energy-diagram. It is well
known that this self-energy has a pole singularity
corresponding to a gapless energy (the so-called ener-
gy of the collective mode). Since the pole has a
dominant effect on the form factor, particular care
was taken in treatment of the electromagnetic effect
in order to preserve the pole effect without violating
gauge invariance. Such a gauge invariant treatment
was not easy until the mechanism of spontaneous
breakdown of the gauge symmetry in quantum field
theory (i.e., the Higgs mechanism in terminology of
high-energy physicists) was well understood. A part
of the difficulty in understanding the Higgs mechan-
ism was due to the lack of a simple and rigorous
treatment of the gauge in quantum electrodynamics.
This difficulty was solved by Nakanishi's formula-
tion' of the gauge theory and the Higgs mechanism
has been well understood in the past ten years. The
gauge invariant calculation was helped also by a new
technique in quantum field theory. In the past de-
cade, there has been an extensive study of extended
objects in quantum field theory. Among many stu-
dies along this line there has emerged a method for
the analysis of extended objects (such as vortices,
etc.) in quantum many-body systems. This method
is based on the use of a certain operator transforma-
tion called the boson transformation. Appearance of
the function f in the Maxwell-type equation is a
result of this transformation. ' The analysis of the
Higgs mechanism disclosed the fact that the current
in superconductors appears only in the vicinity of cer-
tain (topological) singularities such as the line singu-
larity of a vortex or the surface singularities associat-
ed with boundary surfaces. These singularities ap-
pear through the function f and prohibit its Fourier
transform. In the Maxwell-type equation, the role of
the function f(x) is to determine the kind of singu-
larities under consideration and also to couple the
vector potential to the order parameter, The appear-
ance of '7 & '7 f(x) in the expression (2.11) for the
energy clearly shows that only the topological singu-
larities contribute to observable phenomena, because
'7 x '7 f obviously vanishes unless f has a topological
singularity. The equation for the function f (x)
depends on the choice of the gauge because f (x) is
the phase of the order parameter. However, as was
pointed out above, only the singular part of f (x)
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contributes to observable effects and this singular
part satisfies the simple Laplace equation (2.6). The
nonlocal factor [the c function in Eq. (2.5) j in the
Maxwell-type equation is closely related to the
Bethe-Salpeter amplitude of the collective mode" and
also to the longitudinal plasma energy dispersion rela-
tion. ' " This function has been obtained' from the
BCS Hamiltonian [the result is summarized in Eq.
(3.12)]. Although the Maxwell-type equation has
certain nonlinear terms, it can be shown' that such
nonlinear terms are quite small. However, a consid-
erable amount of nonlinear effect appears in the cal-
culation of the vortex core energy. Up to now, the
derivation of the new Pippard equation by the boson
transformation method is more refined than the esti-
mation of the core energy. '~ Although the derivation
of the Maxwell-type equation is extremely involved,
the tedious work is rewarded by the fact that, once
the singularity in f(x) is specified, the vortex current
distribution and the internal magnetic field in the en-
tire space can be obtained from the Maxwell-type
equation.

The present paper is aimed at a study of magnetic
superconductors, and not at the presentation of a de-
tailed account of the derivation of the boson method,
which can be found elsewhere. ""However, we
have made an analysis which shows how the approxi-
mations used in the boson method are related to
those used in derivation of the Gor'kov equation and
the Ginzburg-Landau (GL) equation. The result of
this analysis will be published in a separate paper.
Since all of the available theories use some kind of
approximation, experiments should be the final judge
of which method should be used under what condi-
tion. Nowadays, a large amount of very precise ex-
perimental data is available to us. For example, a

highly precise experimental analysis of the first-order
phase transition of Nb at H = H, ~ and also of its an-
isotropic behavior has been made by a narrow-angle
neutron scattering experiment. ""A relatively easy
computation based on the Maxwell-type equation of
the boson theory leads us to a precise description of
the intervortex interaction and the results have been
favorably compared with the above experimental
data. ' " Another notable application" of the boson
theory was the explanation of an anomaly observed
by Fukase et al. " in their experiments on ultrasonic
attenuation in a virgin single crystal of V3Si. In this
case the boson theory was useful because the exter-
nal field is much weaker than H, 2 (that is, the order
parameter is not small and the internal field is very
much different from the external field).

