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The mechanism of electronic polarization in insulators is still an unsettled issue. Quite contradictory
mechanisms (either strictly intraionic or fully interionic excitations giving rise to polarization) envisaged in

the different models appear to determine equally satisfactorily the high-frequency dielectric constants. In the

present work we propose to calculate the pressure dependence of the electronic dielectric constant within all

the existing models. It is interesting to note that though all of these describe the dielectric constant in a
somewhat satisfactory way, their predictions for the pressure dependence of the same are quite different from
one to the other and from observation. Next we suggest a modification of the shell-model dielectric theory by
including the idea of an effective excited state of the anion in a crystal. The calculations based on a simple
version of the new model which appears to favor partly intraionic and partly interionic excitations responsible
for the electronic polarization show distinct improvement in agreement with experiment over all the existing
models,

I. INTRODUCTION

The mechanism of electronic polarization in in-
sulators is still an ill-.understood phenomenon,
despite the fact that many attempts have been di-
rected to resolve the problem. All the attempts
made so far can be broadly divided into two cate-
gories: The models of Clausius-Mossotti, ' Ruffa, '
and the shell model of Woods et al.' use the con-
cept of an individual ionic polarizability associated
with each ion which is modified by the environment
inside the crystal. The details of the empirical
results that serve as the basis of this concept have
been earlier discussed by Tessmanet al.4 and by
Chakrabarti et al.' based on recent dielectric
data. ' On the contrary, the central concept of the
other authors is to disregard totally the existence
of the microscopic polarizable units and to treat
the entire electronic polarizability as a property
of the whole crystal as one unit. The models of
Pantelides' and Penn' make use of this idea.
Levine' has used the Penn model, original1. y in-
tended to study the dielectric properties of mostly
covalent crystals, to study the insulators.

The central purpose of the present work is to
subject the above-mentioned five models to some
crucial test by calculating the pressure depen-
dence of the high-frequency dielectric constants of
the alkali halides. One of the interesting firidings
of the present investigation is that all the models
which are more or less consistent in the descrip-
tion of the high-frequency dielectric constants
lead to quite divergent results for the pressure de-

pendence of the same, not only in magnitude but
also, in Pantelides's model, in sign. As a conse-
quence, we have discussed in some detail both the
Penn and the Pantelides models. Next, as none of
the five models predicts the pressure dependence
of the dielectric constant that reproduces obser-
vation, we suggest a modification of the shell-
model expression for the high-frequency dielectric
constant in terms of an effective excited state of
the negative ion in the crystal. Finally, we cal-
culate the pressure dependence of the high-fre-
quency dielectric constant in this new model. It is
found that the new-model predictions compare
quite well with experiment.

In Sec. II we briefly describe the existing models
and the method of calculation. In Sec. III we de-
velop the modification of the shell model. In Sec.
IV we discuss the results of calculations accord-
ing to all the models and compare them with ex-
periment.

II. DIFFERENT MODELS AND METHOD OF CALCULATION

A. Clausius-Mossotti model

The classical model envisaged by the Clausius-
Mossotti relation' pictures an ionic crystal as an
assembly of polarizable units held together by
electrical forces, and allows one to write the total
polarizability of the system as the sum of the in-
dividual polarizabilities. Including local-field cor-
rections the expression for the Clausius-Mossotti
relation is
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e„=[1+(Bm/3v)n, ]j[l —(4v/3v)n, ],
where n, = n, + n, the sum of the (+) and (-) ion
polarizabilities, c„ is the high-frequency dielectric
constant, . and v is the volume per unit cell. As-
suming the z's to be the property of an ion and
constant, the pressure dependence of e„ is entire-
ly due to the change of the lattice constant with
pressure, .i.e.,

=de~/dP . (2)

B. Ruffa's model

Buffa'. has attempted to evaluate all the different
factors that alter the value of a free-ion polariza-
bility and has estimated the in-crystal polariza-
bilities from the relations

n 8
= n fEp /(E p

—n e /'r ) (3)

n, =16nq(E~)'/[4b, —e'/r+3(Ep -E)]',
where

6 =2[e(Ve —V~)]+E —I+@~ .
(The notation is the same as that of Ruffa. ') Since
z,' and z, are consistent with the Clausius-
Mossotti relation we use them directly in Eq. (1)
to get the pressure derivative c„'.

