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The two-dimensional vortex patterns that occur in a rotating cylinder of superfluid 4He are
systematically ordered for numbers of vortices N =1,2, . . ., 30,37, 50 using a prescription for
their free energy that is independent of angular velocity and is based upon the justified omission
of images. Barrier energies between patterns of the same N and of neighboring N are discussed.

A new derivation of the vortex free energy for perfect square and triangular lattices gives the
result in terms of I'(x). Patterns that are expected to display high triangular symmetry are studied
up to N =217, but circular distortion strongly reduces the region of triangular symmetry even in
an unbounded fluid, as shown by the scattering structure factor. According to calculations on
arrays containing over one million vortices, the destabilizing velocity at the vortex position R in

a finite circular region of a perfect triangular lattice is proportional to (R/RO)5 where Ry is the

radius of the circular region.

I. INTRODUCTION

The equilibrium state for most fluids in a rotating
vessel is rotation of the fluid itself as a solid body.
All other possible motions of the fluid eventually de-
cay to this state, driven by dissipative mechanisms
which cease once solid-body rotation is attained. An
exception to this rule is shown by the superfluid
phase of liquid *He. According to the two-fluid hy-
drodynamics which it obeys, the so-called normal
component may rotate but the superfluid component
cannot (it is curl free).! The superfluid may, howev-
er, form singular vortex lines with circulations quan-
tized in units of k =h/m =0.001 cm?/sec, where # is
Planck’s constant and m is the mass of the *He atom.
The equilibrium, dissipationless state of the super-
fluid component in a cylinder rotating parallel to its
axis consists of an array of such vortices, each of
which is parallel to the axis of rotation and has one
unit of circulation. The array itself is in solid-body
rotation. For sufficiently fast rotation rates this vor-
tex array is dense and nearly uniform and effectively
simulates solid-body rotation of the fluid on a dis-
tance scale large compared to the spacing of the vor-
tices. However, for very slow rotation rates there
may be just a few vortices, or even none, and the re-
lative difference between successive equilibrium
states is large and observable. In this paper we will
examine some of the properties of these low-lying
vortex states.

Studies of vortex lines, and even of arrays of vor-
tex lines, were undertaken long before superfluidity
in helium was known to exist. The motion and sta-
bility of rings of several vortex lines were considered
by Lord Kelvin, J. J. Thompson, and T. H.

Havelock,? all more than a half century ago. The
problem of determining the rotational equilibrium
states of an irrotational fluid was studied much more
recently, motivated by the superfluidity of helium.
This problem amounts to finding the number and
configuration of quantized vortices which globally
minimize a free-energy function F =FE — Q L, where
E is the total kinetic energy in the superfluid motion,
L is its angular momentum, and (0 is the rotational
speed of the bucket.! Hess® calculated F explicitly for
a single ring of vortex lines in a cylindrical container
and also for a ring with one vortex in the center, and
found the equilibrium number and configuration for
N =0 through 8 as a function of . Stauffer and
Fetter* were the first to report computer calculations
of vortex patterns and published pictures of two dif-
ferent patterns of 37 vortices and their free energies
for one value of ().

Now, after some years of work by themselves and
by others, Gordon, Williams, and Packard® have
presented photographs of patterns of vortices in su-
perfluid helium. Motivated in part by this work we
have made a systematic numerical study of stationary
vortex patterns and their free energies for N =1 to
30, and also for certain N up to 217. In Sec. II we
discuss the theory and the procedure we used and in
Sec. 1II we discuss the results for single patterns. In
Sec. IV, we discuss the barriers in free energy
between patterns. We close with a summary of our
conclusions and some final remarks. Appendices A
and B contain, respectively, derivations of a sum rule
due to Kirchhoff and of the free energy of the contin-
uum model (for both square and triangular versions).
The destabilizing velocity in large, triangular arrays is
discussed in Appendix C.
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II. DETERMINATION OF
STABLE VORTEX PATTERNS

The free energy per unit lenth of a system of N
rectilinear vortices in a rotating cylindrical vessel is
given by®

N
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In the reduced units f = (47/pk?) F and

o= QmR?*/k) Q. Here p is the density of the super-
fluid, R is the radius of the bucket, a is the vortex
core radius, r; is the radial distance to the /th vortex
from the axis of the cylinder in units of R (so that in
these units the radius of the bucket is unity), and

0, =0,—0, is the angle between r; and r;. This func-
tion f must be minimized for all N and r; to find the
stable pattern for a given w. This procedure can be
carried out analytically for only small numbers of
vortices, perhaps N <9, corresponding to the equili-
brium states for small values of w. Numerically, a
stable pattern of any number N can be found by the
following iterative scheme: Begin with an arbitrary
pattern of vortices and assign to each vortex a vector
equal to the negative gradient of the free energy with
respect to its coordinates: U; =— %ﬁif. Move each

vortex a step proportional to U;, then calculate the
new values of U; and repeat. Each iteration produces
a pattern of lower free energy if the constant multi-
plying each U; is sufficiently small. Eventually, the
positions converge (as all U; approach zero) to a pat-
tern which minimizes f, at least with respect to small
displacements of the vortex positions.

From Eq. (1) we can calculate ;. It is convenient
to introduce complex notation z;=r,exp(ig;),
Z; =conjugate (z;) which allows Eq. (1) to be written

= Zln{z,»—zJP +% Elﬂil "‘Z,-Zjlz
i<j iJ
-0 30 -|z)+NIn(R/a) . )
The relation Uy =—-;— VZI becomes, in complex no-

tation, u, = 8f/9z, where uy = uy, +iuy,. Using Eq.
(2) we find

uk=2'_1 -3 1 —wz 3)
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where the prime on the first summation indicates
that j # k. That summation represents the direct
contribution of all the other vortices and the second

summation represents the contribution of the image
vortices. For each vortex at (r;, 8;), the image vortex
is at (1/r;, 8;) and has opposite circulation. In com-
plex notation, the image of a vortex at z is at 1/z;.

It turns out that each of these vectors u; is orthog-
onal to the classical (dimensionless) hydrodynamic
velocity of motion v, of the same vortex in the rotat-
ing frame of reference, vy =iu,. When fis at a
minimum both these velocities are zero at every vor-
tex, and so the positions of the vortices of a stable
pattern are stationary in the rotating frame of refer-
ence. Note that the iterative displacements toward an
equilibrium pattern in the direction u, are not identi-
cal to the physical approach to equilibrium, which
depends upon the dissipative mechanisms. In the
complete absence of dissipation the free energy is
never changed by the hydrodynamic motion v, of the
vortices since the v, are directed along the equipo-
tentials of f. Due to the dissipation caused by the in-
teraction of the vortices with the normal fluid, which
seeks solid-body rotation, the actual motion of the
vortices will always be some combination of u; and
vi. The displacements we use here, purely in the
direction of uy, are a computational method of find-
ing stable patterns in the quickest way. Presumably,
all patterns found this way are physically accessible by
the actual vortex motion.