In this paper, we use the boson theory because our
calculations involve the analysis of H, ~ among others.
Another reason for use of the boson theory is that it
is an easy task to generalize the new Pippard equation
to include the localized spin-magnetization effects.

In Sec. II, we reformulate the boson theory in a

form applicable to the magnetic superconductors, In
Sec. III, we calculate the magnetic field and induction
of a single vortex and discuss how these quantities
are influenced by the spin-magnetization effect. In
Sec. IV, we obtain the temperature dependence of
the upper and lower critical fields, and the magnetiza-
tion curves.

II. ELECTROMAGNETIC FIELD EQUATIONS FOR
MAGNETIC SUPERCONDUCTORS

The magnetic induction b is defined by a sum of
the magnetic field h induced by the persistent current

j and the spin magnetization m as

b =h+4m rn (2.1)

The Maxwell equation is

4m-. 1 9e7xh= — j+———
c c9t (2.2)

e being the electric field. Introducing the vector po-
tential a, we express b and e as

b='7 xa (2.3)

1 Bae= ——
c Qt

(2.4)

x 0 f(y) — a(y), (2 5)
t

where A.~ is the London penetration depth. The
function f(x, t) in Eq. (2.5) is equal to half the phase
of the superconducting order parameter. This func-
tion has to be a solution of the Laplace equation

V'f =0 (2.6)

and satisfies correct boundary conditions. " " In Eq.
(2.5), c(x) is the boson characteristic function" "
and its explicit form is given in Sec. III.

We restrict ourselves to the paramagnetic phase.
Then, the spin magnetization rn is connected with the
magnetic field h by using the nonlocal susceptibility
X(x —y) as

rn(x) = d3y X(x —y) h(y) (2.7)

Taking the curl on both sides of Eq. (2.1) and using

Since we are concerned with phenomena which
change much slower than the plasma oscillation, a

and j stand for their transverse components. " " The
current-j in Eq. (2.2) is given by Eq. (8.24) in Ref. 15
as

c'h
d'y c(x —y)

4vrkg e ~
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Eqs. (2.2), (2.3), (2.4), and (2.7), we have

P' x b (x) =
I d'y c (x —y) V»f (y ) — '

a (y)
X,'e J y ct

a (x)l 8
2 /f2

+42r Jl d'y 'v„x x(x —y) h(y) . (2.8)

The Eqs. (2.1), (2.3), (2.7), and (2.8) construct a set
of equations for determining b, h, rn, and e for a

given f(x, t)
The electronic energy of the system is given by Eq.

(8.30) of Ref. 15 as
t T

W= '
l

d'x V f(x) — ' a(x) j (x) . (29)
2e " ch

In a static case, Eq. (2.9) is rewritten by Eqs. (2.2)
and (2.3) as

energy of the system is obtained as

E= W+ 't d'xh(x) b(x)
8 J

JI d2x[h(x) '7&&'7f(x)J . (2.11)
8me

A more rigorous derivation of the energy expression
(2.11) is given in the Appendix. There it will be
shown also that Eq. (2.11) holds true even when an-
isotropic properties of superconductors are taken into
account.

III. SINGLE VORTEX

Let us consider a vortex along the x3 axis. We pay
attention to the variation of physical quantities in the
x~ and x2 plane, since they are independent of x3 ~

Hereafter, x means the two-dimensional vector, i.e.,
x = (xt,x2). The solution of Eq. (2.6) for a single
vortex fulfills the equation'

W= Jtd'x [h(x) '7 x V f(x))
8me

p' X Of(X) =2rp, e25(X) (3.1)

d'x h (x) b (x) (2.10)

By adding the magnetostatic energy to W; the total

~here e3 is the unit vector in the third direction and
p, is an integer. Operating V' & on both sides of Eq.
(2.8), we have