C. Penn's model

Starting from the dielectric function and using
some suitable assumptions in the framework of
the random-phase approximation, Penn' has sug-
gested the following formula relating the high-fre-
quency dielectric constant, the plasma frequency, ,

and an average band-gap energy:

and Q is a constant very close to unity" for all .

crystals. E„, C, and Z,„are the homopolar,
heteropolar, and average energy gaps, and f; is
the ionicity. d is the nearest-neighbor distance
and r, equals —,'d; exp( —k,r, ) is the Thomas-Fermi
screening factor; ~Z equals 6, the number of val-
ence electrons for the crystals under considera-
tion. +~ is the plasma frequency and N is the num-
ber of valence electrons per unit volume.

First of all we check the Penn's formula by cal-
culating the plasma frequencies predicted by the
model and comparing them with the observed ones.
(See Table I.) It is found that the mean deviation
for the 16 alkali halides is about 10%-12% with a
maximum of 30%. This is a clear indication of the
fact that the effective number of electrons that
take part in the plasma oscillation is not equal to
the number of the valence electrons. It will be
somewhat smaller and will be different in differ-
ent crystals.

Next, in order to calculate the pressure depen-
dence of e„, we recast formula (6) with a slight
modification. We consider the crystals to be fully
ionic in conformity with other model calculations
and also in order to keep the value of the cohesive
energy of the crystals unchanged. As we intend to
calculate the pressure dependence of e„, we ex-
tract the implicit lattice constant (d) dependence
of the different terms on the right-hand side of
Eq. (6). Assuming &a~~ 1/d', we write Eq. (6) in
the following form:

e„=I (a+'/r )expp(2u, r.), t, =W/~~,

(where A' and A, constants independent of d), which
leads to the relation

d&„ 6J'p

dP dP
"=(e„—l)(u, 4/rp) —',—

e„=1+(k(u~/E,„)'Q . (6)

E,y =E„+C' )

E„=(3974/d'4)eV, .
C = 14.4b exp( k,r, )&Z/r, , -
f, = C'/(E'„+ C'),
te&=4vNe /m,

(6a)

Although this expression was originally sug-
gested to describe the dielectric behavior of most-
ly covalent crystals, VanVechten and Levine"
have applied it to discuss the dielectric properties
of insulators. This formula, it is obvious, is
drastically different in both form and content from
the previous ones. The concept of individual ionic
polarizability is totally absent in this picture. The
different quantities occurring on the right-hand
side of Eq. (6) are defined as follows:

Crystal

LiF
LiCl
LiBr
LiI
NaF
NaCl
NaBr
NaI
KF
KCl
KBr
Kl
RbF
RbC1.
RbBr
BbI

~See Ref. 12.

22, 73
16.18
10.97
13.15
17.97
13,67
12,84
1i..48
14.38
11.45
10.84
9.92

13.49
10.84
10.47
9.56

25.3
15.8
15.7

13„7-14.7

15.0-15.5
13,4-14.3
12.3—13.3

13.9
13.2—13.5

11.8
13.0

12.9—13.9
12.3
11.1

TABLE I. I'lasma frequencies in the I'enn model.
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where the only unknown constant, Q„ is taken
from Levine. The results of the calculation ac-
cording to Eq. (8) are given in Table II.

D. Pantelides's model

Pantelides ha, s recently asserted that it is only
the interionic excitations that provide the mech-
anism which actually determiries the value of c„
in insulators. Quantum mechanically we can write
for the high-frequency dielectric constant,

This expression clearly shows that the pressure
dependence of e„ for all crystals should turn out
to be negative, while all the experimental values
are positive, as can be seen from the results
given in Table II.

