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Valence excitons from the 3p shell and core excitons from the 3s and 2p shells in gaseous and solid argon
are studied within the envelope-function formalism. First, semiempirical model potentials for atomic excitons
are considered; then solid-state effects, which include band structure and electron-hole screening, are taken
into account. The problem of a sufficiently accurate account of the “band kinetic operator” is solved with
first-order perturbation theory. A new interpretation: of the excitonic spectrum originating from the 2p shell
is given in terms of first-class exciton (ls) and third-class excitons (nd, n > 3) associated with a unique band

edge.

I. INTRODUCTION

Since the classic work of Baldini,! there has
been an increasing experimental and theoretical
interest in excitons in rare-gas atoms and sol-
ids.®*® The application of synchrotron radiation
has made possible optical measurements in a
wide spectral region and has further stimulated
researchers’ attention.

From a theoretical side, two distinct lines of
approach have been formulated for an understand-
ing of the exciton spectra in rare-gas solids. The
first, more traditional, line (for a thorough re-
view, see Ref. 2) consists in the direct description
of crystal excitons. An early attempt in solid ar-
gon was made by Knox.* Central-cell corrections
have been discussed within the pseudopotential
formalism® and appropriate refinements.® The
intermediately bound exciton theory,’® besides
fostering a renewed interest in the valence-ex-
citon problem, has further stimulated theoretical
attention on the inner-shell exciton problem. The
second, and more recent, line of approach con-
sists in the description of excitonic spectra in iso-
lated atoms as a preliminary step to considering
the more complicated crystal-exciton problem.
The formal similarity between atomic excitons
and crystal excitons in closed-shell systems has
been recognized®!® and exploited to relate atomic
excitons to crystal excitons in a simple way. The

-quantum-defect theory for excitons** and the non-
structural theory of excitons'? constitute very
meaningful approaches based on simple physical
models. '

In this paper we examine in a systematic way

- elsewhere

valence and inner-shell excitons in gaseous and
solid argon. The choice of argon is suggested by
the following reasons: (i) from an experimental
point of view a large amount of data® is available
for excitons originating from the 3p, 3s, and 2p
shells; (ii) from a theoretical point of view con-
flicting interpretations on the nature of core ex-
citons from the 2p shell have been given in the
literature,”»*21*

The approach we use is based on the envelope-
function formalism outlined in previous papers®:'’;
our approach sharply separates the problem of
atomic excitons (Sec. II), for which a simple mod-
el potential is used, from the problem of crystal
excitons (Sec. III), for which no adjustable param-
eter is introduced. Valence and conduction band
shapes are taken into account in the calculations;
it is found that valence bandwidth cannot be neg-
lected and actually explains why a 1s core exciton
is more bound than a 1s valence exciton. A new
interpretation of the excitonic spectrum originating
from the 2p shell is provided; our calculations
indicate that these excitons correspond to 1s,
nd(n = 3) envelope functions and are associated
with a unique band-to-band threshold. Section IV
contains the conclusions.

II. EXCITONS IN THE ISOLATED ARGON ATOM

The extension of the standard exciton theories!®
to isolated rare-gas atoms has been described
%1% and we recall here only some rele-
vant concepts.

Rare-gas atoms are closed-shell systems and
the Hartree-Fock opeyrator, built with ground-state
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wave functions, has a discrete energy spectrum
corresponding to occupied states and a continuous
energy spectrum (starting from zero energy) cor-
responding to virtual states. For simplicity, let
us consider excitons originating from an initial
atomic state with s symmetry. Let ¥, , . be a trial

excited state in which the scattering function ¥.,
corresponding to an impinging plane wave ei'*
with energy 72k%/2m, replaces the occupied func-
tion ¢ of energy —E, Atomic excitons near the
ionization limit E, can be described as linear
combinations of the type

Vo= 2 AL, g - (1)
k

The coefficients A(K) satisfy the standard integral
equation

(P, k, E)A(k)+z U(ERIAR)=0. (2

The kernel U(K, k') for singlet states is

UK, K= —(p¥; | e%/7,,| 0 ¥;,)
+2p¥;| e/ rp| ¥y 0). (3)

The integral equation (2) can be transformed into
a Schrddinger equation for the envelope function

F(H)=3 AR)ei,
i

We obtain
[ (7292/2m) + V,(r)+ V()] F(F) = (E - E)F(T),
(4)

where -v? corresponds to the operator %” in real
space, V,(7) is the Coulomb potential generated
by the hole charge density e|¢ |, and V(7) takes
into account atomic central-cell corrections.