I

t 1 T

V x '7 x b(x) =
J d y c(x —y) V» x V»f(y) — b(y) +42r J d y V'„x T7„x X(x —y) h(y)

XL2e
y y eh- (

i

(3.2)

The quantities h and b are parallel to the third axis.
The equation for the magnitudes of these quantities
is obtained from Eqs. (3.1) and (3.2) as

From Eqs. (3.4) and (3.6), hk is calculated as

A. k +ck(l +42»Xk)
(3.7)

We thus obtain the magnetic fieldr72b(x) =-g2 C(x)+
2 J d2yc(x y)b(y)-

+42r J~ d2yh(y)'7»'X(x —y), (3.3) h(x) = d k ' e'"'" (3.8)
(22r)2 " Xt2k2+ck(1+42rxk)

where Q is the unit magnetic flux hc/2e. The
Fourier transform of Eq. (3.3) is

k bk =
2 ck —

2
ckbk+4vrk hkzk2

L'

(3.4)

According to Eqs. (2.11) and (3.1), the self-energy of
the vortex and the interaction energy between the
vortices whose centers are at 0 and x are given,
respectively, by

h (0) (3.9)
where the Fourier transform of a function g(x) is

defined by and

g(x) = d'kgke'" "
(22r)2 "

The Fourier transform of Eq. (2.1) is

bk = (1+42»Xg) hp

(3.5)

(3.6)

tt, h (x)

From Eqs. (3.6) and (3.7), bk is obtained as

c&(I +42r X„)
bk=t 4

XL k + ck (I +42r Xk)

(3.10)

(3.11)
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This expression of bl, shows that the total flux is
quantized as

c„=exp [—v[ k /K(t)]")

k =)L(t)k

K(t) = [I/y(t)] [XL(t)/XL (0)]KB

v = —0.4257 VN(0) +0.559

rt = —0.7857 VN(0) +2.207

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

where as is XL(0)/gp, (p being the coherence length
at absolute zero, and t is the normalized temperature
T/T, . The function y(t) is given by

]If
y(t) =1+a

I —t

a = —0.0536 VN(0) +0.3719

n =0.3714 VN(0) +3.846

m = —0.0414 VN(0) +0.556

(3.17)

(3.18)

(3.19)

(3.20)

The temperature dependence of the London penetra-
tion depth, h.L (t)/kL (0), is calculated from the rela-
tion

)i, (0) ~ rtf&

where fq = [exp(PE) +1] ' and E = [p2+ d, '(t)]'t',
t5, (t) being the fermion gap. In the above expres-
sions, the mean-free-path effect is not included expli-
citly. However, as was shown in Refs. 2S and 26,
this effect can be taken into account by the scaling of
K. Therefore, the effect is considered to be included
implicitly in the value of Ks in Eq. (3.14).

In ferromagnets where the spin fluctuations with
small wave numbers are dominant near the Curie
temperature, "the staggered susceptibility X~ is writ-

ten

(3.21)

C c/47r
Xg =

T —Tm +Dk
4mC

Tm

d =D/Tm~t'.

a=(T —T )/T

(3.22)

(3.23)

(3.24)

(3.25)

J d'x b(x) =bp= p@

The form factor of the vortex for neutron scattering
is proportional to bI, .

We study how h(x) and bt, are affected from the
presence of spin-magnetic moments in crystals. As
was mentioned in the Introduction, we assume that
the BCS coupling constant V is independent of tem-
perature and magnetic field. Then, the Fourier am-
plitude of the boson characteristic function is well ap-
proximated for 0.2 ~ VN (0) (0.4, N (0) being the
density of states at the Fermi level, by"

where C is the Curie constant, T is the Curie tem-
perature, and D is the quantity proportional to the
second derivative of the exchange interaction with
respect to k. The normalized temperature t is related
to gaby

t =(T /T, )(1+a) (3.26)

In antiferromagnets, the spin fluctuations around Q
are dominant near the Neel temperature, Q being the
wave number which specifies the magnetic structure
below the Neel temperature. The function eq dimin-
ishes drastically for k above I/g, g being the coher-
ence length. Since g is much larger than I/g in usu-
al antiferromagnets, X~ in the expressions of hq and

bl, is well approximated by Xp

C c/4mXp=
T —0" 6+ 6p

(3.27)

pp = (T 0)/T— (3.28)

where 0 is the paramagnetic Curie temperature and
T is the Neel temperature in this case.

