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Theory of the quadrupolar deformability in silver halides
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The tight-binding method of Varma and Weber is used to calculate phonon dispersion curves

in silver halides. For this purpose the method is extended to include crystal-field matrix ele-

ments in the electron-phonon coupling. It is shown that the quadrupolar deformability of Ag+

ions, as proposed in the model of Fischer et al. , arises indeed from virtual atomic Ag d-s exci-

tations induced by displacements of the neighboring halide-ion potentials. In the limit of flat

bands there is an exact correspondence of model and microscopic quadrupolar terms. More-

over, realistic band-structure calculations do not significantly alter the above results. We use

self-consistent ionic wave functions to obtain numerical estimates for the absolute magnitude of
the quadrupolar deformability in fcc AgC1, AgBr, and Agl. With these numbers we get good

agreement with the phonon dispersion curves, using an otherwise simple shell model. For AgI

we predict with reasonable short-range parameters that the crystal is unstable, thus suggesting a

reason for the different structure of Agl at atmospheric pressure.

I. INTRODUCTION

It has been known for some time that the phonon
dispersion curves of cubic silver halides show some
unusual features, most notably a lowering of the en-
ergies of some optic phonons (as compared to alkali

halides). This effect is particularly dramatic at the L

point of the Brillouin zpne, where the TO phonon
has a very low energy. . Fischer et al. ' and Fischer
have been able to fit this feature with a shell model
into which they introduced additionally a quadrupolar
deformability at the Ag+ ion. They argued that this
deformability is important in the cubic silver halides
due to virtual d-s excitations at the Ag+ ions. These
should be made possible by the relatively small band

gap between occupied valence bands —having appreci-
able Ag-d character —and the lowest empty conduc-
tion band of predominatly Ag-s character.

The model has been quite successful. It has
predicted the exchange of wave vectors between the
TO and TA phonons at the L point in AgBr, which
has been verified experimentally, 3 and it has led to a

good overall fit of the phonon dispersion curves in
AgC1" and AgBr. ' The idea of the quadrupolar
deformability as an intrinsic property of the coupling
of the silver ion to its neighbors has also been
applied to get an explanation of the low-activation

energy for silver motion in AgC1 and AgBr, 4 and the
unusual symmetry of Ag+ defects in RbCI and
RbBr.5

First-principles investigations of this problem have
not been carried out so far. The closest to it comes
from a paper by Zeyher. ' He has presented a micro-
scopic theory of the lattice dynamics of alkali halides
and shown that in the limit of flat bands, i.e., a large

electronic band gap compared to the bandwidth, his
expressions for the contribution of the longitudinal

degrees of freedom could be arranged to yield dipo-

lar, breathing-like, and quadrupolar deformations of
the electronic charge. However, for alkali halides the
quadrupolar deformability turned out to be negligibly
small compared to the others.

In this paper we give an ah initio derivation of the
quadrupolar deformability of Ag+ in the cubic Ag
halides starting from a more general approach which

allows us to include the dispersion of the electronic
bands, namely, the formalism of Varma and Weber
(&W).' The latter uses a nonorthogonal tight-binding
(NTB) representation of the band structure and gives
expressions for the change of the one-electron ener-
gies due to the ionic displacements by a phonon in

terms of derivatives of the energy transfer and over-

lap matrix elements.
In Sec, II, this treatment is briefly reviewed and

generalized to include crystal-field terms. In Sec. III
we show analytically how s-d crystal-field matrix ele-
ments (i.e., matrix elements between s and d wave

functions on the silver ion with the potential of the
neighboring halogen ions) reduce, in the limit of flat

bands, to the quadrupole term with Fg symmetry
(from the longitudinal coupling, as in Ref. 6) and a

new term with T2g symmetry from the transverse
part. A simple expression for the prefactor is ob-
tained. In Sec. IV we compare the numerical results
from the full expression of Sec. II with the analytical
formulas. Finally in Sec. V we apply our results to
the lattice dynamics of fcc silver halides and discuss
their implications for the high ionic conductivity of
these materials. The conclusions are summarized in

Sec. VI.
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II. OUTLINE OF OUR APPROACH

As has been mentioned in the introduction we are
going to follow the formalism of Varma and Weber. '
This theory has been developed for applications in
transition metals7 9 and their compounds'0 (TMC).
In these studies it becomes evident that all the sharp
features in the dispersion curves of these materials
are obtained by considering only the change of the
total one-electron energy of the crystal with ionic dis-
placements. The electronic band structure is
described in a nonorthogonal tight-binding scheme as
a natural formalism for transition metals.