The reason for this is not difficult to see.. In the
Pantelides relation (10) the assumption that A is
independent of d leads to this absurdity. The ap-
proximate d dependence of A. can be found out if
we compare Eq. (10) with Eq. (1). Both equations
are empirically valid. Hence upon comparison
we find

(9)

where
~ j) are the occupied one-electron states and

~j') are the excited states in the crystal. Here
Pantelides assumes that the excitation energies
obey a simple power-law dependence on d, and
hence we can write

2II(n, +n )
d'[d' ——',II(n, +n )]

8II' o.,n
(12a)

e„=1+A.d (10)

dP dP

Pantelides, of course, advances some semiquali-
tative arguments in favor of Eq. (10) to point out
that the constant A. depends only on the cation in a
crystal, and with a set of four values of A for Li,
Na, K, and Rb he determines the 16 high-frequen-
cy dielectric constants of the alkali halides by
taking S =8. The empirical relation (10) is really
striking. It is, however, to be noted that the ex-
pression (9) has been derived neglecting the effect
of exchange and overlap of neighboring ions and
also the local-field effect. In order to calculate
the pressure dependence of e within this model
we write, using Eq. (10),

It is further noted that the value of A calculated
from Eq. (12) compares quite well with that de-
duced from Eq. (10). Hence there is no contra-
diction between the two relations. It is also noted
that the first term of Eq. (12a) is a constant in a
sequence where the cation is fixed and the anion
changes from F to I . In the Na halides for ex-
ample, the quantities calculated from Eq. (12a) for
NaF, NaCl, NaBr, and NaI are 0.03V, 0.038,
0.039, and 0.038 and the constancy changes drast-
ically if we alter the cation. This is what nearly
prompts one to argue that it is the anion states of
a crystal which are strongly controlled by the ca-
tion, which is further strengthened by the fact that
no such effect is observed with the third term of
Eq. (12a). Although the Pantelides relation pre-

TABLE II. Pressure dependence of & in different mode/s (x10 ' ).

Crystal Claus ius-Mossotti Buffa Shell model Penn Pantelides Present Expt

KC1
KBr
KI
NaC1
NaBr
BbCI
BbBr
BbI

7.11
11.24
1 8.82
6.79

10.85
8.90

12.40
1 9.48

6.05
9.45

1 5.34
5.14
8.12
7.97

10.82
16.38

6.18

13.33
4.30
7.48
8, 50

10.8
15.77

1.75
2.22
3.06
1.65
2.39
1.84
2.37
3.10

—5.46
—7.39

-11.53
—4.63
—6.59
-6.12
-8.35

-12.72

5.32
7.19
12.20
3.49
6.51
7.48

10.00
14.l. 8

5.25"
7.52"

12.13"
3.56'
5.08
6 37"
9.20"

13 0

The overlap potential and other parameters for different crystals are taken from Befs.
15—17.

"See Ref. 13.
~ For NaBr the value was estimated by Fontella et al. ~3 assuming the fractional change to be

the same in going from NaCI. to NaBr as from KCI to KBr.
dSee Ref. 14.

For BbI the value was estimated by Achar et &/. ' from the pressure coefficients of other
alkali halides by assuming the additivity rule for the electron polar izabilities and their pres-
sure dependences.
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diets the wrong sign for the pressure dependence
of e„, we do not think that the empirical relation
is fortuitous. It deserves careful consideration on
the background of a more fundamental calculation.

E. Shell model

III. SHELL MODEL WITH AN EFFECTIVE EXCITED
STATE OF THE ANION IN A CRYSTAL

That the free-ion polarizability value will change
when the ion is transferred to a crystal is well
known both from empirical evidences and theo-
retical considerations. The works of Buffa, '
Chakravarti, et al. ,

' and I edovskaya" clearly point
out that there are three effects which can be dis-
tinctly discerned: (a) the overlap effect due to the
surrounding ions, (b) the effect of the electric
field produced by the ions in the crystal, and (c)
the effect due to generation of new excited states
of the negative ion when the outermost electron of
the ion becomes associated with a positive ion
center. The last mentioned effect is essentially
important because such excited states do not exist
for a free ion and a qualitatively different mech-
anism is involved in the generation process of
these states which are interionic in character.