Next we show the result of numerical calculation
for h (r) and bt, In the pres. ent paper, we use
VN(0) =0.3 and t„=T /T, =0.1, and calculate h (r)

by means of Eq. (3.8). In ferromagnets, we choose
two sets of parameters: Kq =1, d =0.1, and t =0.4
for Fig. 1(a), and Ks =5, d =0.1, and t =0.2 for Fig.
l(b). As the normalized Curie constant, we take the
four values; c =0, 1, 2, and 3. The value of c =0
corresponds to the nonmagnetic superconductor. The
value of c is estimated to be 2.58 for ErRh4B4 and
1.73 for Hoi 2MopS8. As is seen from Fig. I, h(r)
decreases as c increases. The negative part of h(r),
which is the attractive interaction of the intervortex
force, appears at its tail. When c increases, the posi-
tion of the minimum of h (r) shifts toward the center
of vortex and its depth increases. We show h(r) for
antiferromagnets in Fig. 2(a) and 2(b). The parame-
ters are Ks = I, ap = I, and t =0.4 for Fig. 2(a), and
Ks =5, cp = I, and t =0.2 for Fig. 2(b). As is seen in
these figures, h (r) of antiferromagnets has a similar
tendency as that of ferromagnets, but the rate of de-
crease of h (r) with increasing c is weaker than that
of ferromagnets.

We calculate bt, by using Eq. (3.11), and show the
results for ferromagnets in Fig. 3 and for antifer-
romagnets in Fig. 4. The value of bi, at k =0 is uni-

ty, indicating the flux quantization. The decrease of
bi, with increasing k becomes slower for large values
of c. This tendency is prominent when the tempera-
ture approaches the magnetic-phase-transition tem-
perature. This behavior is expected to be observed
by small angle scattering of neutrons.
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1922 M. TACHIKI, H. MATSUMOTO, AND H. UMEZAWA 20

IV. MAGNETIZATION, AND UPPER
AND LOWER CRITICAL FIELDS

upper critical field is calculated by

H, q
= pQn, /(I +4mXp) (4.9)

The energy density of the vortices is given from
Eqs. (3.9) and (3.10) by

The magnetization is obtained as a function of the
magnetic field H from Eq. (4.6) and

W= +~ Xh(g, )
Sm

(4.1) 4@M= p, $n —H (4.10)

W„=n E) —Ep $ h(f;)
i gs'-0

(4.2)

where g;(i =1,2, . . . ) denotes the position of the vor-
tex center and n is the vortex density. As discussed
in Refs. 17 and 27 for obtaining the total energy den-
sity of the vortices, we should add the normal core
energy density to the energy density (4.1). The nor-
mal core energy density is written

The free energy for p, =1 is usually lower than
those for higher values of p, . Therefore, we assume

p, =1 in the present paper. Ho~ever, the case p, & 1

might not be excluded, because the free energies for
higher values of p, are very close to that for p, = 1 in

low temperature and high magnetic field, especially in

magnetic superconductors. We assume that vortices
form a triangle lattice with lattice constant d. The
vortex density n is then given by (2/&3)(1/d~). The
reciprocal lattice is expressed by

~here EI is the normal core energy per unit length
for an isolated vortex and given by

k =2mnd(l +m —Im)'~~ (4.11)

(4.3)

The second term in the parentheses of Eq. (4.2)
expresses a correction term which comes from the in-
teraction among the vortex cores. The value of the
parameter E~ is determined by thermodynamical con-
ditions. The Gibbs free energies of the mixed state
and the normal state, 6, and 6„, are respectively
given by

X h((, ) = Xh„— ~ J d'k hg
iso

'
a

(4.13)

land m being integers. The sums X,. h(pl) and

g, ~ph((;) appearing in Eqs. (4.4) and (4.6) are

trinsformed into the sums in this reciprocal-lattice
space as

(4.12)
I k

and

Xh(()+ Z, —Z, X h(g, )—
(4.4)

