Jahn-Teller effect in the EPR spectrum of Pt³⁺ in MgO

A. Raizman, A. Schoenberg,* and J. T. Suss Solid State Physics Department, Israel Atomic Energy Commission, Soreq Nuclear Research Centre, Yavne 70600, Israel (Received 15 December 1978)

The electron-paramagnetic-resonance spectrum of Pt^{3+} was studied in single crystals of MgO. The spectrum exhibits a static Jahn-Teller effect with $\overline{\delta}/3\Gamma \ge 5$ and the first excited vibronic singlet is ${}^{2}A_{1}$. A theoretical estimation of the spin-Hamiltonian parameters yielded values very close to those obtained experimentally.

I. INTRODUCTION

Ions possessing orbitally degenerate electronic ground states are known to be subject to the Jahn-Teller (JT) effect. In this work we report an electron-paramagnetic-resonance (EPR) study of the Pt³⁺ JT ions in single crystals of magnesium oxide. The EPR spectrum of Pt³⁺ has been investigated previously in single crystals of Al₂O₃,¹ BaTiO₃,^{2.3} YAIG,⁴ and K₂PtCl₄.⁵ The electronic configuration of Pt³⁺ is $5d^7$, and as other ions studied in the 4d and 5d groups, it belongs to the "strong-ligand-field" category. In octahedral symmetry the low-spin ground state of Pt³⁺ is the orbital doublet 2E_g ($t_{2g}^{\xi}e_g^1$), subject to the JT effect. Pt³⁺ exhibits a static JT effect in MgO, and a static effect was also reported for this ion in other oxides.¹⁻⁴

II. EXPERIMENTAL

Single crystals of MgO doped with 0.5 mole % PtCl₂ were grown by the flux evaporation method.⁶ In crystals grown in air, no EPR spectrum which could be associated with platinum ions was observed either in as-grown crystals, in crystals exposed to ionizing radiation, or in crystals heated in an oxygen atmosphere at 1000 °C, in spite of the fact that spectrochemical analysis indicated the presence of about 1000-ppm platinum. A weak EPR spectrum due to platinum ions was obtained only in the following two ways: (a) by gamma or x-ray irradiation of crystals grown in an oxygen atmosphere, or (b) by adding 0.5 mole % LiF to the melt and growing the crystals in an oxygen atmosphere; in this case the spectrum vanished after γ irradiation.

It appears from the intensity of the spectrum, that it is due to only a small fraction of the platinum ions present in the crystal. The behavior of the Pt spectrum in crystals grown and treated as described above supports our identification of the spectrum as Pt^{3+} , and suggests that most of the platinum ions are present in the crystal as either Pt^{2+} ($t_{2g}^{6}e_{g}^{2}$ configuration) or platinum-metal aggregates. An EPR spectrum of Pt^{2+} has not been observed in our crystals and we have not investigated the existence of platinum aggregates.

III. RESULTS AND DISCUSSION

The spectrum at 4.2 K is a superposition of three tetragonal spectra of almost symmetrical line shapes. In Figs. 1(a) and (b) the EPR spectrum of Pt^{3+} in MgO is shown at 4.2 K at g_{\perp} and $g_{\parallel 101}$, respectively.

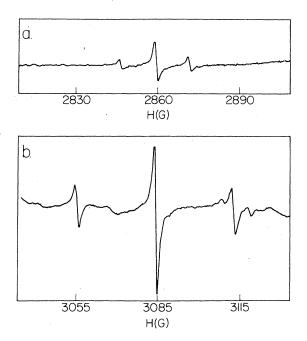


FIG. 1. EPR spectrum of Pt^{3+} in a single crystal of MgO at 4.2 K. (a) g_{\perp} with H_{dc} along a [100] direction. (b) $g_{[110]}$ with H_{dc} along a [110] direction.

.

<u>20</u>

1863

©1979 The American Physical Society

The central line is due to the isotopes with I = 0, and the outer lines are the hyperfine structure satellites due to the ¹⁰⁵Pt isotope of natural abundance 33.7%, nuclear spin $I = \frac{1}{2}$, and nuclear magnetic moment $0.6\mu_N$.