Compared to the conventional theory of lattice
dynamics, " the approach of Varma and Weber em-
ploys a different grouping of the various contribu-
tions to the dynamical matrix. The first term is the
change of the sum of all one-electron energies up to
second order in displacements, the other (Do in the
VW notation) is the difference of the direct ion-ion
and electron-electron interaction (the latter being
double counted i'n the one-electron energies). The
first contribution is again divided in two parts. D&

arises from changes of the one-electron energies to
first order in perturbation theory. The other term D2
is second order in perturbation theory and involves
tight-binding matrix elements linear in the ionic dis-

placements. In elemental crystals, e.g. , transition
metals like Nb, Mo, it can be shown that Do and DI
lead essentially only to short-range force constants
whereas D2 is found to be the source of all sharp
structure in the phonon dispersion curves of these
materials. In compounds where charge transfer from
one to the other atom occurs, Do and DI may also
give rise to long-range forces of Coulombic type. But
again, in the case of transition-metal carbides and ni-

trides, the sharp structure in the acoustic phonons
arises from D2.

Although it is possible in principle to calculate all

terms in the VW formalism, the interest has focused
on calculating D2, Do and DI have been fitted by
short-range force constants. In this paper we will fol-
low this line and will investigate only D2 microscopi-
cally. In an obvious generalization of the expression
of VW this is given by

D, () a, Z'P~q) =— X
k, y, y' ~kg, ~k'P'
k' k+q

phonon. The sum goes over all scattering processes
from occupied electronic states to unoccupied states.
The virtual d-s excitations which were invoked by
Fischer et al. ' are contained as a special case in Eq.
(1), as will be shown later. But Eq. (1) allows us to
study the electronic contributions to the dynamical
matrix in a more general way, in particular, we can
see what further approximations have to be made to
obtain the quadrupolar deformability and how good
these approximations are. This will be done in detail
in Secs. III—VI. Here we are going to derive expres-
sions for the electron-phonon coupling matrix g.
This requires some modifications and generalizations
compared to TMC.

(i) We now deal with a diatomic compound which
is clearly ionic in character; i.e., the charge transfer
from the silver to. the halide leads to long-range
Coulomb forces, modifying all contributions to the
dynamical matrix. The parts not explicitly included
in D2 are described within a normal-shell model.

(ii) Unlike the situation in TMC, where the impor-
tant contributions to D2 come from excitations within
the d bands close to the Fermi surface, in silver
halides the contributions arise from scattering from
the valence to the conduction band.

(iii) Due to the Coulomb potentials of all the ions
"crystal-field terms" (coupling between wave func-
tions on the same ion, induced by the potential of the
neighbors) become important.

We now sketch the necessary additions and refer to
the Refs. 8—1.0 for an extensive derivation of the for-
malism.

D2 as given in Eq. (1) requires the knowledge of
the equilibrium one-electron energies which are
found as solutions of the nonorthogonal tight-binding
(NTB) Hamiltonian

H'U=S '~ HS '~ U=EU

where E is the diagonal matrix of eigenvalues Ek„. U
is the appropriate unitary transformation for diagonal-
izing the NTB Hamiltonian H'. The matrix

H(Km, K'm'~ k) = iV '
Q H(i Km, I'K'm')

&& exp(ikR (IK, I'K')) (3)

is the Fourier transform of the real-space tight-
binding (hopping) matrix elements

X gk p„k'p, 'gk'p', k p, H(I Km, i'K'm') =
&~~ &

"(iKm) H@(l'K m ) d3r (4)