As in previous papers®*® we do not attempt a
first-principles calculation of V_; rather, we
simulate it in the semiempirical form V(r)
=AS(7 - 7,), where S(x) is the step function. In
numerical calculations the atomic radius 7, is
set equal to 2.34 a.u. and A is left as an adjustable
parameter to fit the very accurately known atom-
ic-exciton series. The Coulomb potential V,(») is
calculated analytically assuming for occupied
states Slater-type functions with optimized expo-
nents.*® For the 3p and 3s atomic states of argon,
we have qg,=2.2547 (in a.u.), @,,=2.5856, and

Vir)=—e*/r+ e F a’r'+ 2ot r + 2 0%
+ia reda+ l/r)e'2°". (5)

For the 2p atomic state of argon we have q,,
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=17.0041, and hence
Vir) = ~e*/r+eX(% a*r*+ a’r+ Sa+1/r)er.  (6)

The eigenfunctions and eigenvalues of Eq. (4) are
obtained numerically using standard programs.'”

In Table I, we report experimental data'®~2 for
several exciton series in argon, together with the
results of our model calculation and the optimized
values of the adjustable parameter A. From Table
I, the following remarks can be drawn.

(i) Our model potential provides fairly good
agreement with the experimental data for any ex-
citon series, The optimized values of the param-
eter A (reported in Table I) support the following
simple interpretation of the basic equation (4).
Besides the kinetic energy and the Coulomb-hole
potential, an extra electron with s and p symmetry
feels orthogonalization effects to occupied states,
which make A positive. An extra electron with d
symmetry does not feel orthogonalization effects
(in argon there is no occupied d level) and the at-
tractive interaction with a polarizable atom may
well justify why A is negative in this case.

(ii) The binding energies of excitons (with a given
envelope-function symmetry) are practically inde-
pendent of the degree of localization of the hole
left behind. This statement is evident from Table
I, where we have included valence-exciton p ser-
ies and d series to allow a comparison with the
corresponding core-exciton series. By changing
V,(7) in Eq. (4) according to (5) or (6), and keep-
ing V, constant, we have verified that our pro-
posed model actually leads to eigenvalues almost
independent of the hole localization.

Our theory of atomic excitons also allows a
simple derivation of selection rules for optical
transitions in the dipole approximation. Adapting
Elliott’s theory? to our problem, we first con-
sider the matrix elements M(K)= (¥, |8 T| o) be-
tween an occupied atomic state ¢ and the scatter-
ing state ¥.. For small &, e is made up of an
s wave (w1th coefficient mdependent of k) ap
wave (with coefficient linear in k) a d wave (with
coefficient quadratic in k) etc. Suppose, for in-
stance, that the atomic state ¢ has p symmetry;
for small , M(k) takes the general form M(k)
= C,+ C,K? and allowed final exciton states have
thus either s or d symmetry (first-class excitons
and “third”-class excitons in Elliott’s language).
Similarly, exciton states originating from s oc-
cupied states must have p symmetry for the en-
velope function.

Optical transitions from 3p or 2p shells may lead
to excitons with either s or d symmetry. It is
generally agreed® that the nodal structure of wave
functions makes the s series dominant in the form-
er case and the d series dominant in the latter.
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TABLE I. Experimental transition energies (eV), model calculation results (eV), and optimized values of the semi-
empirical parameter A (Rydberg) for several valence- and inner-shell exciton series in the argon atom. Transition
energies for spin-orbit partner members are not explicity reported, since they can be obtained (with good approxima-
tion) by adding the spin orbit splitting of the 3p and 2p shells, which are 0.178 and 2.148 eV, respectively.