Hc' KB
8m 8~

(4.5)

where K and 8 are the thermodynamical magnetic
field and induction, respectively, and K, is the ther-
modynamical critical field. The condition 8G,/Bn =0
gives H as a function of n,

H= — n Xh(g;) + Et
1 9 4m
2 Bn

4m 9E, n X h(gi)
p4 0n eo

(4.6)

Gs =Go ~

8, =8„, or pnQ= (I +4, mXp)H

(4.7)

(4.8)

Equations (4.7) and (4.8) determine the critical value
of n at H z (i.e., n, ) and Eq simultaneously The.

We determine Eq from the condition that at the
upper critical field H, q, the Gibbs free energy and the
magnetic induction of the mixed state are, respectively,
equal to those of the normal state,

where hq was given by Eq. (3.7).
Using Eqs. (3.22), (4.6), and (4.10), we numerical-

ly calculated the magnetization in ferrornagnets as a
function of external magnetic field H In Fig. 5(a), .
4n (M„—M, ) is plotted as a function of H when the
parameters K~ =1, t =0.1, d =0.1, and t =0.4 are
chosen. Here M„and I, are the magnetization of
the normal and mixed state, respectively. The mag-
netic field at the peak head of the curve for
4m (M„—M, ) corresponds to the lower critical field
H, I. The gradient of the magnetization curves below
H, I increases as c increases, because of an increase of
the paramagnetic susceptibility in the normal state.
The areas below all the magnetization curves should
be the same. As is seen in the figure, the magnetiza-
tion curves are of the type-II-1 superconductor, and
the drop of magnetization at K, ~ drastically increases
as c increases. This increase is due to the shift of the
position of minimum h (r) toward the center of vor-
tex, as is seen in Fig. 1(a). Figure 5(b) shows
4m(M„—M, ) for Ks =5, t =0.1, d =0.1, and t =0.2.
In this case, all the magnetization curves are of the
type-II-2 superconductor, but the magnetization de-
creases so fast at H & K, I that it looks like the one
for the type-II-1 superconductor. Figure 6 shows
the magnetization curves for antiferromagnets.

Figure 7 shows the temperature dependence of
the upper and lower critical fields. The value of H, z



20 MIXED STATE IN MAGNETIC SUPERCONDUCTORS 1923

0.14

0.12
C)

CV~
0.10

0.08

0.06
I

~ o.o4

0.02

0.14

0.12C)
CV ~

0.10

0.08

0.06
I

0.04

0.02

(a)

p I I I I I I I I

0 0.02, 004 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

H/(0/~', (o))

tm= 01

C) 0.6- C= (b) - 0.12
hl ~ -------- 0 N; =508----1 - 0.10

= 0.2I —————2 - 0.08
3

0.06
I / cI = 0.1

Q2- ]/ —0.04
c —002

/

p I I I (s % I b I I I H~ p
0 0.1 0.2 0.3 2 3 4 5 6 7 8 9

H/I0/) L(0))

FIG. 5.(a) Magnetic field dependence of 4m(M, —M, ) of a

ferromagnetic superconductor with K~ =I, where M„and
M, are the magnetizations of the normal and mixed state,
respectively. The one for a nonmagnetic superconductor
(c =0) is also plotted. (b) Magnetic field dependence of
4m(M„—M, ) of a ferromagnetic superconductor with

Kg =5, where M„and M, are the magnetizations of the nor-

mal and mixed state, respectively. The one for a nonmag-

netic superconductor (c =0) is also plotted.
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FIG. 6.(a) Magnetic field dependence of 4n (M, —M, ) of

an antiferromagnetic superconductor with K~ =1, where M„
and M, are the magnetizations of the normal and mixed

state, respectively, The one for a nonmagnetic superconduc-
tor (c =0) is also plotted. (b) Magnetic field dependence of
4m(M„—M, ) of an antiferromagnetic superconductor with