Here Fk„ is the energy of an electron with wave vec-
tor k in the band p, and fq„ is the occupation number
for this state. gk"„k„ is the electron-phonon matrix
element, giving the coupligg between the electronic
states kg, and k'p. ' induced by a displacernent of'the
ion A. in the direction e. q is the wave vector of the

of the Hamiltonian H between the ionic wave func-
tion of type m centered on the ion ~ in unit cell l and
the wave function m' on ion K' in cell l'. S is the
corresponding matrix with H replaced by 1 (overlap
matrix). These matrix elements are listed, e.g. , by
Slater and Koster. "R (lK, l'K') is the distance vector
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between the sites (/K) and (I'K'). For the electron-
phonon matrix g we need thc derivatives of the Ham-
iltonian matrix Hand the overlap matrix S. %e use
a two-center approximation. Then we have to distin-
guish two cases in Eq. (4).

(a) The sites of the wave functions (IK) & (I'k').

The potential part of the Hamiltonian must then be
located on (/x} or (I'x'). These are the normal "hop-
ping" matrix elements, which enter into the disper-
'sion of the electronic bands. For more than one par-
ticle per unit cell, their contribution to the electron-
phonon matrix reads

gk"„k„= g A'(Km (kp) [y (Km, K'm')k')5„„—y (Km, K m ) )k)5 'g]Q (K m (k p )
K,m

K,m

A is related to Uby

g—1/2 U

and the matrix y is defined as

(Km, xm'Ik) = N ' g ['7 H(I Km, /'K'm') —«'7 5 (IKm, /'x'm')] exp(ikR (IK, I'K'))

with «= , (Ek«+F—k«). '7 Hand '7 5 are the real-

space derivatives of the tight-binding matrix ele-
ments.

(b) "Crystal-field" matrix elements have both orbi-
tals at the same atom [(/K) = (I'~')], but the potential
is due, to a neighboring site. In band-structure calcu-
lations these terms are not immediately evident, as
they do not give any dispersion to the bands. In
many cases they cancel when summed over a shell of
neighbors. They only show up in the splitting of
atomic energies in the crystal field, which, in the case
of cubic symmetry, only affects orbitals with quan-
tum number I ~ 2, but not s or p orbitals.

Let us denote a crystal-field matrix element by

(ii) «4 K . For the case that the wave function is at
the sublattice K atoms and the potential on K', wc get

gk"„k„=X A ' (~m
~
k p,)

N, IN

x C (Km, Km', K'i0)A (Km'ik'p. '), (l l)

g„"„.„„=—g W'(Kmlkp, )
Nl, m

x C (xm, xm', ~'~q)A (km'~k'p, ')

The contributions from different crystal-field terms
are additive in g, which means that there can be in-
terference terms in Dq.

C(I Km, I Km;I K }= Jf @ (IKm) V(I K ) @(IKm ) d r

(8)

where V(l'K') is the potential of the ion (I'K'). We
then define

C~(xm, Km', ~'~q) =N ' X& C(I m, /xxm', I'K')

x exp(iqR (IK, I'K')) . (9)

Note that this is independent of the electronic wave
vector k, since the two electronic wave functions are
on the same site (/x) (for the same reason they do
not contribute to the electronic dispersion). In the
contributions to g, we have to distinguish the cases:
(i) ~ = K', i.e., wave function and potential are at the
same sublattice atoms (but of course not at the same
site). Here we get

III. ANALYTICAL TREATMENT FOR FLAT BANDS

In the limit of flat bands, all off-diagonal Hamil-
tonian and overlap matrix eiements in Eq. (2) are ig-

nored. Their derivatives are also neglected and we
retain only nearest-neighbor crystal-field terms.
Then the contributions to g from Eqs. (S) and (10)
vanish and the only nonvanishing terms arise from
Eq. (11). If we now assume that the band structure
can bc represented by filled Cl-p and Ag-d valence
bands and an empty Ag-s conduction band, then the
only crystal-field matrix elements connecting a filled
with an empty band are matrix elements between
Ag-d and Ag-s wave functions (x =1) with the poten-
tial of the neighboring Cl ion (K'=2). Equation
(11) then becomes