Experimental  Experimental Calculated

transition binding binding
Spectroscopic  Envelope-function energies energies energies
Exciton series notations notations (eV) (eV) (eV)
Valence . 3p3/2—4s 1s 11.624 -4.136 —-4.134
excitons s series?: A =1.34 3p3/2—5s 2s 14.090 -1.670 -1.706
3p3/a— 6s 3s 14.849 -0.911 -0.929
3p3/a—Ts 4s 15.186 —0.576 —0.584
3p3/2—8s 5s 15.366 -0.39%4 —0.400
edge 15.760
Valence 3p3a—4p 2p 13.153 —2.607 —2.604
excitons p series®: A,=4.20 3p3/a—5p 3p 14.525 —1.235 -1.234
3p3/a—6p 4p 15.034 —-0.726 -0.727
3p3/2—Tp 5p 15.282 —0.478 —0.479
edge 15.760
Valence 3p3/p—3d 3d 14.153 -1.607 —1.605
excitons d series *: A,=-1.63 3p3/p—4d 4d 14.859 —0.901 —0.909
3p3/a—5d 5d 15.190 -0.570 —0.579
3p3/o—6d 6d 15.350 —0.410 ~0.400
edge 15.760
Core 3s 3s —4p 2p 26.616 —2.624 —2.624
excitons®: A,=3.60 3s —5p 3p 27.998 —1.242 ~1.245
3s - —6p 4p 28.511 -0.729 -0.730
3s —Tp 5p 28.760 —0.480 —0.480
edge 29.240 '
Core 2p 2p3/a—4s 1s 244.390 —4.238 —4.230
excitons ©: Ag=1.43,4,=-1.80 2p3/9—3d 3d 244,927 -1.701 -1.699
2p3/9—4d 4d 247.669 —0.959 -0.972
2p3/9—5d 5d 248.026 —0.602 —~0.615
edge 248.628
2 Experimental data from Ref. 18.
b Experimental data from Ref. 19.
¢ Experimental data from Ref. 20.
In optical transitions, excitons from the 2p shell the polarization potential, and E, the energy gap.

are thus interpreted as having 1s, 3d,4d, 5d,...

For core excitons similar equations hold, except

symmetry.?®? Consider now the modification of that E(K) has to be omitted and E, has to be re-

atomic exciton energies because of solid-state

effects.

III. EXCITONS IN SOLID ARGON

placed by appropriate interband transition ener-
gies. We discuss separately polarization effects,
energy-band parametrization, and the interpreta-
tion of experimental data.

In solid argon, valence-exciton energies and en-
velope functions are determined by the equation A. Polarization effects

(see Appendix)

[E(=i9)+ E(=iV)+ Vy(#) + V() + V(1) ](F)

On the basis of simple classical arguments,® it
has been shown!® that the electron-hole polariza-
tion potential in rare-gas solids takes, for small

=(E-E o¢(T), (1) and large 7, the form

where Ec(k') is the conduction-band energy (mea-
sured from k=0), E (k) the valence-band energy V.(r)= {
(measured from k=0 and of positive sign), V,(#) g

(e*/Ry )1 =1/¢) if r <Ry,
(e/7rX1-1/¢) if r»R,,
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where R, is the Mott-Littleton radius for the
solid. At the lowest order of approximation, the
Mott-Littleton radius is a pure geometrical quan-
tity; in simple fcc lattices Ry, =ma,/6.3346, ¢, be-
ing the lattice parameter. Both the extended polar-
izable model of Abarenkov and Antonova?® and
Fowler’s treatment® of the electron polaron prob-
lem lead to the approximate expression

V,(r)= (/71 =1/€)(1 - e/ Ryz). (8)

Note that the electron and hole self-energies have
not been omitted in Eq. (7); actually they are
(tacitly) included in the experimental values of
interband edges. In the numerical work we have
€,=1.67, q,=10.05 a.u., R;;=4.98 a.u., and V,(0)
=2.19 eV.

B. Band-structure parametrization

The band structure of solid argon has been cal-
culated by a number of authors® and we look here
for a simple reasonable parametrization of con-
duction- and valence-band energies. In the spirit
of the Slater-Koster® interpolation procedure
(see also Ref. 7), we describe the lowest conduc-
tion band in the form

- 12 - 6 . -
Ec(k)=E1< 12 - Ze‘i‘71> +E, (6 - Z e“‘"u> , (9)
T =

I TIr

where 7, indicates the twelve translation vectors
of type 3 a,(0,1,1) and 7, the six translations vec-
tors of type a,(1,0,0). The parameters E, and E,
are such to reproduce the calculated® values 2.58
‘and 3.16 eV at X and L points of the Brillouin zone.
At K= 0 the resulting effective mass m¥=0.51m,

is in fair agreement with other values given in the
literature.?