We employed the iterative procedure described
above, using the u given by Eq. (3), to search for
stable patterns. For the initial configurations, we
used either random arrays or certain symmetrical pat-
terns (vortices arranged in concentric circles). In
these computations we found that the patterns have
the following general properties (several of which
were also reported by Stauffer and Fetter?):

(i) For a given rotation speed w, there are many
patterns, with various numbers of vortices N, that are
locally stable (except for very low values of w at
which there might be just one or even no stable pat-
tern). The pattern that has the lowest fis the abso-
lutely stable one and, thus, is the equilibrium pattern
for that w.

(ii) For each value of N, there are usually (always,
for N =9) multiple configurations, which differ
among themselves only slightly in free energy. As
varies, the configurations change in size, but remain
qualitatively distinct, i.e., there is no shifting between
two patterns of the same N. The relative ordering in
free energy among these different patterns of the
same N always remains the same. Thus, we can
designate these patterns by N, subscripted by
1,2,3, ..., in order of increasing free energy.

(iii) The positions of the vortices fall very closely,
or exactly when symmetry allows, into concentric
rings. This is a result of the circular symmetry of the
boundary, as well as the symmetry of the rotation it-
self. We show later that this circular symmetry per-
sists in the absence of the boundary.
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(iv) As w is lowered, the patterns enlarge toward
the boundary, and remain stable only above a certain
value w* This value depends upon N and also upon
the particular configuration. We found that
w* = N +c, where cis of order 1 for N =1 to 20.
For a simple ring of vortices in a cylindrical vessel,
N =1 to 6, Havelock? calculated these w* and with
care we were able to find the same values to about
three digits of accuracy, at best.

Clearly, the task of finding all the stable patterns
and calculating their free energies for many values of
N and wide ranges of w would be tedious, and the
results of such a program would produce too much
data to conveniently communicate or even use.
However, a significant simplification occurs if the im-
ages are completely left out of the calculations. We
found this is permissible because their contribution is
sufficiently small. Without images, the calculations
themselves are easier, but more importantly, the cal-
culations need be done for only one value of w for
each pattern because the results can be easily scaled.

First of all, the expression for the iteration vectors
is simplified to

uk=2'

J Iz

—wZx , (4)

because the second summation of Eq. (3) represents
the contribution of the images. This implies that the
radii of the vortices in a given pattern change with w
according to the simple relation 2w =const , because
Eq. (4) scales this way when u =0 (local equilibri-
um). Using this relation a stable pattern found for a
single value of w can be scaled to any w.

Secondly, the contribution of the images to the
free energy, the second summation in Egs. (1) and
(2), may be dropped. Also, omitting images makes
the angular-momentum term in f trivial when u =0
(i.e., when the array rotates as a solid body)

N
—0 3 (1 —r)=—oN+3[IN(N-D] . ©)
Jj=1

Equation (5) shows that different stationary patterns,
both stable and unstable, with the same N and w
have exactly the same angular momentum.” We give
a simple derivation of Eq. (5) in Appendix A. Itis a
consequence of a general integral of vortex motion
due to Kirchhoff.?

Thirdly, we may write the first summation in Eq.

)
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The last term above is independent of w, since
wr,2 is constant, and the entire w dependence is

displayed in the first term. Thus, by omitting images
and using Egs. (5) and (6) the free energy becomes,

_f0=—zlnw]z,—zj|2+—w—_—l)lnw
i<j 2
—oN+ YW= v RE (g
a

The subscript 0 indicates that images are omitted.
This expression is valid only for a stationary confi-
guration because we used Eq. (5).

If the double summation above is approximated by
an integral plus a correction term that accounts for
the discrete nature of the vortices, then Eq. (7) be-
comes

2 2 .
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4 2 2
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for a triangular array as shown in Appendix B. This
result is equivalent to the so-called continuum model
discussed by Stauffer and Fetter,* and we denote it
by the subscript c. Because the continuum model ap-
proximates the actual free energy very closely it will
be quite useful in analyzing the stable vortex pat-
terns. In particular, the difference between fj and f,
provides a distinguishing energy label, which is in-
dependent of w,

Afo=fo(N, w) = fe(N, w)

=— 3 lnw|z —z]?

i<j
N N NN L) ©)
4 2

Because Afy is always small (of order unity) and con-
stant, we will use it to specify the free energy. We
can also define the difference Af = f — f.. Because
image effects vanish in the limit of large w and fixed
N we have limy—., Af = Af.

In Table I we list, as an example, the values of free
energy for the pattern 18, (the pattern of 18 vortices
with the lowest free energy). For each w we calculat-
ed the positions of the vortices using Eq. (3), which
takes into account the images, and then calculated
the free energy f — N In(R/a) according to Eq. (2)
(we are not interested here in the dependence upon
R/a). For comparison, we calculated the positions
and free energies without images using Egs. (4) and
(7). The difference f — f, is listed in the third
column of Table 1. It is quite small except for w near
w* which is about 19.9 for this pattern. For pattern
18, we find Afy=0.25241. We also show the pro-
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TABLE I. As a function of the dimensionless angular
velocity o, the dimensionless free energy f for vortex pat-
tern 18, is listed and compared with the corresponding free
energy fo calculated without images. The fourth column
shows the variation of the radius of the outermost vortex in
this pattern.

w f—=NIn(R/a) f=ro w2y

90 ~1169.994 48 0.00000 3.515859
80 ~1008.015 30 0.00001 3.515868
70 —848.445 60 0.00001 3.515890
60 —692.030 67 0.00003 3.515943
50 ~539.92593 0.00009 3.516094
40 —394.067 10 0.000 30 3.516637
30 —258.083 89 0.00173 3.519597
25 —195.984 38 0.007 02 3.527177
20 —140.18133 0.063 01 3.612616

duct w'/2r, where r is the radius of the vortex that is
the farthest from the center. The variation is very
small except for w near w* and for large o ap-
proaches the constant value w!/2r =3.515846 ap-
propriate for the imageless pattern.

Clearly, for all practical purposes the images may
be omitted for » somewhat greater than w* For-
tunately, R/a for helium is usually so large that the
value of w at which a particular pattern will be the
equilibrium state, or close to it, is always appreciably
greater than o* for that pattern. The effect of the
images is to decrease the free energy by about the
same amount for patterns of the same N and » so
the error (caused by omitting the images) in the en-
ergy difference between patterns will be even less than
indicated in the third column of Table I. For noncir-
cular boundries the images are undoubtedly more im-
portant.