g„'„k„=$ 3 "(Imikp. )C (Im, lm', 2i0)
m, m'

gk, k „=g & '(~m (kp) [C.(Km. Km', KI0)
m, Nl

C (Km, Km, K
~
q)]A (Km

~
k'y, ') . (10)

x A (lm'Ik'p, ') =0

g„'„„„=—X 3'(Imikp, )C (lm, lm', 2iq)
m, m

(12)

x A (Im'~k'p, ') (13)

where m and m' denote the s or a d orbital on theThe contribution from the other sublattices vanishes.
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silver ion, respectively. In Eq. (12) we have used the
fact that a matrix element between s and d wave
functions is even; its derivative, therefore, is odd.
Then we see immediately from Eq. (I) that the new
contribution to the dynamical matrix is nonvanishing
only in the Cl-Cl submatrix.

Using the fact that the potential has s-like sym-
metry, the angular dependence of the crystal-field
matrix elements can be taken directly from Slater and
Koster. " Their derivatives can be evaluated analyti-
cally. Substituting their form into Eq. (13) and sum-
ming over all d orbitals in (m, m') finally gives

1

2 sin'x —sinx siny

d D (Cl—CI) =—— —sinx siny 2 sin y
4(sd o')'
Es —E

,
—sinx sinz —siny sinz

Slnx Slnz
—siny sinz-

2sin z

sin2y +sin z
24 (sd o.)2

slnx slnya2 Es —Er
sinxsinz

sinx siny

sin x +sin z

siny sinz

sinx sinz

siny sinz

sin'x +sin y,

Here, x =q„a, y =q~a, z =q, a, (sdo.) is the s-d
crystal-field matrix element, and (sdo') is its radial
derivative, a is the nearest-neighbor separation, E, is

the energy of the Ag-s band, EE is the energy of the

E~ part, and ET is the energy of the T2g part of the
Ag-d band. The factors sinx, etc. , are a result of sum-
ming over the exp(iqR (l~, l'K')) because of the odd
symmetry of the derivatives of the s-d matrix ele-
ments in Eq. (9).

The first part of Eq. (14) has exactly the form of
the quadrupolar deformability considered by Fischer
et aI. ' and Zeyher. It arises from the longitudinal
coupling to the nearest neighbors, as is manifest by
the fact that it is related to the radial derivative of the
matrix element. The second term has T2g symmetry
and arises from the transverse coupling —it involves
the transverse derivatives of the matrix elements.
This term has not been included in the treatment by
Zeyher. In the model of Fischer et al. ' a term
with Tlg symmetry has been considered instead,
which differs only in the sign of the off-diagonal
terms. However, . we find no justification for it in this
calculation.

IV. NUMERICAL CALCULATIONS

First of all we study the effect of a realistic band
structure on our results. To do this we use a
nonorthogonal tight-binding fit to the pseudopotential
band structure of Wang et a/. "for AgC1, based on s
and d wave functions on the silver and p wave func-
tion on the chlorine ion allowing nearest-neighbor
Ag-C1, Ag-Ag, and Cl-Cl interactions. The overaJ1
fits were very good, differing by at most 0.01 Ry for
the valence band and 0.08 Ry for the conduction
band. For comparison we also used tight-binding
band structures of Smith' for AgC1 and AgI in our
calculation.

Ignoring for the moment all derivatives of matrix
elements except for the sdo- crystal-field matrix ele-
ments we evaluate the k summations for the band

TABLE I. Effective energy denominators obtained from
tight-binding band structure (Ry),

&'s —&T

AgC1 (Wang et al.)
AgC1 (Smith)
Agl (Smith) .

0.667
0.642
0.617

0.656
0.636
0.643

r

structures mentioned using a program due to I3ia-
mond' for a large number of q points throughout the
Brillouin zone. For all three band structures the
results differ by less than 2% from the analytical
form (14). The effective energy denominators are
given in Table I. They are not very different for the
Eg and T2g case and the numbers of the two different
band structures for AgC1 agree to within 4%. Their
magnitude corresponds to a medium separation
between valence and conduction band, as of course it
should be.