In the shell model the free-ion polarizability is
given by

n, =y e. /K. (14)

Now, when this ion is transferred to the lattice the
shell model considers only the effect of overlap

The shell-model dielectric theory is quite well
known and has been discussed by several authors. '
In the shell model each ion (i) is divided into two

parts: one consisting of the nucleus and the core
charges z;+y&, where z; is the total ionic charge,
and the other an electronic shell of charge -y;
held to the core by a spring constant, k;. We con-
sider the case where only the negative ion is as-
sumed to be polarizable, while the positive ion is
rigid (simple shell model). In this description it
can be shown that the electronic polarizability per
unit cell of the crystal is given by

(13)

where, 8, = 2P" +4/'/d and P is the short-range
overlap potential given by P = b exp( —d/p). It is
well known that Eq. (13) is consistent with the
Clausius-Mossotti relation. Hence it can be di-
rectly substituted in Eq. (1) to give the pressure
dependence of e„. In the shell model, y and k are
assumed to be independent of d. The calculated
values of the pressure dependence are given in
Table II.

due to surrounding ions through a change of & re-
sulting in the relation given earlier [Eq. (13)J:

n, M „„„„=y'e'/K', ~he~e K' =K+A (15)

It is to be noted that the shell model completely
ignores the other two effects mentioned above.
Buffa tried to consider the last two effects, but as
we have already noted, Buffa's method suffers
from various arbitrary assumptions and his treat-
ment of the overlap effect is also inadequate. We
want to incorporate the essence of the last two ef-
fects within the formulation of the shell model.

In order to achieve this, we consider the effects
in turn. Expression (15) is strictly valid for a
crystal where the net electric field at the ion site
is zero, e,g. , a rare-gas crystal. In the case of
ionic crystals, there is an electric field both at the
cation and at the anion sites. Buffa, ' and more re-
cently Chakrabarti et al. ,

' have shown that the ef-
fect of the electric field on the polarizability is to
change the effective excited state by a factor ac-
cording to the following expression. The details
are given in their works. We now simply switch
on the electric field at the ionic sites, which alters
expression (15) as follows:

&SMi crystal

(I + b n~e'/Z p d)' (15)

n~e /d
(18)

for both cations and anions. [The extreme right-
hand-side value follows from Eq. (IV), while the
middle one is evaluated from experimental quan-

(the negative and positive signs refer to the cation
and anion poiarizabilities), where n~ is the Made-
lung constant, d is the nearest-neighbor separa-
tion, E~ is the mean excitation energy, and b is a
constant. The value of b predicted from theory
turns out to be same for both positive and negative
ions and is equal to 1. Now, we shall advance con-
clusive experimental evidence to show that the the-
oretical prediction is quite justified for positive
ions, but is found to be drastically different for the
negative ion.

Since the main effect of the electric field is to
alter the effective excitation energy of the free ion,
Eq. (16) may be interpreted by assuming the ef-
fective excitation energy in the crystal to be (see
Chakrabarty et aI.')

E =Zq+ In~e'/d .
To check this relation we assume E~ to be nearly
equal to the ionization energy for free cations and
to the electron affinity for free anions, while F.
will be nearly equal to the threshold energy for the
corresponding states in the crystal. In this case
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tities and is listed in Table III; E,h is the thresh-
old energy for the outermost electron of anion in
the crystal. ]

In Table III we calculate the ratio 5 for both ions
in the case of crystals for which all the relevant
data are available. Experimental results clearly
indicate that for the positive ions the average val-
ue for the eight. crystals is 1.4, which is quite
close to the theoretically predicted one. For the
negative ions, however, the value of b is found to
be two to three times less than the theoretical pre-
diction. This fact may be understood in the follow-
ing way. The electric field at the lattice point
where the ion is placed is not produced by' the point
charges but by the neighboring ions. The negative
field produced by the anions at cation centers al-
ters the polarizability of the cations in accordance
with the above theoretical considerations. How-
ever, the situation is entirely different for anions.
The presence of a positive ion in the vicinity of a
negative ion in addition to producing the electric
field generates a set of additional excited states
that contribute to the polarizability of the negative
ion. Hence, we maintain that this deviation in the
value of b for negative ions is due to the fact that
the outermost valence p electrons on anions polar-
ize through the generation of new excited states
formed from the cation orbitals, while there is no
such effect for the cations. These interionic ex-
citations may be thought to simulate an effective
excited state for the anion in a crystal, which in
turn modulates the electric field at the anion site
through the factor 5 that ultimately alters its po-
larizability. It is well known that the effect is
very difficult to estimate theoretically; on the
other hand, the parameter 5 contains all the nec-
essary information about the effective excited
state. Consequently, if we use the experimental
value of 6, we may assume that the essential part
of the third effect will be properly included. Next,
we shall conclude by subjecting the new model to