1II. RESULTS FOR SINGLE PATTERNS
A. Energies and ring numbers

To systematically determine the stable vortex pat-
terns we did the following: For the initial configura-
tions we distributed the vortices in various rings,
having found that random configurations did not
efficiently produce patterns of higher free energy.
We transformed these into stable patterns using the
iterative procedure described earlier, with u; from
Eq. (4). For each value of N we tried many different
initial configurations and believe that we found most,
and possibly all, stable patterns. Because patterns of
higher free energy are generally less stable and harder
to find, any patterns we may have missed probably
belong to this type and should not be as physically
important as the patterns of lowest free energy. We

calculated Af, for each pattern and ordered the pat-
terns in increasing Af,. We did this for
N=1,2,...,30,37, and 50. Also, for N =61, 91,
127, 169, and 217 we calculated the two lowest-
energy patterns. All these results are listed in Table
II. In a few cases, such as N =50, the patterns con-
verged so slowly that the last digit in Afy may only
be an upper bound.

We generated computer-drawn pictures of all of the
patterns. For example, the seven patterns that we
found for N =18 are pictured in Fig. 1; the pictures
for all values of N are published in a separate report.’
Below each pattern in Fig. 1 is listed the correspond-
ing value of Afy. These plots are for the low value
w =26 so that the patterns are large, but they can be
scaled to any size using the relation wr? =const. The
ring structure mentioned earlier is quite evident in
these pictures. For example, pattern 18, has one
vortex apparently in the center, surrounded by an ap-
parent ring of six vortices, which is surrounded by
another apparent ring of eleven vortices. Because of
the asymmetry of this arrangement, neither of these
rings can be exact in the sense that the radii of the
vortices are identical, nor can the first vortex be pre-
cisely at the center. Still, these ring numbers give a
useful means of describing and identifying the pat-
terns. We determined these numbers for all the pat-
terns using the criterion that two vortices fall in the
same ring if their radii agree within 2% for N < 50,
and 5% for N > 50, which gives sufficiently simple
yet unique labels for most patterns. These ring
numbers, ordered from the center of the patterns,
are included in Table II and are listed below Afj in
Fig. 1. Patterns 18; and 185 have unusual centers
with two "rings" of three vortices just slightly dif-
ferent in radius. In each of these rings the three vor-
tices are symmetrically placed on a perfect circle.
This center structure is then surrounded by an ap-
proximate ring of twelve vortices. The difference
between these two patterns, which have identical ring
numbers according to our 2% criterion, is a rotation
of the outermost ring with respect to the center. In
18; the second (larger) ring of three vortices is
aligned directly with three vortices of the outside ring
of twelve, while in 185 the second ring is aligned with
spaces in the outside ring. In patterns 184 and 18¢ we
have a similar situation with the six in the center ly-
ing on a perfect circle. The type of "degeneracy"
manifest in these two pairs of patterns occurs only in
patterns whose ring numbers are commensurate and
allow such high symmetry.

The patterns designated by the letter X in Table II
are a sample of the many we found to be "nearly"
stable. That is, an appropriate initial configuration
would show good convergence in all quantities, yet
upon further iteration this apparently stable pattern
would eventually reveal its instability and move to
another pattern which, itself, could be either stable or
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TABLE Il. Free energies Af(, with respect to the triangular continuum model, of stationary patterns of N quantized vortices
in an unbounded, rotating fluid. The ring numbers are the numbers of vortices having approximately the same distance from
the axis of rotation, in order of increasing distance. The patterns denoted by X represent a few of the stationary patterns that
are known to be nearly stable, as opposed to stable. For N =30, ¥ =37 and 50, the listing of stable and stationary patterns is
complete, to our knowledge. The units of Af, are pK2/47r4

N Order Afy Ring Numbers N Order Af Ring Numbers
1 1 —0.001 25 1 18 1 0.25241 1,6, 11
2 1 0.19065 2 2 0.28316 1,5, 12
3 1 0.14418 3 3 0.35110 3,3, 12
4 1 0.107 40 4 4x 0.35215 6, 12
5X 0.35241 3,3, 12
5 1 0.13307 5 6X 0.356 26 6, 12
2 0.403 65 1,4 7 0.47728 5,13
6 1 0.21781 1,5 19 1 0.186 26 1,6, 6,6
2 0.24927 6 2X 0.19317 1,6, 12
3 0.33323 L7, 11
7 1 0.107 49 1,6 4 0.38032 1,5, 13
2X 0.473 84 7 5 0.454 81 3,3,13
8 1 0.094 54 17 20 1 0.21955 1,6, 13
2 0.21960 1, 7,12
9 ! 0.19405 1.8 3x 0.43685 2,24, 12
2 0.266 94 2,4,3 4x 0.46897 2,4,2,6, 4,2
3X 0.26716 2,3, 4 ,
4X 0.54366 3,6 21 1 0.19096 17,13
10 1 0.22433 2,4, 4 2 0.34793 1,6,6,8
2X 0.22578 2,2,4,2 3 0.37628 1,4, 4,12
3X 0.41705 1,9 4 0.39590 2,2,2,3, 12
11 1 0.24918 3,8 22 ] 0.25122 1,7,7,7
2 0.28859 2,9 2X 0.26311 1,7, 14
3 0.30426 1,8, 13
12 1 0.193 44 3,3,6 4 0.33339 2,7, 13
2X 0.198 37 3,6,3
3 0.35022 4,8 ©23 1 0.31390 1,8, 14
2 0.33704 2,2,4,2,13
13 I 0.22432 .9 3 0.33801 2,2,2,3, 14
2 0.246 36 3,10 4 0.42158 1, 7,15
14 1 0.17790 4,10 24 1 0.30037 2,2,4,2, 14
2 0.36713 V9 2 0.397 88 3,813
3 0.41961 1, 8, 15
15 1 0.23413 4, 11 4 0.446 24 1,1,2,2,3,15
2 0.24711 5,10 5 0.448 89 2,2,2,4,1,13
3X 0.24773 5,10
% | 021959 511 25 1 0.329 80 3,8, 14 s
) 0.36491 L5 10 2 0.35268 2,2, 4,2, :
3x 0.386 47 155 s 3 0.35301 2,2,4,2, 1
A 0.398 42 448 4 0.37705 2,2,7, 14
sx 0.405 41 48 4 5 0.42524 2,1,3,6,13
B 6 0.61199 1,8,8,8
17 1 0.283 94 1,5, 11
2 0.29412 5, 12 26 1 0.31762 3,3,6,14
3 0.348 94 3,3, 11 2 0.33269 3,8, 15
4 0.396 82 1,6, 10 3 0.38172 2,1,2,6, 15
5 0.47407 1,4,4,8 4 0.486 66 2,2,4,2,8,8
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TABLE 1. (Contd.)