The small departure from the flat-band limit can be
understood by bearing in mind that the matrix ele-
ments are independent of the electronic wave vector
k and that it only enters via the energy denominator.
Since we are dealing with an insulator however, the
variation in the energy denominator between dif-
ferent k-values is about a factor 2 only (contrary to
metals, where scattering near the Fermi surface dom-
inates). And even this small variation tends to be
averaged out by the summation over k vectors,
where particularly small energy denominators also get
a small weight, because generally they are small only
over a fraction of the Brillouin zone.

Thus as far as the q dependence of the extra term
in the dynamical matrix is concerned, the flat-band
approximation gives very good results; the band-
structure information is only necessary to get the
correct value for the effective-energy denominator.



20 THEORY OF THE QUADRUPOLAR DEFORMABILITY IN SILVER. . . 1673

Next we have to test whether the sd crystal-field
matrix element really gives an important contribution
to the dynamical matrix. To this end we use reason-
able estimates for all the radial derivatives of matrix
elements (the transverse parts are already determined
by the matrix elements themselves, which in turn are
given by the band structure). In this way we get the
following results:

(a) pp, dd, ss, and pd matrix elements do not con-
tribute much, since there is very little p and d admix-
ture to the conduction band 'and s admixture to the
valence band (maximally 15% and even that only
over a small region of the Brillouin zone). So their
contribution is suppressed by a factor well above 10.
Furthermore pp, dd, and ss matrix elements are small
anyway, since they connect next-nearest neighbors
only.

(b) sd normal matrix elements are small (smaller
by a factor of 40 than pdo. ), since they connect
next-nearest neighbors only. The overall contribu-
tion of (a) and (b) together was found to be about
10'/o of the crystal-field contribution.

(c) sp matrix elements are large and they contri-
bute directly to the scattering, since, to a first approx-
imation, s is empty and p is full. However, they have
dipole symmetry. In our treatment above we have
ignored both the short-range and the long-range
Coulombic terms (which of course are important in
ionic crystals, as has been shown by the success of
the shell models and by direct expansion of the in-
teraction between the ions). So to be consistent with
the other approximations, we have included these di-

pole effects in the simple-shell model which should
describe the "normal" lattice dynamics. Our aim in
this paper is only to identify and calculate terms that
go beyond this normal-shell model.

(d) Of course there are also interference terms
between the different contributions, but these are
typically 10% of the individual contributions.

TABLE II. Crystal-field matrix elements and radial
derivatives.

sd~ (Zy)
d ln(sd~)

(Bohr rad. ')
d/

ARCl

AgCl
(AH)
(Hs)

—0.019 72
—0.016 72

—1.44
—1,27

AgBr
AgBr

(AH)
(Hs)

—0.022 28
—0.01948

—1.26
—1.15

AgI
Agl

(AH)
(Hs)

—0.029 74
—0.030 80

—1.16
—1.01

1/3

Equation (15a) has been employed by Appelbaum
and Hamann (AH) in their self-consistent linear
combination of atomic orbitals (LCAO) band-
structure program. '6 Equation (15b) is the Slater ex-
change potential and has been used by Herman and
Skillman (HS)." We use both exchange potentials to
evaluate the crystal-field matrix elements and their
derivatives for AgC1, AgBr, and fcc AgI. The results
are summarized in Table II. %e now use the energy
denominators from Table I with the band structure of
Smith' (the results of Wang et al. " for AgCI differ
only very little) for AgCl and Agl, and linearly inter-
polated values for AgBr, and evaluate the prefactors
of the matrices in Eq. (14) which we denote by

(15b)

4(sd o.')'
F., —FF

24(sd ~)'
a'(F., E,)— (16a)

(161 )

The results are given in Table III. They show that

where the dots stand for the signer interpolation term,

V. APPLICATION TO THE LATTICE D'hc'NAMICS

A. Magnitude of the matrix elements

E T2TABLE III. Prefactors s g and s g of the extra terms in

the dynamical matrix in units of e2/V.