TABLE III. Estimated values of the parameter b for
ions in different crystals, from Eq. {17).

the crucial test Of predicting the pressure depen-
dence of e that will finally establish the validity
of our assumption. The final expression for the
polarizability of the anion in crystal in the new
model is given by

(19)

& crystal 3 e /~ 3 e Ps 0/~

—y'e'2b aste'/kE, d .. (20)

Equation (20) clearly shows that there are three
different terms; the first one may be identified as
the free-ion polarizability, the second is the con-
tribution to the polarizability due to overlap, and
the third represents the joint effect of the electric
field and the effective excited state. The expres-
sion clearly shows that neither of the two extreme
pictures is true; that is, that the polarizability in
a crystal is completely due to intraionic excita-
tions nor that it may be attributed only to interonic
excitations. Bather, the present analysis favors
an intermediate picture. The first term is solely
due to intraionic excitation. The last two terms
are predominantly determined by interionic ex- .

cita.tions.
Though our calculations have been confined to a

negative-ion polarizable shell model, it is of some
interest to see the behavior of a positive ion when
transferred to a lattice. Following the previous
analysis, we write down the corresponding expres-

Using this expression in Eq. (1) we calculate the
pressure dependence of c„, and the results are
given in Table IV. Some qualitative justification of
Elis. (16) and (19) is discussed in the Appendix.
Since we have not used the Tessman-Kahn-Shockley
(TKS) polarizability value, it is also instructive to
compute the value of 6o./o. in the present model.
The values for the anions are given in Table IV,
which shows, as expected, a variation of 6n/ct for
the same ion in different crystals.

Now, in order to look into Eq. (19), let us expand
it and observe the different leading terms:

Crystal

KCl
KBr
KI
NaCl.
NaBr
BbCl
BbBr
BbI

Cation

1.2
1.4
1,6
1.2
1.3
1.5
1.6
1.8

Anion

0.5177
0.544
0.395
0.529
0.580
0.602
0.412
0.567

Crystal «/& Crystal «/& Ion (~ ~/&) TKS

KCl
KBr
KI
Na Cl.

0.28
0.29
0,24
0.23

NaBr
RbCl
BbBr
RbI

0.32 Cl
0.27 Br
0.22 I
0.27

0.23
0.14
0.10

TABLE IV. «/& value for the anion in the present
calculation.

The threshold energies are taken from Bef. 12, the
ionization energy and the electron-affinity and mean-
excitation-energy estimates are from Ref. 2.

Evaluated from the Pauling free-ion and Tessman-
Kahn-Shockley polar izabilities which are taken from Ref.
21. This is included for comparison with the present
values.
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sion for the cation:

y2 82 y282 2g 82 y2e2
crystal j y2 0

+ + p+ +
(21)

The different terms in this equation may be inter-
preted in a similar way. It has been long known
from empirical evidence' and theory" that the posi-
tive-ion polarizability increases when the ion is in
a lattice, while the negative-ion polarizability de-
creases under similar conditions. It is satisfying
to note that both Eqs. (21) and (20) conform to these
desired requirements, and it is brought about
jointly by the electric field and the effective ex-
cited state that the polarizability increase in the
case of a positive ion is more than the decrease
for the negative ion owing to the fact that b/Z~
& b„/E~.

Equations (19)-(21)have also a natural inter-
pretation when viewed on the. background of the
shell-model theory. The overlap interaction
causes a change in the spring constant by replacing
0 by Q+Pp while the electric field and the effective
excited state induce a change in the shel. l charge
by replacing y by

y/[1+(b/&, )(o. e'/d)] .
In the simple shell model y is treated as a con-
stant, while in the new model it is a variable de-
pending upon the nearest-neighbor distance. How-
ever, it should be stressed that the present vari-
able-charge shell model is essentially different in
form and physical content from that introduced by
Fe].dkamp 18

salts the disagreement is slightly larger. This
may partly be attributed to the neglect of the posi-
tive-ion polarizability which is rather large in
these cases. Similarly, the experimental uncer-
tainty in these cases is also large. For the NaBr
crystal the estimated experimental value is uncer-
tain also since it is an extrapolated one. We have
not been able to present any calculation for the cry-
stals containing F ions although satisfactory mea-
surements of e„' are available for some of them.
This is because experimental threshold energies
are not available for the F ion.

