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Numerical solutions to both the nonlinear and linearized Poisson's equations have been ob-

tained for the case of a spatially variable dielectric constant. It is found that the model poten-

tials employed in several recent mobility calculations are physically unreasonable. It is also

found that in most cases where the spatial dependence of the dielectric constant is important,

the use of the llinearized form of Poisson's equation is questionable.

A number of investigators have recently sought to
i~prove the usual Brooks-Herring result for electron
mobility in a semiconductor due to scattering by ion-
ized impurities through the use of scattering poten-
tials which take into account the spatial dependence
of the dielc. ctric constant. In this article, the various
approximate analytic potentials which have been em-
ployed in these calculations are tested by comparing
them with the results of a numerical solution to the
generalized, linearized Poisson's equation. The non-
linear Poisson's equation has also been solved nu-

merically, in order to test the soundness of potentials
derived from the linear formulation.

Generalization of Poisson's equation to incorporate
the spatial dependence of the dielectric constant,
«(r), leads to the form'

( )
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where $(r) is the electrostatic potential due to a posi-
tive point charge, and the boundary conditions are
g(r 0) =e/r and @(r ~) =0.2

The screening charge, p(r), is given by'

Poisson's equation can be solved analytically if two

simplifying approximations are made: the linear ex-
pression for the screening charge is used [Eq. (3)]
and the dielectric constant is assumed to be indepen-
dent of r [i.e., «(r) —«p, where «p is the static dielec-
tric constant of the semiconductor]. One then ob-
tains the screened Coulomb potential due to Dingle
and Mansfield'

-r/R()
@p(r) = (e/«pr)e

where R 0 is the degeneracy-dependent screening
length
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In order to generalize this result by removing one
of the simplifying approximations, Csavinszky has
employed an equivalent variational principle to solve
the linearized form of Eq. (1).' For germanium and
silicon, he used the spatially dependent dielectric
functions due to Okuro and Azuma, and Azuma and
Shindo
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which are based on the Penn model. s The parame-
ters6' nP, y.A; ,and 8 satisfy the conditions that
«(r 0) =1 and «(r )) ap) = «p, where ap is the lat-
tice constant. Using a model potential of the form

where n is the electron density, v is the number of
degenerate electron valleys, rt (= Er/ka T) is t—he re-
duced Fermi energy, 5» is the Fermi integral of or-
der k, and parabolic, isotropic electron bands have
been assumed. Using the relation Pk'(q) = Sk ~(q),
the "linearized" screening charge is obtained by ex-
panding 0~~ (q+2$/ek T)sin a Taylor series, which is

terminated after the second term,
r t 3/2
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P(r) = (e/«pr) [Ce + (1 —C)e P] (7)

values for the variational parameters C and n were
obtained. In this early calculation the second term of
Eq. (1) was ignored, an approximation which has
since been shown to be invalid. ' Csavinszky has
also noted that an incorrect boundary condition at
small r had been used in obtaining this result. "
Nonetheless, the potential of Ref. I has been em-

ployed in the calculation of ionized-impurity-
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FIG. 1. Ratio of potentials which include the effects of a spatially variable dielectric constant to the potential of Eq. (4) vs r in

atomic units. The solid curve represents the numerical solution to the generalized, linearized Poisson's equation, awhile the
dashed curves are potentials obtained variationally by Csavinszky in Refs. 1 and 14.

scattering mobilities. "'

The tabulated results of Ref. 1 are shown in Fig. 1

for the case of silicon at Ro =30a~, where ag is the
Bohr radius. The function plotted is
f(r) —= $(r)/@p(r), the ratio of the potential which
includes the spatial dependence of the dielectric con-
stant to the form given by Eq. (4). Also shown is a

solution to the generalized, linearized Poisson's equa-
tion which was obtained numerically by computer.
The behavior of this result agrees with what is ex-
pected intuitively. The boundary condition at small r
requires that @(r 0) =e/r, which means that
f(r 0) = vp since Eq. (4) reduces to
Pp(r 0) = e/Kpr At large. r for which n(r) Kp,

the form of Eq. (4) is regained and f(r) =1. The
crossover occurs in the region where ~(r) is chang-
ing, namely, when r is slightly less than the lattice
constant ao. The third curve of Fig. 1 represents a
solution to the iinearized form of Eq. (1) which was

obtained by Csavinszky using a model potential of

the form'4
-r/Ro

P(r ) = [1 + (n —1)e "j
Kof

where a is the only variational parameter. Although
the asymptotic behavior at r =0 and r = ~ is now
correct, the crossover from f(r) = ~p to f(r) = 1 oc-
curs at r nearly three orders of magnitude too large
when compared to the numerical result. The reason
is probably that, as in Ref. 1, the second term of Eq.
(1) was ignored. The potential of Ref. 14 has also
been employed to obtain electron mobilities. "

Very recently, a solution to the generalized, linear-
ized Poisson's equation has been obtained by Csa-
vinszky and Morro~" which is in good qualitative
agreement with the numerical result shown in Fig. 1.