Kg = 5, where M„and M, are the magnetizations of the nor-

mal and mixed state, respectively. The one for a nonmag-
netic superconductor (c -0) is also plotted.
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FIG. 7.(a) Temperature dependence of the critical fields in a ferromagnetic superconductor with K& -1. The solid and dashed

lines represent H, 2 and H, i, respectively. The one for a nonmagnetic superconductor (c =0) is also plotted. Below the tern-
perature at which the solid and dashed curves coincide with each other, the crystal becomes the type-I superconductor. (b)
Temperature dependence of the critical fields in a ferromagnetic superconductor with K~ =5. The solid and dashed lines
represent H, 2 and H, ~, respectively. The one for a nonmagnetic superconductor (c =0) is also plotted.
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perature dependence of the critical field in an antiferromagnetic superconductor with Ka =5. The solid and dashed lines
represent H, 2 and H, i, respectively. The one for a nonmagnetic superconductor (e =0) is also plotted.

is calculated by use of Eq. (4.9). The curves of H, 2

indicated by the solid lines are strongly depressed
near the magnetic-phase-transition temperature
t =0.1. The dashed curves show H, ~. Note that
depression of H, ~ due to the spin magnetization is
much weaker than that of H, 2. Below the tempera-
ture at which the solid and dashed curves coincide
with each other, the crystal makes a phase transition
to the type-I superconducting state. Figure 7(b)
shows the critical fields for K~ =5, t =0.1, and
d =0.1. As seen in Fig. 7, the curves of 0,2 have a
maximum above t . This prediction seems to be
consistent with the experimental results in ErRh484
by Fertig et al. ' and in Ho„Mo6S6 by Ishikawa and
Fischer. ' The critical fields in antiferromagnets are
shown in Fig. 8. In antiferromagnetic case too, H, 2

has a maximum at a temperature above t . This
behavior of H, 2 has been observed in Er„Mo6Sg and
Dy„Mo6SS by Ishikawa and Fischer.
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APPENDIX: DERIVATION OF THE
FORMULA (2.11}FOR VORTEX ENERGY

Since we are planning to extend our study of mag-
netic superconductors to take into account the aniso-
tropic effects in our forthcoming paper, we consider
here the anisotropic superconductors. A rigorous
formulation of the boson theory for anisotropic su-
perconductors was presented in Ref. 17. In static
cases the macroscopic equation for a and f [cf., Eqs.
(3.5) and (3.13) in Ref. 17] are

(V'g,) —r7, V() a~( x )

J d'y c(x —y) Vs('7)

One of the authors (M.T.) expresses his sincere
thanks to another author (H.U.) and the Theoretical
Physics Institute of the University of Alberta for in-

viting him to the Institute, at which part of the
present work was done. %e would like to thank Dr.
S. Maekawa and Mr. T. Koyama for valuable discus-
sions, Mr. R. Teshima for his fine computational

+ L((ram('(( v()((q(x) (Al)

Vs(C )V'(VJf(x) =0 (A2)

where V is the space derivative and L& is the projec-
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tion operator of the transverse component

1
Ljj 5jj 7j 7j p

which satisfies

(A3)

(A4)

The derivative operators, VJ(7) and Sm&(7), in
above relations are closely related to the plasma
equation which determines the plasma energy. This
can be seen from the free-field equation for plasma
field U~ (p, =0, 1, 2, 3),

As it was shown in Ref. 17, in derivation of above
macroscopic equation, use was made of the boson
transformation'8 [cf., Eq. (2.53) in Ref. 17],

(A15)

Here X is the Goldstone boson, the energy of which
is given by cu(i p) satisfying the relation of the form
[cf., Eq. (3.1) in Ref. 17],29

U„' (x) U~o (x) + a„(x)
t

X (x) Xo(x) + —m('7) " f(x) . (A16)
e c

A,„(0)UO =0 . (As) m'(( p) = [u(i p)/c]' V()(i p)pip) (A17)

The expression of A„„(B)was given by Eq. (3.8) in
Ref. 17. In the following consideration we need only
the spatial components of A„„(8):

A,,(h) =a' 5,, V, V, —m'(V) —V,,(0)

The derivative operator v ( '7 ) in Eq. (A16) is de-
fined by t'his relation.