The spectrum can be fitted to the axial spin Hamiltonian

$$\mathcal{C} = g_{\parallel} \mu_B H_z S_z + g_{\perp} \mu_B (H_x S_x + H_y S_y) + A_{\parallel} I_z S_z + A_{\perp} (I_x S_x + I_y S_y) \quad . \tag{1}$$

The parameters of the spin Hamiltonian are given in Table I.

The angular dependence of the spectrum at 4.2 K is shown in Fig. 2. The continuous lines represent the theoretically calculated angular variation using the parameters given in Table I. The measured values are designated by full circles. No isotropic spectrum was observed at 4.2 K.

Above 52 K only a single isotropic line could be observed with H_{dc} in the vicinity of a [111] direction. The peak-to-peak linewidth of the first derivative of the absorption line at 77 K in the [111] direction is 2.5 G. The line broadened beyond detection when H_{dc} was rotated away from the [111] direction. At these temperatures the hyperfine structure was obstructed by Cu²⁺ and Fe³⁺ lines, and therefore could not be detected. The measured value of $g_{isotropic}$ at 77 K-is equal, within experimental accuracy, to the calculated $g_{[111]}$ at 4.2 K,

$$g_{[111]} = [(2g_{\perp}^2 + g_{\parallel}^2)/3]^{1/2}$$

(see Table I).

The angular variation of the spectrum and the symmetrical shapes of the absorption lines indicate that Pt^{3+} in MgO is a case of a static JT effect with $\overline{\delta}/3\Gamma \ge 5.^7 \ \overline{\delta}$ is the mean-tetragonal random strain splitting and 3Γ is the "tunneling" splitting between the ground vibronic doublet and the first excited singlet 2A_1 or 2A_2 . Assuming a typical value for $\overline{\delta}$ of about 4 cm⁻¹, ^{7.8} we obtain $3\Gamma = 0.8$ cm⁻¹. Thus, practically, the ground state is a vibronic triplet. Its three components Φ_X , Φ_Y , and Φ_Z are Born-

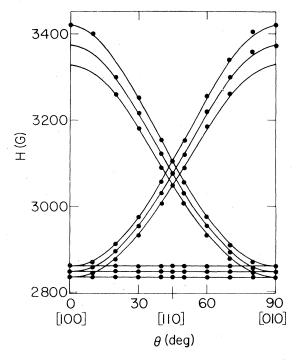


FIG. 2. Angular dependence of the EPR spectrum of Pt^{3+} in a single crystal of MgO at 4.2 K in a (100)-type plane. The full circles designate measured values. The continuous lines represent the theoretically calculated angular variation using the parameters given in Table I.

Oppenheimer products representing distortions of the oxygen octahedron around the central ion along the x, y, and z directions, respectively.⁹ Inspection of the g values given in Table I shows that $g_1 > g_1$ and $g_1 < g_e$. g_e is the free-electron g factor and is equal to 2.0023. This shows that the electronic part of Φ_Z , for example, is the $E_g(\theta)$ state, and the octahedron is elongated in the z direction. In this case the first excited state is 2A_1 , and V, and β , the linear and the nonlinear JT coupling coefficients, are both positive.

In our case the following formulas are valid⁸ to the first order of the spin-orbit interaction, $\zeta \vec{l} \cdot \vec{s}$,

TABLE I. Resonance parameters for Pt³⁺ in single crystals of MgO.

g		$A (10^{-4} \text{ cm}^{-1})$	<i>T</i> (K)
<i>g</i> ₁₁	$=1.9690 \pm 0.0005$	$A_{\parallel} = 84.1 \pm 0.5$	4.2
g_{\perp}	$= 2.3442 \pm 0.0005$	$A_{\perp} = 26.0 \pm 0.5$	
$g_1 = (g_{\parallel} + 2g_{\perp})/3$	=2.2186		
$g_{[111]} = [(g_{\parallel}^2 + 2g_{\perp}^2)/3]^{1/2}$	=2.2262		
gisotropic	$= 2.2259 \pm 0.0005$		77