N Order Afy Ring Numbers N Order Afy Ring Numbers
27 1 0.276 72 3,3,6,15 37 1 0.284 24 1,6,6,6,18
2 0.38716 4,9, 14 2 0.288 84 1, 6, 6, 6, 18
3 0.409 83 3,8, 16 3 0.398 54 1,7, 12,17
4 0.41201 3, 4,6, 14 4- 0.41983 1, 6,11, 19
5X 0.43807 3,8, 16
6 0.47419 217616 50 1 0.441 56 4,10, 15, 21
o 2 - 0.45244 4,9, 16, 21
28 | 032073 4.9 15 3 0.464 82 3,3, 6,16, 22
2 032482 3‘ 3’ 6 16 4 0.48020 3,3,7,15, 22
3 0.34232 35 5 15 5 0.49186 4, 4,6, 16, 20
4 0.343 11 31015 6 0.54319 3,3,6,9,6,23
5 0.406 99 446 14 7 0.62067 3,2,2,6,17,20
6 0.439 42 4,8,8,8 61 1 0.39758 1,6, 1<;<4
X 1.34475 19,18 2 0.42173 1, /6, 1<,=<4
29 1 0.31163 4, 10, 15 91 1 0.536 80 1, j6, 1<j=<5
2 0.32340 4.9 16 2 0.586 31 1, j6, 1 <=5
3 0.34597 3,3,7, 16
4 0.459 88 3,3,6,17 127 1 0.703 45 1,/6,1<,=<6
2 0.782 94 1,j6,1</=<6
30 ) e AT 169 1 0.898 30 L j6 1<j<7
: » 2 1.01167 6 1<)<
3 0.405 88 55,5, 15 L6 1<j<7
4 0.407 38 4,9, 17 217 1 1.12214 1, /6, 1</<8
5 0.43543 3,3,7, 17 2 1.27248 1,j6,1<j<8

nearly stabie. It seems clear that the nearly stable
patterns correspond to saddle points in the free ener-
gy and it is only by the accumulation of computer
round-off error that sufficient amplitude is given to
their unstable degree of freedom to permit further
decrease in free energy. There are probably addition-
al nearly stable patterns among the "stable" ones list-
ed in Table II, especially at higher N.

These stable arrays are the result of the two com-
peting effects. First, the vortices effectively repel
each other and try to stay apart and, second, the pat-
tern would like to be round and compact. This can
be seen by thinking of the u in Eq. (4) as the force
on each vortex, as these are zero for the stable pat-
terns. The first term represents a pair-wise repulsive
interaction which drops off as 1/r while the second is
a harmonic-like attraction to the axis of the bucket
with strength proportional to w. Note that the image
term, the second in Eq. (3), has the opposite sign
and therefore the vortices attract their images.

As N increases, the pattern with lowest free energy
changes from 1 in the center to 2,3,4,5, and then
back to 1 (N =16), 2 (N=10), 3, 4, 5, and again 1
(N =17). This cycle then repeats. Having 1 vortex
in the center of the lowest energy pattern is presum-
ably a property of vortex numbers close to those with

"triangular" ring numbers,
N=1+6(1+2+3---)=1,7,19,37, etc.

B. Equilibrium thresholds

The free energy of each pattern as a function of
is given by fo(N, ) = f.(N, w) + Afo. To find the
equilibrium patterns for a range of values of w, we
could plot all these curves as a function of w (for a
given value of R/a). Each curve would be fairly
straight, become negative very quickly, and intersect
all other curves. The locus of all equilibrium states
would be the union of all the segments that form the
bottom envelope of all these free-energy curves.
Such a plot, however, would not be very convenient
because f, varies tremendously and the curves would
be too close to distinguish intersections. To make a
more useful plot we subtract from each curve fj a
function of w that approximates the lower envelope
of those curves, which does not affect the relative
values of free energy at each value of w, and then
magnify the vertical scale to show the fine structure
in free energy. For this function we use f.(Ny, o)
where Ny(w) is the value of N which minimizes
f.(N, w) for each w. It is determined by the condi-
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FIG. 1. Seven stationary patterns of 18 vortices for
w=26. Immediately below each pattern is the correspond-
ing value of Af( and the ring numbers, both of which are
independent of w.

tion
[——-—-—aff(N"")] =0, (10)
N N=N,
where
LIAGNV V V
N
+(N=3)Inw—b +In f' . an

Although this is a transcendental equation, it is not
difficult to solve numerically by iteration.!® Then for
each pattern we plot the function

g(N, w) = fo(N, w) — f.(No(w), »)

=f.(N,w) — f:(No(w), w) +Afy . (12)
As a function of w, each of these curves has a

minimum at wo(/V) determined by

g (N, ») =0 (13)
8(1) W=, ’
which is zero when
9/ (N, wg) /AN =0 . (14)

For each N, wo(N) depends only upon the parameter
R/a. These curves are plotted in Figs. 2(a)—2 (),
for 0 <N =30 and 0 < w <70, for the particular
value R/a =107 and in Fig. 3 for 48 < <53. The
exact results of Fig. 2 can be closely approximated by
expanding Eq. (12) to second order about wp; making
use of Eq. (11) we find the parabolas

2 (wo—N +%)2
ln(wo/N)

W — Wy

g(N,w)fo0+% as)

wo

From Fig. 2 the equilibrium states can be deter-
mined. For example, centered directly above
o=w(18) =49.7, a value determined by Eq. (13),
are nested the seven parabola-like curves for N =18,
not all of which can be distinguished. This is shown
on a more expanded scale in Fig. 3. The minimum
of each of these is at Afy, as given in Table II. Ex-
cept for this additive constant, the seven curves are
identical, according to Egs. (12) or (15). The lowest
of these, for pattern 18y, has the smallest free energy
of any pattern for 48.8 < w < 50.4, and so in this
range it is the stable, equilibrium one. At o =150.4
this curve intersects the curve for pattern 19y, so, for
larger w, 19, is the stable pattern. Clearly, patterns
18, and 183, . . ., 18, can never be equilibrium states.
They may exist as metastable states and those that
are absolutely stable may have indefinitely long life-
times. At any w < 70, the free-energy difference
between the various patterns can be read off Figs. 2
or 3.

The change from N to N +1 vortices in the equili-
brium pattern occurs at the value of w where adjacent
parabolas intersect, i.e., where g(N, w) =g(N +1, w).
In Fig. 4 we give these transition values of w for
0=N=30,0<0w=60,and 10 <R /a <10 This
is an extension of a similar plot by Hess,® who went
as far as N =8. Although for practical values of R /a
this figure summarizes the equilibrium behavior, the
physical transitions between patterns as o is changed
will not necessarily occur at exactly the values in Fig.
4 because of the energy barrier between patterns of
different N. Note that the lines on this plot are not
evenly spaced, a result of the varying values of f; as
evident in Fig. 3. However, because the bottom of
the parabolas in Figs. 2 and 3 are at wo(N), deter-
mined by the continuum model, the general behavior
of Fig. 4 is well approximated by that model, as
shown by the dashed lines for N > 30. For a given
o, the value No(w) determined by the continuum
model, namely, Eqs. (10) and (11), can differ from
the equilibrium N by at most +1.
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FIG. 2. Free energy of rotating superfluid with 0 to 30
vortices relative to the continuum free energy f,(Ny(w), )
for R/a =107. The first curve on the left is for no vortex,
to its right is that for a single vortex, etc. Dashed lines
denote nearly stable patterns.
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FIG. 3. Interval 48 < w =< 53 of Fig. 2 showing the free
energy for patterns of 17 through 20 vortices.