The parametrization of the valence band poses a
more subtle problem because of threefold degen-
eracy of the atomic p levels. Following Slater and
Koster,® we express in terms of independent pa-
rameters the matrix elements H,(i,j=x,y,z) of
the crystal Hamiltonian between Bloch sums
formed with p,, p,, and p, orbitals, and take into
account only the nearest-neighbor interactions.
The arithmetic average of the three valence-band
eigenvalues at any given Kis %TrH”; we easily
obtain

Ev(E)= 1—6’1 <12 —i e‘E‘ﬂ) s (10).

where A is the valence bandwidth, From experi-
ments? we set A,=1.7 eV. At k=0, parametriza-
tion (10) gives m} =1.27Tm, for the averaged effec-
tive mass. Whenever necessary, the spherical

average of (9) or (10) is obtained by replacing the

exponentials with zero-order spherical Bessel
functions.

C. Details of calculations

We have now all the ingredients for going back
to Eq. (7), whose solution appears difficult be-
cause of the complicated nature of the “band kin-
etic operator” E(—iV)+ E(-iV). However, after
several attempts: variational methods, conver-
sion to a matrix equation, simulation of an »-de-
pendent effective mass,’ and replacement of the
kinetic energy operator by the symmetrical form
11/ m(v)]p*+ 1p°[L/m(#)], we have found a rather
economical (and unexpectedly accurate) approach.

We now replace in Eq. (7) the complicated op-
erator E(-iV)+ E(-iV) by a “traditional” kinetic
operator ~72v%/2m* with a fixed value of m*, and '
solve the resulting equation almost exactly using
standard programs.’” We then consider the quan-

tity _ ;
AE:f¢,*(f)[Ec(-iv)+Ev(-iv)-<_Z—:Z;>} o(F) dF
(11a)

- [ 14 [ @ B 0-TE]aE, )

where A(K) indicates the Fourier transform of
¢(T), and we numerically evaluate (11b). We find
that the first-order eigenvalues E+ AE are rather
insensitive to the chosen value of m*, though E
and AE separately depend sensitively on it. (See
Table II for an illustration). The final eigenvalues
reported in Table III are those for which expres-
sion (11b) vanishes.

For sake of completeness, we have also verified
that more realistic expressions of EC(E ) outside
the first Brillouin zone produce minor effects
even on the lowest-lying excitons. This confirms
the point of view of Altarelli et al.” that, among
conduction states, only the lowest-lying band is
important for the description of excitons in solid
argon,

D. Interpretation of exberimental data

In Table III, besides our computed exciton en-
ergies, we have also reported for convenience
experimental transition energies.?®"3° For valence
excitons and core excitons originating from the
3s level, no problem exists in the interpretation
of the experimental data. In our calculations the
binding energy of higher exciton members is in-
sensitive to both the detailed band-structure shape
(the dominant role being played by the effective
mass at I') and the interpolation formula (8) [for
large » the polarization potential being e*(1 -1/
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TABLE II. Illustrative example of the computation of the binding energy of the 1s valence
exciton in solid argon. Energies are in eV and s * in electron mass units. E;q is the 1s
eigenvalue of Eq. (7) with EJ(-iV)+E(=iV) replaced by ~i?%2%/2m*. AE is calculated from
Eq. (11b). The corrected eigenvalue of —1.869 is the final energy reported in Table III.