1864

$$g_{\parallel} = g_e - 4k_{\pi\sigma}\zeta_{\pi\sigma} \left[\frac{1}{\Delta_2} - \frac{1}{\Delta_4} \right] , \qquad (2)$$

$$g_{\perp} = g_e + k_{\pi\sigma} \zeta_{\pi\sigma} \left[-\frac{1}{\Delta_2} + \frac{1}{\Delta_4} + \frac{3}{\Delta_3} + \frac{3}{\Delta_5} \right] , \quad (3)$$

where $k_{\pi\sigma}$ is the orbital reduction factor defined as

$$k_{\pi\sigma} = \langle \tilde{t}_{2g} | L | \tilde{e}_g \rangle / \langle t_{2g} | L | e_g \rangle$$

 t_{2g} and e_g are pure *d* orbitals, and \tilde{t}_{2g} and \tilde{e}_g are the corresponding molecular orbitals. $\zeta_{\pi\sigma}$ is the spinorbit coupling between \tilde{t}_{2g} and \tilde{e}_g orbitals for an electron. Δ_i (*i* = 1, 2, 3, 4, 5) are the separations, in increasing order, between the ground state and the

$${}^{4}T_{1}({}^{3}A_{2}), {}^{2}T_{1}({}^{3}A_{2}), {}^{2}T_{2}({}^{1}E) ,$$

 ${}^{2}T_{1}({}^{1}E), {}^{2}T_{2}({}^{1}A_{1})$

excited states of the $t_{2g}^5 e_g^2$ crystal-field configuration.¹⁰

From Eq. (2) one obtains $g_{L\parallel} \equiv g_{\parallel} - g_e < 0$, as in our case. A negative $g_{L\parallel}$ was also obtained for Pt^{3+} in BaTiO₃,^{2,3} YAIG,⁴ and for the isoelectronic Ir²⁺ in MgO and CaO.⁸ For Pt^{3+} in Al₂O₃,¹ as well as for Rh²⁺ in MgO,¹¹ and CaO,¹² a positive $g_{L\parallel}$ was obtained indicating, as we shall see in what follows, cases where the crystal field is not very strong. This positive g shift can be explained by adding the second-order terms in the form $(\zeta/\Delta_i)^2$ to the righthand side of Eq. (2). The main contribution will be from the term¹³ +2(ζ/Δ_1)² which becomes appreciable near the crossover of the ²E-⁴T₁ levels (at Dq/B = 2.15) of the Tanabe-Sugano diagram¹⁰ for a d^7 configuration. For sufficiently large values of Dq/B (i.e., very strong crystal-field cases) the term $2(\zeta/\Delta_1)^2$ can be neglected, which results in a negative g shift, as in our case.

Our experimental parameters g_{\parallel} and g_1 were found to be in a good agreement with those estimated from Eqs. (2) and (3) for $Dq = 2500 \text{ cm}^{-1}$ and $B = 330 \text{ cm}^{-1}$ given by Höchli and Müller¹⁴ for Pt³⁺ in Al₂O₃. Thus using the Tanabe-Sugano diagrams¹⁰ and Dq/B = 7.5, we obtain the excited-state separation values Δ_i (i = 1, 2, 3, 4, 5),

$$18000 \text{ cm}^{-1}$$
, 25000 cm^{-1} , 25400 cm^{-1} ,
 26700 cm^{-1} , 35000 cm^{-1} ,

respectively. Taking $k_{\pi\sigma} \zeta_{\pi\sigma} / \zeta_d = 0.42$ and $\zeta_d = 4200$ cm⁻¹ according to Lacroix, Höchli, and Müller,¹³ one gets $g_{\parallel} \sim 1.992$ and $g_{\perp} \sim 2.356$, values which are very close to those obtained from our EPR experiment (Table I).

Finally we discuss the hyperfine structure parameters and determine the signs of A_{\parallel} and A_{\perp} . In our

case A_{\parallel} and A_{\perp} are given by⁸

$$A_{\parallel} = P \left[\frac{N_{\pi} N_{\sigma}}{k_{\pi\sigma}} g_{L\parallel} - \kappa + \frac{4}{7} N_{\sigma}^2 + \frac{2}{7} N_{\pi} N_{\sigma} \zeta_{\pi\sigma} \times \left(-\frac{2}{\Delta_1} + \frac{1}{2\Delta_2} - \frac{3}{2\Delta_3} - \frac{3}{2\Delta_4} + \frac{3}{2\Delta_5} \right) \right] , \quad (4)$$

$$A_{\perp} = P \left[\frac{N_{\pi} N_{\sigma}}{k_{\pi\sigma}} g_{L\perp} - \kappa - \frac{2}{7} N_{\sigma}^2 - \frac{1}{7} N_{\pi} N_{\sigma} \zeta_{\pi\sigma} \right] \times \left(-\frac{2}{\Delta_1} + \frac{1}{2\Delta_2} - \frac{3}{2\Delta_3} - \frac{3}{2\Delta_4} + \frac{3}{2\Delta_5} \right) \left] .$$
(5)