C. Circular distortion

Patterns containing triangular numbers of vortices,
1+3,(j +1), were studied because they favor a tri-
angular lattice, the lowest energy configuration of an
infinite number of vortices. Strictly speaking, the
numbers of vortices that most favor triangular arrays

i
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FIG. 4. Values of angular velocity w, as a function of
R /a, at which the number of vortices in the equilibrium pat-
tern changes. For example, the left-most line gives the
value of w at which a single vortex and no vortex have the
same free energy. The dashed lines were calculated from
the continuum model for N > 30.
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FIG. 5. Lowest energy patterns for N =217.

are ambiguous for arrays with radii larger than six
vortex spacings (j > 6) because such circles contain
more lattice points than do hexagons of the same ra-
dius. (The number chosen is not particularly impor-
tant because it is shown in Appendix C that finite tri-
angular lattices lack stability.) We find the lowest en-
ergy pattern has the outer ring rotated by half a vor-
tex spacing compared to a more triangular pattern of
slightly higher energy. Moreover, we find that circu-
lar distortion penetrates deeply into the patterns and
destroys triangular symmetry in at least half the area
of the pattern. From the evidence of patterns up to
N =217, which is shown in Fig. 5, this distortion ap-
pears to occur in a fixed fraction of the area rather
than in a surface layer. This is probably related to
the fact that the free-energy difference per vortex
Afo/ N seems to be approaching a nonzero limit, as
shown in Table III. For comparison, the energy
difference per vortex between the infinite square and
triangular lattices is 0.010 58. We emphasize that the
above circular distortion effects are in no way attribu-
tive to the influence of a boundary; our omission of
images gives results for an unbounded fluid.

To show that this circular distortion is not, overall,
a small perturbation upon triangular symmetry, we
display the scattering structure factors S(Q) for pat-
terns 217, and 217, in Fig. 6. For comparison, S(Q)
for a circular region of a perfect triangular lattice of
211 vortices is shown in Fig. 7. The structure factor

TABLE III. Excess free energy per vortex in equilibrium
patterns compared to an infinite triangular lattice.

N Afo(N)/N
61 0.006 52
91 0.005 90
127 0.005 54
169 0.005 32
217 0.00517
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FIG. 6. Scattering structure factor for patterns 217,
(lower) and 217, (upper). Qs in units of 2@/X where X is
nearest-neighbor distance.

we used is

2w

S(Q) =——— de

N 2
- N 2ethjcns(G?—Oj)

J=1

, (16)

proportional to the average scattering intensity for a
rotating sample and a fixed incident beam. The wave
number Q is in units of 277/\ where X is the
minimum nearest-neighbor distance among the five
vortices closes to the center of the pattern. These
figures show not only the limited extent of triangular
symmetry in finite, stable vortex arrays but also the
resolution that will be required to distinguish arrays
of the same N by scattering experiments.

It might be thought that the ciruclar distortion is a
property only of small vortex arrays and that larger
triangular arrays would be stable. We consider this
possibility in Appendix C where we find that a vortex
at position R in such an array of radius R is subject
to a destabilizing velocity that varies as (R/R)°. Be-
cause we see no significant deviation from this result
for arrays containing up to one million vortices we
doubt that any finite circular region of a triangular

0

S J'/Jt\x,jj\ k AN ,"&,Jb

T
0.0 0.5 1.0 t.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0

FIG. 7. Scattering structure factor for a circular section of
a perfect triangular lattice containing 211 vortices.
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lattice (containing more than seven vortices) is
stable; i.e., distortion seems necessary for stability.

IV. FREE-ENERGY BARRIERS BETWEEN
STABLE PATTERNS

A. Barriers between patterns of
the same number of vortices

By definition, any small deviation of the vortices
from their positions in a stable pattern of N increases
the free energy. Therefore a trajectory consisting of
N vortex positions z;(s) as a function of some param-
eter will define a free energy f(z(s)) which has a
maximum when the trajectory connects two stable
patterns. This maximum is a saddle point in the free
energy of N unconstrained vortices. The problem is
to find a trajectory, of all possible trajectories con-
necting two stable patterns, that has the smallest
maximum. Such a trajectory will be called optimum,
whether or not it is unique. We consider as self-
evident the existence of at least one optimum trajec-
tory for any two stable patterns. (However, if images
are included and o = w* then a pattern may not
tolerate distortion without losing vortices to the
boundary.)

The method we use to find optimum trajectories
consists of constraining a particular vortex to move
from its position in one stable pattern to a position
consistent with the known vortex positions of the
second stable pattern. The arc length of the path of

the constrained vortex becomes the parameter s.
After each increment s + ds of the constrained vor-
tex, the remaining N =1 vortices are allowed to con-
verge to a local minimum in the free energy. Be-
cause of cylindrical symmetry we need to consider
only radial motion of the constrained vortex; any an-
gular motion of the constrained vortex would merely
cause overall rotation of the pattern.

Not every choice of constrained vortex or its final
position results in an optimum trajectory. If the final
vortex position, equal to a known vortex radius of
the second pattern, differs but little from the initial
position then the second pattern will not, in most
cases, be achieved by that trajectory. Instead, the
result will merely be a distortion of the first pattern
that corresponds to no stable pattern of N vortices.

Some choices of constrained vortex result in a
discontinuous trajectory in the sense that the free en-
ergy, as a function of the position of the constrained
vortex, develops a saddle point in the space of the
N —1 vortices. When this instability is reached the
N —1 vortices abruptly switch to a new configuration.
Reversing the direction of the constrained vortex
after passing through such an instability will not
necessarily return the system to the initial pattern. If
it does, then the singularity is again passed but at a
different value of the position s. These features are
illustrated in Figs. 8 and 9 which show calculations,
without images, of the free energy (solid line) and
angular momentum (dashed line) as functions of the
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FIG. 8. Variation of free energy (solid line) and angular momentum (dashed line) as the center vortex r; of 16, is moved
outward. The array changes from 16, to 16, and then to 164 with intervening stationary saddle points, the first of which is
discontinuous. The angular momentum is given as the fractional deviation from the equilibrium value in units of 104,
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FIG. 9. This is similar to Fig. 8 except rs of 164 is moved inward. Here the array at r5=0 corresponds to no stable pattern.

radial position of the constrained vortex. In Fig. 8
the constrained vortex is number 1 (vortices are or-
dered by their distance from the origin in the initial
pattern) and the initial pattern is 16,. As its radius r,
increases from zero an instability is encountered at
ry=0.11 after which pattern 16, is obtained at

r1 =0.29 and then pattern 16, at r; =0.60. Reversing
this process, i.e., starting with vortex number S of
pattern 16,4, the same curve is obtained in Fig. 9 until
the vicinity of the singularity, which here occurs at

rs =0.04. Note that pattern 16, is not recovered
after passing through the singularity; the configura-
tion at rs =0 corresponds to no stationary pattern of
16 unconstrained vortices.