m* 0.40 0.46 0.50

Ey -1.716 -1.871 -1.965
AE -0.116 0.002 0.077
Es+AE -1.832 —1.869 -1.888

0.60 0.70 0.80 0.90 1.00
-2.171 —-2.345 -2.496 —-2.629  —2.746

0.270 0.366 0.508 0.638 0.752
-1.901 —=1.979 —-1.988 -1.991 -1.994

€)(1/7)]. We can thus estimate the energy posi-
tion of the interband edges by adding calculated
binding energies for shallow excitons to experi-
mental transition energies. In this way we obtain
an energy gap of ~14.08 eV and the onset of band-
to-band transitions from the 3s atomic level at
~28.40 eV. In the case of core excitons from 2p
levels, the situation in the literature is more un-

certain and very different interpretationg’s12:13:14

of experimental data®® have been given,

From Table III we see that the 1s core exciton
is bound much more than the 1s valence exciton,
the valence bandwidth being responsible of this
change. The binding energies of the 3d, 4d, and
5d excitons are instead very small (-0.31, -0.16,
and -0.10 eV). We ascribe the absorption bands*
A and B peaked at 245.2 and 247.85 eV (optical
experiments® were performed with a 0,3-eV slit

width) to 1s and nd(n = 3) excitons, respectively.
Since in the isolated atom the generalized oscil-
lator strength density® is a maximum at the 5d
exciton energy, in the solid we also associate the
peak in B to the 5d exciton. (The assignment of
this peak to the 54 or the 3d, 4d, ... members is
almost irrelevant because of the smallness of d-
exciton binding energies). The absorption bands*
A’ and B’ at 247.36 and 250.25 eV are interpreted,
as usual, as spin-orbit partners of A and B. Hav-
ing realized the importance of “third-class ex-
citons” in the more simple atomic problem (Sec.
1I), we form the plausible hypothesis that this role
is preserved upon passing to the solid. The pre-
sent interpretation is quite different from those
given in the literature.”'?"!'* However, with re-
spect to the interpretation of Altarelli et al.,” we
share the point of view that, because of valence

TABLE III. Computed binding energies (eV) and experimental transition energies for val-
ence and inner-shell excitons in solid argon.

Experimental Expt. transition Calculated
transition energies referred binding
Exciton Envelope-function energies to the estimated edge energies
series notations (eV) (eV) (eV)
Valence 1s 12.06. -2.02 -1.869
excitons ? 2s 13.57 -0.51 —0.470
3s 13.89 -0.19 -0.186
4s 13.97 -0.11 -0.106
5s -0.068
Estimated edge 14.08
Core 3s 2p 27.52 -0.88 -1.019
excitons ” 3p 28.00 —0.40 —0.375
4p —0.164
5p —0.104
Estimated edge 28.40
Core 2p 1s 245.2 —2.75 —2.435
excitons © 3d —0.308
4d -0.159
5d 247.85 -0.10 -0.102
Estimated edge 247.95

2 Experimental data from Ref, 28.
b Experimental data from Ref. 29.
¢ Experimental data from Ref. 30.
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bandwidth, the 1s core exciton is more bound
than the 1s valence exciton is; furthermore, the
importance of the d excitons’*!? is confirmed.

Our interpretation of the experimental data is
also corroborated by the comparison of energy
thresholds in gaseous and solid argon. The ioniza-
tion energies of the argon atom, reported in Table
I, are I,;,=15.76 eV, I;,=29.24 eV, and I,,=248.63
eV. In the solid our estimated onsets of band-to-
band transitions (Table III) are E,,=14.08 eV, E,,
=28.40 eV, and E,,=247.95 eV. We can make the
following remarks.

(i) The ionization energies in the atom are sys-
tematically higher than the corresponding energy
thresholds in the crystal. (ii) The differences be-
tween the energy edges in the atom and the solid,
when corrected for the occupied band half-width,
are almost constant; a justification of this is ob-
tained by extending to deep levels the considera-
tions of Raz and Jortner.® Assuming® the half
width of the valence band=~0.85 eV, deeper valence
and core bands infinitely narrow, we obtain, in
fact, I, -E;, —36,=0.83 eV, I, - E,,=0.84 eV,
and I,, - E,,=0.68 eV.