Next we discuss some of the implications of the
new model introduced in this work. It is theoret-
ically satisfying to note that the present model in
a way incorporates the effects of the electric field
and of the effective excited state of the negative
ion in the shell-model framework, which is totally
neglected in the conventional shell model. We
have already noted in Sec. III that this is equiva-
lent to making the shell charge a function of the
interionic separation. As a consequence this will
affect in turn the phonon frequencies of the solid.
In a forthcoming communication we shall investi-
gate the lattice dynamics and photoelasticity of
crystals within this new model.

Finally we would like to point out that, although
w0 have not been able to resolve the fundamental
problem of the polarization mechanism in insula-
tors mentioned in the Introduction, the present
phenomenological mode1 advances a rough idea
about the two types of excitation to which the elec-
tronic polarization in a crystal is due.

IV. RESULTS AND DISCUSSION APPENDIX

One of the major aims of the present investigation
is to demonstrate empirically that the various di-
electric models that otherwise give a more or less
correct description of the dielectric behavior of
ionic solids lead to quite divergent results when
predicting the pressure dependence of the high-
frequency dielectric constant. Table II clearly
shows this. This is because the difference in the
fine points of the physical content between the mod-
els becomes important and magnified in this cal-
culation. The results also indicate a general trend,
that the predicted values of e„' gradually become
closer to experiment going from the Clausius-
Mossotti, the Buffa, to the shell model, all being
greater than observation, while the value due to
Penn is definitely less than observation in all
cases. The results of the Pantelides mode1,
however, have the incorrect sign. The present
calculations show distinct improvement over all the
existing models. Still, in all cases the agreement
is not equally satisfactory. For the three rubidium

In writing the final expression for the effective
mean excitation energy in Eq. (16) for an anion in
the crystal, we consider separately two distinct
effects, namely, that of the electric field and of
the additional excited states and then we superim-
pose them. In Ref. 5 it has been shown that for
anions the effect of the electric field of the sur-
rounding ions cannot be treated by a perturbation
method with the free ions as the starting point.
On the other hand, if we think that the negative
ions are placed in a hypothetical lattice of very
large lattice constant, perturbation theory will be
again applicable and the effect of the electric field
may be thought of as producing a change in the ef-
fective excitation energy given by

Z =Ep (1 + 1(ye /E p d ) .
In this expression we have totally neglected the
effect of the new states of the anion associated
with the positive-ion centers. The assumption of
large lattice separation justifies the neglect of the
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overlap between these states and the ground-state
wave functions of the anion. At the next stage the
ions are brought closer to a distance of the order
of the real lattice separation and consequently,
due to appreciable overlap, the new states be-
come significant and their effect is superposed on
the mean excitation energy given above. To
achieve this let us consider the observation of
Pantelides and Harrison" "who have noted that,
for a variet. y of substances including alkali halides,
the various matrix elements connecting states lo-
cated at two different nearest-neighbor ions obey
an inverse d. dependence. We assign the entire d
dependence to the corresponding mean excitation
energy which itself is inversely related to d. So
we assume the mean excitation energy due to the
new states to have a form -const/d, the negative
sign indicating the fact that these states will in-
crease the polarizability by decreasing the total
mean excitation energy. It may, of course, so

happen that the more general form of the expres-
sion should be -const/d", where n is a suitable
number. However, for simplicity and to avoid the
introduction of an additional parameter, we keep
the value of n equal to unity. Finally, the two ef-
fects combined together give an effective mean ex-
citation energy

E =E,(1+bee'/EI, d),
where

b = 1 —aE~/ne' .

It is presumed that the major part of the effect of
the new states is included in the second term in
b, but it may be possible that the first term might
be affected as well which anyhow does not matter
since we parametrize the entire b (its method of
evaluation from experiment is discussed in the
text).
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