Does there always exist an optimum trajectory that
is continuous? We cannot answer this question de-
finitively but, in practice, we have never failed to
find one. For example, a continuous trajectory,
which we believe is optimum, occurs between 16,
and 16, when vortex number 6 of 16, is chosen as
the constrained vortex. Within the accuracy of the
calculation the barrier energies of this continuous tra-
jectory and the discontinuous trajectory of Fig. 8 are
equal.

For some pairs of patterns there is no optimum
trajectory that does not pass through a third stable
pattern. For example, 15, and 153 can be connected
by an optimum trajectory only through 15;. Also, for
some patterns it isS possible to choose a constrained
vortex that results in a trajectory connecting the pat-

tern to itself, without passing through another stable
pattern.

The angular momenta of the trajectories are shown
in Figs. 8 and 9 to illustrate that all stable and
saddle-point patterns have the same angular momen-
tum. (The converse is not true; a vortex configura-
tion with the same angular momentum as a stable
pattern is not necessarily either stable or a saddle
point.) The vertical lines in the figures emphasize
the correspondence between free energy and fixed
angular momentum. Note that the deviation of the
angular momentum over the trajectories is less than
0.1%.

A list of some barrier energies for N =20 is given
in Ref. 11.

B. Barriers between patterns of
different numbers of vortices

We consider the barrier energy (defined, of course,
only in the presence of images) for the entrance of
an additional vortex to a system of N vortices. This
applies to systems in angular acceleration. (For an-
gular deceleration, the pattern grows in size until o *
is reached; one or more vortices then leave at the
boundary.) To derive an accurate estimate of this
barrier energy we use Eq. (1) to write the general
free energy of N +1 vortices in terms of that of N
vortices,
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N N
SN+ =f(N) = 3 In(r? +rysat? =2riry 41 c086) + 3 In(l +rriy —2riry+ cos8;)

i=1

+In(1 —rg4) —0d —rk) +In(R/a)

In the spirit of the continuum model we approximate
the N vortices by a uniform density of vortices in a
circle of radius ». Note that we assume the pattern of
the N vortices is not distorted by the added vortex.
The two sums in Eq. (17) then become integrals; the
first gives N Inrd,; and the second: vanishes (because
a single vortex has zero interaction with the images
of a circular, continuous distribution of vorticity).
Equation (17) becomes

SIN+1D) =f(N)+In(1=rds) —Nlnris
—w(l=r§y) +In(R/a) . (18)

The barrier free energy f, (N +1) is the maximum of
f(N +1) as a function of ry4. This occurs for
ry+1 =1, Where

I‘b2=% 1-+---———N0:1
2 1/2
-] + XX o+ L .

Note that r, <1 for w < co. Whether or not one
uses the continuum-model approximation for f(N)
in Eq. (18) makes little difference because that error
is roughly comparable to ignoring pattern distortion.
Comparison of both the barrier energy and r, from
Egs. (18) and (19) with full pattern calculations of
these quantities showed good agreement; for exam-
ple, less than 0.5% error for N =21 and w =30. This
supports the assumption that the pattern of N vor-
tices is relatively undistorted by the presence of an
additional vortex near ry, provided that w is not near
w* g

This barrier energy is relatively high and, by itself,
would strongly inhibit the entrance of vortices into
rotating helium. The classical condition for transition
between states of N and N +1 vortices is
f5(N +1) = f(N) which may occur for @ >> 1 and
N/w <1—1/0'2 Equations (18) and (19) then give
(y=N/w)

o a
r,,2~l-—e

, (20)
ng/[eu -1 . Q1)

That is, the transition cannot occur unless the angu-
lar velocity is of order R/a and the N +1 vortex is
nucleated within a core radius of the boundary. This
is essentially the same result known for many years

an

r

from the early hydrodynamic predictions of critical
velocities and, like the latter, is in substantial
disagreement with experiment.!? In particular, if the
above hydrodynamic barrier energy dominated the-
nucleation of vortices then there would be a large
hysteresis in the observed number of vortices as w is
increased and decreased. Although hysteresis is seen
in the experiments, indicating the presence of some
barrier energy, it is less than what the above hydro-
dynamic barrier energy would predict. One physical
feature outside this two-dimensional theory of the
barrier energy is the three-dimensional possibility for
vortices to grow continuously to their full length
rather than to abruptly nucleate along the full length
of the container. Perhaps experimental conditions
will be found which will permit detection of the hy-
drodynamic barrier energy derived here.

V. SUMMARY

Except for features of transitions between states of
different vortex number, such as the barrier energy
for vortex entrance at the boundary or the critical an-
gular velocity for pattern stability, the properties of
vortices in a cylindrical container are not appreciably
influenced by the images. Omitting the images leads
to useful simplification in the formula for the free
energy f. In particular, the o (angular velocity)
dependences of the "imageless" free energy fo and
the continuum-model free energy f. become simple
and identical; therefore free energies can be ex-
pressed relative to the continuum model as
Afo=fo— f., thereby removing all dependence on w.
(An equivalent definition is Afy=limy—e f — f;.)
This permits the assignment of a unique energy
number to each stable vortex pattern. The omission
of images also permits an exact evaluation of the an-
gular momentum of any stable or saddle-point pat-
tern, which is a useful absolute criterion for the nu-
merical convergence of patterns and which leads to
an accurate estimate of pattern sizes, including the
radii of the interior rings. The dimensions of stable,
imageless patterns scale exactly with  as '/2r.

The energies, ring numbers, and pictures® of 125
patterns for N =30 and N =37, 50, 61, 91, 127,
169, and 217 provide a data base for studying the re-
lative energies of patterns and their systematics. Be-
cause of hysteresis due to barrier energies the experi-
mentally observed number of vortices is dependent
on the history of angular acceleration or deceleration.
However, the equilibrium number is well defined and
is graphed in Fig. 4. For a typical value of R/a, Figs.
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2 and 3 show the fine structure of pattern energies as
a function of .