Before concluding this section, we note that our
calculations of 3p,,,~ns exciton binding energies
use the experimental valence bandwidth (1.7 eV,
Ref. 27), which refers to both valence-band spin-
orbit partners. In principle one should use rather
the valence bandwidth computed in the nonrelativ-
istic limit; such a bandwidth should approximately
equal 1.5 eV, which is the experimental band-
width minus the atomic spin-orbit splitting (=0.18
eV, Ref. 18). However, in the case of argon, the
use of one or the other of the above-mentioned
values makes little difference even on 1s valence
excitons [if A,=1.7 eV, E, ;= -1.869 eV and E,_
= —-0.470 eV (see Table III); if A, =1.5 eV, E,
=~1.915 eV and E, = -0.485 eV].

IV. CONCLUSIONS

In this paper we have discussed atomic excitons
in closed-shell atoms, starting from the integral
exciton equation of solid-state theory. The diffi-
cult to solve first-principle equations have been
simplified by exploiting atomic spectroscopy data.
Solid-state effects, which include band-structure
and electron-hole screening, are then taken into
account with appropriate simplifications. A sat-
isfactory interpretation of similarities and differ-
ences between exciton series in solid argon and
between the solid and the gas is achieved. The
treatment of the present paper should allow a
better understanding of excitons in the other rare-

as solids and in the class of crystals made up of
osed-shell units,

BARONI, GROSSO, MARTINELLI,
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APPENDIX

The aim of this Appendix is to derive Eq. (7),
which exploits the results pertaining to atomic
excitons in argon (Sec. II) to simplify the difficult
to solve first-principle equations for excitons in
the solid.

We start from the standard integral equations
for direct (singlet) excitons in a generic semicon-
ductor or insulator,'®

[E(K) - E(K) - E]A,(K)
* Z iz UCv;c'v'(E’ l-;’)Ac't.:'(i;,)

1y e
crvr g

0, (12)

b

where E(K), ¥,; indicate energies and wave func-
tions of occupied states (valence or core states),
EC(E), ¥ ; indicate e’nergigs and wave functions of
conduction states, k and k’ are confined to the
first Brillouin zone (BZ), and the kernel U is de-
fined as

Ucv:c'vr(k’y K= — @ ¥ €% 7| W g¥en)

+ 200,38z | €%/ 7| VLY - (13)

In principle the system of integral equations (12)
contains all couples of occupied and empty bands.
For simplicity we consider the specific case of
excitons originating from an s-like occupied band;
since in solid rare gases occupied bands originat-
ing from different shells are well separated in en-
ergy, the sum over ¢’ in Eq. (12) becomes ines-
sential. We can also formally drop the sum over
¢’ in (12), letting K and K’ run on the whole recip-
rocal lattice (which corresponds to describing all
conduction bands in the extended zone scheme) and
rewrite Eq. (12) in the form

-

[E(K) -E(K) - E]A(K)+ > UK, KNAK)=0, (14)
P

where
U(E! E') = _<‘Ilv'ﬁ'\1/ci| 62/712 I ‘I’ui\I’ci'>

+ 2<‘I’vi"1’cil 82/712 l Y, (15)

and E, K’ now run over the whole reciprocal lattice.
It is convenient to describe the wave functions
¥,; by the Block sums
-1 2y e >
\I/,,ﬁ(l‘):.\/ﬁz e g (F-7,), (16)

Tn

where g, is the Wannier function of the occupied
band under consideration. In the closed-shell
rare-gas solids, the Wannier functions q, of the
occupied bands do not differ appreciably from the
atomic functions ¢; furthermore, the occupied
atomic functions ¢ are reasonably well localized
with respect to the nearest-neighbor distance.
Using these facts and substituting (16) into (15),
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we obtain approximately,

U(E’ K")= "(‘P‘I’cil /71 ] P¥ei)
+2(p Wz | €/ 7y, | U z) - (17)

In rare-gas solids the conduction wave functions
¥ i (with K in the extended zone scheme) are ex-
pected to be reasonably near the scattering atomic
functions ¥; of Sec. II. Thus the replacement of
the kernel for crystal excitons with the kernel for

atomic excitons made in Eq. (7) is justified from
a formal point of view. From a heuristic point of
view, we notice that Eq. (7) is exact anyway if the
crystal excitons are either very well localized or
very well delocalized with respect to the unit cell.
The considerations of this Appendix are applicable
whenever crystal excitons occur between reason-
ably narrow occupied bands and free-electron-like
conduction bands, which is the typical situation of
most crystals made up of closed-shell units.
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