Since the energy of the static system is equal to the
Lagrangian with minus sign, the energy created by
the transformation (A15) is given by

L;lr5mi—i ( '7 ) (A6) W[a] = ——
&

d x a;(x)A&(8)a&(x) . (A18)8~~

1

m (0)

(k) m'( i k)
m'(0)

(A7)

(AS)

respectively, the macroscopic equation (Al) reads

Aj(8)a&(x) = —m'('7) V&("7) '7&f(x) . (A9)—

According to Eq. (3.6) in Ref. 17, we have the rela-
tion

L; Bmoc(7) = hm2(7)L/J~ .

Therefore, using Eq. (A4), we find

(Alo)

L /™Ii( V)ai(x') = Ligmik( "7 )Lkial(x) (All)

Since XL and c(k), which is the Fourier amplitude of
c(x), are defined by The Hamiltonian of the Goldstone boson X has

the form

Ho[x] = d'x [(x')'+ x'~(7)x') . (A19)
8

The boson transformation (A16) applied to this
Hamiltonian creates the following energy:

it

W[f]=, —
J d'x J) d'y V f(x) c (x —y)

SmkL

x Vg'7if(y) . (A20)

It was shown in Ref. 17 also that the boson
transformation requires an adjustment of the gauge
condition, which creates the following energy:

Wg [f] = — —
J d'x Jt d3y a; ( x ) c ( x —y )

4mZ,' e

= —[ '7 x a( 7 x a) ]; (A12) x V&'7&f(y) . (A21)

where a is a 3 x 3 matrix, whose elements a&( 7)
are determined by the structure of 5m»,

The total energy created by the boson transformation
1S

[ (7xa));=,i(7)(7 xa)J . (A13)
E = W[a] + W[f) + Wg[f] (A22)

Since Smj is proportional to '7' [cf., Eq. (3.10) in
Ref. 17), we see that a,~(0) does not diverge.

Now Eq. (Al) can be put in the form

['7xb(x)];= ' d'yc(x —y) V&(O)
xL2e "

x 7jf(y) — ai(y)ct

Using Eq. (A9), we find that

Wg[f] = —2 W[a]

which leads to

E = W[f) +
2 Wg[f)

(A23)

(A24)
t

Se
J d x J d y a(x) ——7 f(x)

SmXL e e

where b=O xa.
+('7 x ab), (A14) x c(x —y) &j 7&f(y)

(A2S)
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Now Eq. (A14) leads to

F. = — —Jtd'x ['7 x (I —n) b (x)] 7 f(x'),
8m e

ty. Considering b = (1+47rX) h, we obtain

4m'A=
I+4~x

which leads to

(A31)

where I is the 3 x3 unit matrix,

[(I—a) b], = (gq —aI) b&

We finally have

(A27)

(I-a) b=h

We thus find that the energy E is given by

E= dxh x ~ VxV x
Sue

(A32)

(A33)
t

E = —
J d'x (I —u) b (x) 7 & '7 f(x)

8m e

(A2g)

In the case of the magnetic superconductors, the
last term in the right-hand side of the macroscopic
equation (A14) is the current due to the spin mag-
netization

Equation (2.11) is now obtained.
The abo~e argument shows that Eq. (2.11) holds

true even when we take into account the anisotropy
effect. Using Eq. (A31), we can rewrite the macro-
scopic equation (A14) as

['7 &&b (x)];=, Jtd'y c(x —y) VIJ('7)
A. L e

Q x~b=4~+ xm (A29) x ~,y(y) — '
g, (y)

ch
Since m, = Xi('7)h~, we obtain from Eq. (A29) the
relation +4rr(7 x Xh), (A34)

as('7) bg =4m Xg('7) ItI (A30)

Here X(i p) =(XJ(i p)) is the staggered susceptibili-

When we ignore the anisotropic effect, we have
V&

= 5,J. In this case Eq. (A34) becomes the macro-
scopic equation (2.8).
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