The pictures of patterns which favor triangular
symmetry, N =61, 91, etc., suggest that circular dis-
tortion of the triangular symmetry persists in about
half the total area of any finite pattern. Likewise, the
trend in fo(N) as N increases suggests there is an ad-
ditional energy factor proportional to N for any finite
number of vortices compared to the same number of
vortices in an infinite triangular lattice.

The lowest free-energy saddle point for transitions
between patterns of the same #n can be calculated by
constraining an appropriate vortex to move radially.
In the absence of images the angular momentum is
identical for all stable and saddle-point patterns and
changes less than 1% during transitions between pat-
terns. The free-energy barrier for the entrance of an
additional vortex in an two-dimensional system can
be accurately estimated and is much higher than is
observed in experiments on manifestly three-
dimensional helium.

The system of quantized vortices considered here
belongs to the small class of idealized systems such
as the Bose gas, Fermi gas, harmonic oscillator, etc.,
which have, throughout the history of physics, fruit-
fully illuminated the understanding of physical sys-
tems, served to illustrate general principles, and pro-
vided a testing ground for new theories and methods.
For the vortex system we are fortunate in having as
close a physical representation as rotating superfluid
“He. Other systems that are described, in important
respects, by equations identical to those used here are
parallel line changes in a circular cylinder of uniform
charge (of the opposite sign) and screw dislocations
in a circular crystal under torsion.

Note added in proof. The observation of many of
the features of vortex patterns discussed here has just
been reported by Yarmchuk, Gordon, and Packard.'?
Included in their Letter are photographs of patterns
for N =1 to 11, which clearly show the tendency for
rings to form, and which are consistent with our
predicted configurations.® For N =6, they observed
the metastable 6, pattern as well as the stable 6, one,
while for all other N, up to 11, only the stable pat-
terns were seen. The absence of the metastable pat-
terns for N =5 and 9 reflects the high energy these
patterns have with respect to their stable counterparts
(see Table II).
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APPENDIX A

We present here a proof of the angular-momentum
relation, Eq. (5). The first term is obvious. For the

second we have

N N N N Ek
S oori=3wng=73 3 —"— , (A1)

k1 k=1 k=lj=1 Zx —Z

where we use Eq. (4) with 4, =0, so that the result
will only be valid for configurations which make f
stationary. Because we sum on both jand k we may
write the last term above

N N
1 '

2
k=1 j=1

. _
e ]=§N(N—1) , (A2)
Zk—Zj Zj"‘Zk

since the summand is unity. This proves Eq. (5).

APPENDIX B

Here we fully derive the free energy of the contin-
uum model. Because the distribution of vortices is
nearly uniform, we can approximate the double sum
in Eq. (7)

N
i

L S hoelz-z |
2 igj |z = 2| (B1)

by the integral,

2 N
1w e =2
l glf'_r“«cdrln(wlr, %)

2\ wrd
=—N(Inw'’r,—+) = <N . (B2)

We assume that all vortices lie within a circle of ra-
dius r., which is determined by the requirement that
the average vorticity N«/m(r.R)? (in physical units)
is equal tc 2Q. In terms of the dimensionless angu-
lar velocity w, this gives

re=(N/o)'? . (B3)

The difference between Egs. (B1) and (B2) is the
difference between the sum and integral of

—Inw|T, —T,|2 The major contribution to that differ-
ence comes when T; and Tj are close; therefore we can
approximately take the lattice to be infinite and let
one summation and one integration be unbounded.
Then the other summation and the other integration
can both be performed to give exactly N and we are
left with

N .. —awl/?
-5 lim S Inwrlee'/’r ———;‘: fd‘f'lnwrze‘“"’m’]
a— =

=—Nb . (B4)

The exponential factor is inserted to allow the sum
and integral to converge separately. We also made
use of Eq. (B3). Thus, we approximate the sum (B1)
by the two terms (B2) and (B4). This gives exactly
the expression Eq. (8) for f,. The next correction
would be a surface term of order N'/2. Now we must
evaluate b.
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The sum in Eq. (B4) is over all lattice points on an
infinite lattice except for T=0 (indicated by a prime
on the summation). For a square lattice, we have

ort=m(nt +nf), =0, +1,+£2,..., (BS)

and for a triangular lattice,

wrt=="(n? +n} +n\ny) ,

31/2 (B6)
=0, £1, £2,..., .
The above coefficients are chosen so that the area
per vortex is mr2/N =m/w. For the square lattice the
sum in Eq. (B4) is similar to certain sums that apply
to the ideal Bose-Einstein gas, and the methods used
in that problem!* can be applied here for both lat-
tices. We will study the function )

—aP
fla,z) = 2

PZz
"1 "
where P2 =wr? as given by either Eq. (BS) or Eq.

(B6). The behavior about a =0 can be found by use
of the Mellin transform,

F(sz) = J; da f(a,z)a*™!
= 2' p-2 J::o dae~*Pos™!

=T(s)Y(z +s5/2) , (B8)

) (B7)

where
Y(k)=3'P% k>1 . (B9)

This is a two-dimensional generalization of the {

function. Analogous to Riemann’s integral represen-
-tation of that function,'* one can derive the following
representation of Y(k) o

r)Y() ——1— —=+ 3 '[Ei.(PH +E(P)] ,
e (B10)

where .

E,(x) =f|“ dt t7%e ™ =x""'T(1 — n,x) (B11)

is the form of the incomplete I' function. This fol-

lows because for both lattices,'* !4
2
S el 3 Pl (B12)
"1,"2 a ﬂl,ﬂ2

which itself follows from the Poisson summation for-
mula. The sum on the right of Eq. (B10) is conver-
gent for all complex z, so this gives the analytic con-
tinuation of Eq. (B9) over the complex z plane. For
example, we have the reflection formula

I'z)Y(z) =T(1 —2z)Y(1 —z). Furthermore, because
I'(z) has a simple pole at z =0, and no zeros, Eq.
(B10) implies that Y(z) has a simple pole at z =1
with residue 1. Using this we can invert the Mellin
transform (B8). We have formally

flan) === [T G +s/ards . ®B13)
2mi Je—ieo

where the contour is to the right of all singularities.
The function T'(s) has simple poles at s =—k,
k=0,1,2..., with residue (—1)*/k!, and Y(z +5/2)
has a simple pole at s =2 —2z with residue 2. We
can deform the contour to encircle just the singulari-
ties. Starting from the right, we get the following
development for f(a,z):

Flaz) =222 4y oy -1y + -
a
(B14)
The integral corresponding to f(e,z) is given by
1 se*h _2r2-2z)
;fdP s = i<l (B15)

where dF=dn1dn2, taking the P? for a square lattice.
This equals the first term in Eq. (B14), which is
singular in « about a =0 (when z <1). Thus, we
have

aP
‘mlz o ——; P2‘ LaF[=v@), z<1
(B16)
Now,
—npr=|Lpu (B17)
9z z=0

so we get for b, defined in Eq. (B4),
b=—3Y'(0) . (B18)

Equation (B10) can be used to yield an expression
for b in terms of an infinite series. However, we also
have the following forms for Y(z)."* For a square
lattice,

Y(z) =472 (2)B(2) , (B19)
B2 =3 (~1)/Q2j +1)* (B20)
J=0

and for the triangular lattice, 4
Y(2) =6Qm) 3 Lz7) - ()] . (B2D)

where {(z, v) is the generalized zeta function. The
behavior of these functions about z =0 is known!?