 $P = 2\gamma_N \mu_B \mu_N \langle r^{-3} \rangle$, N_σ , and N_π are the coefficients of the e_g and t_{2g} functions in the molecular orbitals \tilde{e}_g and \tilde{t}_{2g} , respectively. κ is the core polarization factor, containing the effect of covalent bonding. γ_N is the nuclear magnetogyric ratio. $g_{L\parallel}$ and $g_{L\perp}$ are $g_{\parallel} - g_e$ and $g_{\perp} - g_e$, respectively.

For a strong Jahn-Teller coupling, the isotropic and anisotropic parts of the hyperfine parameters⁹ are

$$A_1 = \frac{1}{3} \left(A_{\parallel} + 2A_{\perp} \right) \quad , \tag{6}$$

$$A_2 = \frac{2}{3} (A_1 - A_{\parallel}) \quad . \tag{7}$$

These hyperfine parameters A_1 and A_2 are not to be confused with the excited singlets 2A_1 and 2A_2 . For all of the possible combinations of the signs of our experimental values of A_{\parallel} and A_{\perp} (see Table I), $A_1A_2 < 0$. Using Eqs. (4) – (7), one obtains for A_1 and A_2 the expressions

$$A_{1} = P\left(\frac{1}{3} \frac{N_{\pi} N_{\sigma}}{k_{\pi\sigma}} (g_{L\parallel} + 2g_{L\perp}) - \kappa\right) , \qquad (8)$$

$$A_{2} = P \left[\frac{2}{3} \frac{N_{\pi} N_{\sigma}}{k_{\pi\sigma}} (g_{L1} - g_{L1}) - \frac{4}{7} N_{\sigma}^{2} - \frac{2}{7} N_{\pi} N_{\sigma} \zeta_{\pi\sigma} \right] \\ \times \left[-\frac{2}{\Delta_{1}} + \frac{1}{2\Delta_{2}} - \frac{3}{2\Delta_{3}} - \frac{3}{2\Delta_{4}} + \frac{3}{2\Delta_{5}} \right] .$$
(9)

Assuming $k_{\pi\sigma} = k_{\pi\pi} = 0.8$ as for Ir^{4+} in MgO,¹⁵ one gets $\zeta_{\pi\sigma} = 2200 \text{ cm}^{-1}$. Using the approximation $\zeta_{\pi\sigma} = N_{\pi}N_{\sigma}\zeta_{d}$ one finds $N_{\pi}N_{\sigma} \cong 0.52$. Substitution of these numerical values into Eq. (9) and using a value of 12.65 a.u. for $\langle r^{-3} \rangle$, which is an average of two values cited in the literature for $Pt^{3+},^{2,3}$ gives $A_{2} \cong -40 \times 10^{-4} \text{ cm}^{-1}$. This value of A_{2} is very close to the value $-38.7 \times 10^{-4} \text{ cm}^{-1}$, obtained for A_{2} from Eq. (7) taking a positive sign for the experimentally obtained parameters A_{\parallel} and A_{\perp} . From this it can be concluded that the sign of both A_{\parallel} and A_{\perp} is positive. Thus inserting $A_{\parallel} = +84.1 \times 10^{-4} \text{ cm}^{-1}$ and

1865

 $A_{\perp} = +26.0 \times 10^{-4} \text{ cm}^{-1}$ into Eq. (6), one gets $A_{\perp} = +45.3 \times 10^{-4} \text{ cm}^{-1}$.