For the purpose of calculating mobilities, the spa-
tial dependence of the dielectric constant can be ig-
nored if f(r) = 1 in the region whore scattering by
the potential is most important, namely, r =Ro. This
will be the case when

d) —= ap/Rp ((1,

0.13(n/10")' '(T/300) ' '(Kp/12) ' '(ap/10. 2aa) (nondegeneracy),g«0 (10a)

0.42(n/10'p)' p(~p/12) ' '(m„'/0. 3mp)' 2(v/6)' 3(ap/10. 2as) (extreme degeneracy),
q&&0

(10b)

~here md', is the density-of-states effective mass and mo is the free-electron mass. The normalization values
shown for the material parameters are typical of n-type silicon. "

The second approximation made in obtaining Eq. (4) is that the expansion" of p(r) in powers of
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and the linear Poisson's equation should be adequate
for use in the calculation of mobilities when 42 &( 1.
In the limits of small and large q

holds for all values of q and positive z, indicating that
the linear screening charge always underestimates the
nonlinear p. It can be shown that An(r) (( I if and
only if the third term of Eq, (11) is small compared
to the second. With It (r) replaced by $0(RO) from
Eq. (4) this ratio, denoted Az, becomes

e'exp( —I) r 3/z(n)-2=
2KORoks T S I/z(q)

FIG. 2. Ratio of potentials obtained numerically in vari-
ous limits to the potential of Eq. (4) vs r in atomic units.
Linear or nonlinear refers to whether the linearized form of'

the screening charge represented by Eq. (3) was employed,
while Ko or K(r) refers to whether the spatially dependent
dielectric coristant was incorporated.

the nonlinear equation using approximate analytic
methods. Adawi correc'tly predicted that even though
the linear approximation to p(r) is valid at large r,
the potential there is weaker than the linear result.
This can be understood if one considers the conse-
quences of the implicit requirement that the total

Si
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—— 0.21(n/10")'/'(T/300) '/'(K /12) '/'
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(non degeneracy), (14a)
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It is seen that b, 2 ) 4~ for most reasonable values
of n and T, indicating that in most regions where the
spatial dependence of the dielectric constant is impor-
tant, use of the linearized form of Poisson's equation
is questionable. As an example, for silicon at
n =7.5X10' cm and T =300 X which corresponds
to q = —1.1 and R0=30 alI (the same as in Fig. I),
A2 =0.6, which indicates that use of the linear
Poisson's equation is probably not a good approxima-
tion under these conditions.

Numerical solutions to the nonlinear Poisson's
equation obtained for the parameters listed above are
shown in Fig. 2. Along with the linear result already
discussed, nonlinear potentials are given for dielectric
constants with and without spatial dependence. In ei-
ther case, the ratio of the linear potential to the non-
linear one is on the order of a factor of 2 at
r = Ro. Csavinszky' and Adawi' have dealt with
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FIG. 3. Ratio of the screening charges vs r in atomic un-
its, where p and po were obtained from the nonlinear and
linear solutions to Poisson's equation, respectively, both ig-
noring the spatial dependence of the dielectric constant.
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screening charge integrated over all r must be equal
in magnitude and opposite in sign to the test charge.
For the case in which the spatial dependence of the
dielectric constant is ignored, Fig. 3 shows the
behavior of p(r)/pp(r), where

po(r) = —(e/4rrrRO ) e

is the screening charge corresponding to the linear
solution [Eq. (4)]. Since both the linear and non-
linear potentials are fixed by the boundary condition
that P(r 0) =e/~ rO, it follows from Eq. (12) that
p(r) must be larger than po(r) at small r. The condi-

tion that 4rr l p(r) r' dr must be equal for the two

cases then requires that p(r) be smaller than po(r) in
some other region, namely, at large r, Because the
linearization of p is valid at large r, a smaller p(r oo)

implies a smaller P(r —~). Thus

y(r ~) = 3 (e/~or) e (15)
' I

where 3 ( 1. For the example given, the numerical
result is A =0.58, which can be compared with the
value A =0,69 obtained from substitution of the
same parameters into the approximate expression of
Adawi. ' Under conditions for which the linearized
Poisson's equation is expected to be valid [hq (( 1),
the factor A approaches unity.

Summarizing, it is concluded that the calculated
mobilities of Refs. 12, 13, and 15 are unreliable since
they are based on potentials which are physically un-
reasonable. It is further concluded that in most cases
where the spatial dependence of the dielectric con-
stant is important, use of the linear form of Poisson's
equation is questionable.
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