(Gv) =t —v+zin (;‘r')’l),z +0G) ,  (B22)
B2) =L +z1 'D o6 (B23)
z)==+zIn z?)
2 r(3)

and {(z) =¢(z,1). Using the reflection formula for
the I' function we find finally for the square lattice

b=1n([($)1/27} =0.738167 983 - - - (B24)
and for the triangular lattice

b=1n{I'(3)1°3"2/(27)%?} =0.748 752486 - - - (B25)
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The triangular lattice makes the free energy smaller
so it is preferred. The latter is the value used in the
text.

Stauffer and Fetter? also derived. Eq. (8) by ap-
proximating the vortex array by a cylinder of constant
vorticity of radius r. and adding a term

N 1n“l

w

as the correction for a discrete lattice. This leads to
Eq. (8) with the association

1/2
ﬁe-c/"] , (B26)
a

p=L _lnm (B27)
T 2

For the number ¢, Stauffer and Fetter used the result
of a calculation by Tkachenko,!® who expressed ¢ for
any lattice in terms of @ functions. For the triangular
lattice he gives ¢ =4.150 - - - . Evaluating his series
we find 4.150412 807 7, and this agrees with our
result (B25) by virtue of Eq. (B27). For the square
lattice Tkachenko finds ¢ =4.117 and this is con-
sistent with Eq. (B24).

APPENDIX C

The deviation from solid-body rotation of the velo-
city at the vortex positions in a circular region of a
triangular vortex lattice is considered here. To the
extent this velocity deviation, which we call "destabil-
izing," is nonzero, those vortex positions are not
stable and the pattern is not a local minimum of the
free energy.

Let the lattice points be given by the complex
numbers,

z(ny,ny) = neay +inya, (c1)

where a, = —;—, a, =+/3/2, and ny,ny, are integers, ei-
ther both odd or both even. Then the distance
between nearest neighbors is 1 and the density of lat-
tice points is 2/~/3. For unit circulation «, the velo-
city at the edge of a circular region of radius R, in
the limit of large R, is mR2(2/+/3) (1/R) = QR which
gives the angular velocity () = 2m/~/3. A "crystallo-
graphic" direction from the origin is specified by the
integer pair (ky,k,) corresponding to lattice points

z(n) = n(keay + ikya,) . (C2)
The velocity v(n) at z(n) in the fixed, laboratory
reference frame is

R, |
ve(n) —ivy(n) =—i Y, —— , (c3)

) 2 (n) = z(ng,ny)

where the sum is over all lattice points within a ra-
dius Ro. We consider only an unbounded system be-
cause we wish to inspect, under conditions that most

10°
o
-

Pl sl sl sl

o YRR
10° 7 10" 10

10

Ll

10°

10°

L

107

Ll

-2

V(R)-IR
10° 10

-4

10

Lyl

0

210"

FIG. 10. Destabilizing angular velocity vs radius for pat-
terns 1 through 4. Solid symbols denote negative velocity.
The crystallographic direction is (2,0) in (a) and (3,1) in (b).

favor stability, the trend of the destabilizing velocity
as the pattern size increases. The radial and angular
components of v(n) are given by the real and neg-
ative imaginary parts, respectively, of z(n)v(n)/R
where R =|z(n)|.

In Fig. 10 we show the relative angular velocity in
directions (2,0) and (3,1) for four arrays with radii
and vortex numbers listed in Table IV. Except for
pattern-1 data in Fig. 10(a), velocities of equal sign

TABLE IV. Pattern radii and vortex numbers in Fig. 10.
The radii are in units of the intervortex spacing.

Pattern Radius, Ry N
1 70 17761
2 140 71089
3 280 284431
4 560 1137619
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are joined with straight lines. To test the radial com-
ponent of the destabilizing velocity, which is zero by
symmetry in the (2,0) and (3,1) directions, we calcu-
late the velocity at one lattice point in the (5,1) and
(7,1) directions for many different arrays. The ra-
dius of each point is as near as possible to 80% of the
radius of the respective array. These results for the
radial velocity are shown in Fig. 11. On the basis of
this data we draw the following conclusions about cir-
cular regions of the triangular lattice:

(i) There is no significant tendency for the absolute
destabilizing velocity at the same relative radius
R /R, to decrease in larger arrays.

(ii) Within a circular array both the angular and ra-
dial components of the destabilizing velocity vary as
C(R/Ry)?*, except near the edge. The constant C
varies by a factor of 10 or more among different ar-
rays but is the same, for the examples we calculated,
in the (2,0) and (3,1) directions. The exponent 5 is

due to the sixfold symmetry of the array. [For the
square lattice the destabilizing velocity varies as
C(R/Ry)*]

(iii) Arrays of many thousands of vortices still re-
tain a strong "individuality" as illustrated in pattern 1
and by the variation in the magnitude and sign of the
data in Fig. 11. Pattern 1 seems to be a transition
between arrays of smaller radius, such as Ry =69,
which have positive (2,0) destabilizing velocity and
those of larger radius, such as Ry=71, which have
negative. At Ro=78 the velocity is positive again.
We do not know what characteristics of the patterns
correlate with either this behavior or the variations in
C.

(iv) The destabilizing velocity of a few lattice
points near the edge of an array often has the oppo-
site sign from the interior velocity.

Kiknadze and Mamaladze!” have reported calcula-
tions of the velocity distribution between certain lat-
tice points in an array identical, by our choice, to pat-
tern 2. They also calculated, but did not list, the
velocity at some lattice sites in the (2,0), (3,1), and
(1,1) directions, the latter equivalent to (2,0). How-
ever, they attributed the nonzero velocity found at
these lattice sites to computer round-off error and in-
terpreted the relatively small magnitude as evidence
of the accuracy of their calculation. This stems from
their apparent assumption that this finite version of a
triangular lattice is stable. Our round-off error was
several orders of magnitude smaller than the destabil-
izing velocities we report. - This was determined by
comparing velocities calculated at equivalent lattice
points and by calculating velocities known to be zero
such as the radial velocity in the (2,0) and (3,1)
directions. Although the general features of the in-
tervortex velocity distribution found by the above au-
thors for an unstable array are probably retained in a
stable array, we think it is important to be aware of
the limitations to this procedure.
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