A rough estimate of the core polarization factor κ can be made from Eq. (8). Using the above determined covalency parameters, we obtain $\kappa \cong 0.07$. The quantity χ , characteristic of the density of the unpaired spins at the nucleus, is related to κ by¹⁶ $\chi = -\frac{3}{2} \kappa \langle r^{-3} \rangle$, which yields $\chi = -1.35$ a.u. Freeman et al.¹⁷ calculated χ for divalent 5d ions and obtained values between -17 and -18 a.u. Our deviation from the calculated values of χ may be due to covalent effects and partial admixing of a 6s wave function which gives rise to a positive contribution to the isotropic hyperfine interaction.

IV. SUMMARY

The EPR spectrum of Pt^{3+} in MgO exhibits a static JT effect. From the angular variation of the spec-

- *Present address: Dept. of Phys. and Astronomy, Tel-Aviv Univ., Tel-Aviv, Israel.
- ¹S. Geschwind and J. P. Remeika, J. Appl. Phys. Suppl. 33, 370 (1962).
- ²Z. Šroubek, K. Ždánský, and E. Šimánek, Phys. Status Solidi 3, K1 (1963).
- ³E. Šimánek, K. Šroubek, K. Ždánský, J. Kaczér, and L. Novák, Phys. Status Solidi <u>14</u>, 333 (1966).
- ⁴J. A. Hodges, R. A. Serway, and S. A. Marshall, Phys. Rev. <u>151</u>, 196 (1966).
- ⁵T. Krigas and M. T. Rogers, J. Chem. Phys. <u>55</u>, 3035 (1971).
- ⁶F. W. Webster and E. A. D. White, J. Cryst. Growth <u>5</u>, 167 (1969).
- ⁷L. A. Boatner, R. W. Reynolds, Y. Chen, and M. M. Abraham, Phys. Rev. B 16, 86 (1977).
- ⁸A. Raizman, J. T. Suss, and W. Low, Phys. Rev. B <u>15</u>, 5184 (1977).
- ⁹A. Abragam and B. Bleaney, *Electron Paramagnetic Reso*nance of Transition Metal Ions (Oxford University, Oxford, National Conference).

trum and from the symmetrical line shapes, we conclude that $\overline{\delta}/3\Gamma \gtrsim 5$. Since we have $g_{\parallel} < g_{\perp}$, it follows for a d^7 low-spin configuration that the first excited vibronic level is a singlet ${}^{2}A_{1}$, and that V and β , the linear and nonlinear coupling coefficients, respectively, are positive. The calculated values of g_{\parallel}, g_{\perp} , and A_2 , from expressions developed in a previous study,⁸ were found to be in very good agreement with the experimental ones. This indicates that the crystal-field parameters Dq and B,¹⁴ as well as the effective spin-orbit coupling constant¹³ for Pt³⁺ in Al₂O₃, are also valid for MgO. These calculations enabled us also to conclude that the signs of the hyperfine parameters A_1 and A_2 are positive. The negative g shift $(g_{L\parallel} < 0)$ justifies the approximation in the calculation of the g factors, in which the second-order terms of the spin-orbit interaction were neglected. This further supports the use of the large value of Dq/B(=7.5), characteristic of a very strong crystal field.

1970), Chap. 21.

- ¹⁰Y. Tanabe and S. Sugano, J. Phys. Soc. Jpn. <u>9</u>, 753 (1954); <u>9</u>, 766 (1954).
- ¹¹J. T. Suss, A. Raizman, S. Szapiro, and W. Low, J. Magn. Resonance 6, 438 (1972).
- ¹²A. Raizman and J. T. Suss, in *Magnetic Resonance and Related Phenomena, Proceedings of the 18th AMPERE Congress*, edited by P. S. Allen, E. R. Andrew, and C. A.

Bates (North-Holland, Amsterdam, 1975), Vol. I, p. 121.

- ¹³R. Lacroix, U. Höchli, and K. A. Müller, Helv. Phys. Acta <u>37</u>, 627 (1964).
- ¹⁴U. Höchli and K. A. Müller, Phys. Rev. Lett. <u>29</u>, 730 (1964).
- ¹⁵A. Raizman, Ph.D. thesis (Tel-Aviv University, 1976) (unpublished).
- ¹⁶A. Abragam, J. Horowitz, and M. H. L. Price, Proc. R. Soc. London A 230, 169 (1955).
- ¹⁷A. J. Freeman, J. V. Mallow, and P. S. Bagus, J. Appl. Phys. <u>41</u>, 1321 (1970).