In Sec. IV we found that Eq. (14) is a very good
approximation to the electronic contribution to the
lattace dynamics going beyond the sample-shell model.
If w'e use the numbers given in Table I for the energy
denominators, it only remains to cal'culate the sdcr
crystal-field matrix el-ment and its radial derivative,

For this calculation we use self-consistent ionic
wave functions and potentials obtained in a local den-
sity approximation. For the exchange-correlation
contribution to the potential we use two different ap-
proximations:

AgCl
AgCl

AgBr
AgBr

AgI
AgI

(AH)
(Hs)

(AH)
(Hs)

(AI&)
(Hs)

E
s

1.43
0.80

1.58
1.01

2.88
2 ~ 36

s 2g

0.16
0. 1 1

0.20
0.16

0.39
0.42

fJ — /1/3
xe 3P (15a)
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E T2TABLE IV. Shell-model parameters used in the calculations (in addition to s g and s I).

AQCI Agl(E, ) Agl(Z, )

A+
8+
A

8
Y+
Y'

k+
k

(e'/V)
(e'/V)
(e2/V)
(e2/V)

(e)
(e)

(e'/V)
(e'/V)

12.60
—1.90

1.09
—0.19

2.00
—6.14
109
557

13.07
—2.05

1.65
—0.12

2.33
—7.94
93

964

13.60
—2.20

2.20
—0.05

2.33
—7.94
93

964

13.60
—2.20

2.20
—0,05

2.53
-11.69

79
2163

the matrix elements obtained by using the AH wave
functions are consistently larger than with the HS
wave functions. The reason is that the AH potential
leads to a some~hat too large extent of the halide-ion
wave functions. %e thus employ HS wave functions
in the following. The discrepancy between the two
results is a measure for their uncertainty.

In all cases the Eg deformability is considerably
larger than the T2g part. This can be understood
qualitatively, by noting that for a Coulomb potential
the lowest-order contribution to the sd matrix ele-
ment is r, i.e., that the radial derivative is three
times the transverse derivative. Thus we expect that

s g = —,s g. For the true potential, the r dependence
F. 3 T2

is going to be more rapid, hence increasing the radial

F.
derivative even more and thus increasing s g. A
separation dependence of the matrix element sdo-
between r and r accounts approximately for the
calculated differerice; this is quite reasonable.

8. Lattice dynamics

E T2%e now use the values for s ~ and s 2g which we
have calculated from the band structure with the HS
ionic wave functions and fit the other parameters of a
simple-shell model (8 parameters) to the dispersion
curves of AgCl and AgBr. In both cases very good
fits are obtained using the parameters listed in Table
IV, In Figs. 1 and 2 the theoretica1 curves are com-

A

F3

'2

0'. !0
0 0.2 0.4 06 0.8 1.0 0.2 0.4 O.S 0.8 1.0 0.8 0.6 0.4 0.2 0 0.5

(g,o,o) (&.g.o) (g, g, o)

FIG. 1. Calculated phonon dispersion curves of AgCl (line) compared to experiment (crosses) [Vijayaraghavan et aI. (Ref, 18)j.
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I A L

N

I—
2 , 2

0 0
0 0.2 0.4 0.6 0.8 1.0 0.2 0.4 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0 0.5

(g, Q, Q) (1,g, Q) (g.g.Q) (g, g, g)

FIG. 2. Calculated phonon dispersion curves of AgBr (line) compared to experiment (crosses) [Dorner et al, (Ref. 3)]

W I h L

0 I 'I
I I I I I 0

0 0.2 0.4 0.6 0.8 1.0 02 04 0.6 0.8 1.0 0.8 0.6 0.4 0.2 0 0.5

(g, Q, Q) (~, ~,Q) ().).Q) (~, ~,~)
xa
'tT.

FIG. 3. Calculated phonon dispersion curves of fcc AgI short-range parameters as for AgBr, with deformabilities,
—————short-range parameters as for AgBr, wwithout deformabilities, ———short-range parameters extrapolated (E2 in Table
IV), with deformabilities.
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pared with the experiment. The dashed lines show
the dispersion curves with the same parameters but
without the extra contributions to the dynamical ma-
trix. They demonstrate that the main effects of the
extra contributions are on the optic branches at wave
vectors containing —, , but that also some acoustic

phonons are pushed to lower energies, in particular
the TA branch in the ((, (, g) direction and the TAI
branch in the ((, $, 0) direction (for a discussion of
the elastic constants see below).

We now use various extrapolations to get an idea
of the lattice dynamics of hypothetical fcc AgI. For

E T2
AgI we always take s =2.36 and s ~=0.42 as
given in Table III. For the other parameters, we use
three sets: (a) the same as AgI3r; (b) the short-range
parameters are linearly extrapolated [Agl(E~) in

Table IV]; (c) y/k and y2/k are also linearly extrapo-
lated [Agl(E2) in Table IV]. The results for (a) and
(c) are shown in Fig. 3; (b) is omitted for clarity, but
it is very similar. The most surprising result is that
in all three cases the TAI phonon in the (g, $, 0)
direction is unstable about half way to the zone
boundary and the TA phonon in the (g, g, g) direc-
tion is unstable for all k [case (a)] or for k values
between about 0.2 and 0.5 [cases (b) and (c)]. Simi-
lar results are obtained for a wide range of shell
model parameters. If the calculation is repeated for

s =0 = s 'g, the lattice dynamics is perfectly normal
in all cases [case (a) is shown in Fig. 3 (dashed)].
This comparison suggests that the quadrupolar defor-
mability may be responsible for the instability of fcc
AgI at normal pressure, as is observed experimental-
ly. At high pressures the short range repulsion
parameters increase which can serve to stabilize the
lattice again.

s g and s '~ also have a very marked effect on the
elastic constants. In Table V we compare the elastic
constants of AgC1, AgBr, and the hypothetical fcc
AgI with and without the extra terms s. The table
shows clearly a decrease of c~~ and c&4, and a very
marked increase of c~2, when s is introduced.
hereas c~2/cq4 =3 for s =0, it increases to =5 I'or
the s calculated microscopically, Thus it gives an im-

portant contribution to the violation of the Cauchy
relation in the silver halides, as has previously been
noted by Fischer et a/. However, even more
marked is the decrease of c~~ —c~2 due to the pres-
ence of the extra terms. In fcc AgI, c~~ —c~2 even
becomes negative (this accounts for its instabiiity).

Since a simple continuum theory of the activation

TABLE V. Elastic constants (10~' dyne/cm ) with and
E T2

without s g and s

AgCI
AgCl

(with s)
(s =0)

6.79
8.38

3.94
3.13

0.81
0.92

AgBr
AgBr

(with s)
(s =0)

6.38
8.09

3.76
2.89

0.84
0.98

AgI
AgI
AgI.

(a, with s)
(b, c, with s)

(a, s =0)

3.25
4.03
6.47

3.93
4.10
232

0.50
0.65
0.78

energy for hopping of ions in Agcl and AgBr (Ref.
4) shows that the activation energy is proportional to
(c~~ —c~2+3c44) it is clear that the extra contribu-
tions to the lattice dynamics lead to a drastic decrease
of the activation energy. This combined with the in-

stability of fcc AgI suggests again a reason for the
high ionic conductivity of AgI and other silver com-
pounds.

VI. CONCLUSIONS
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We have used the method of karma and Weber as
a simple technique to single out terms in the dynami-
cal matrix for the phonons of silver halides, which
correspond to quadrupolar deformabilities of the Ag+
ion. We have estimated the magnitudes of the E~
and T2~ deformabilities and then used these values to
obtain otherwise simple-shell model fits to the disper-
sion curves of AgC1 and AgBr. Extrapolation to AgI
suggests that the E~ and T2g deformabilities are
responsible both for the instability of the fcc struc-
ture at normal pressures and the low-activation ener-
gies for ionic hopping and hence for the high-ionic
conductivity.
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