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Electronic energy levels of cinnabar (a-HgS)
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We have calculated the electronic energy levels of trigonal mercury sulfide in the semiempiri-

cal tight-binding scheme, The atomic levels 3s, 3p of sulfur and 6s, 6p of mercury constitute the

starting basis set. The computed two-center overlap integrals are subsequently scaled by a com-
mon multiplicative factor to reproduce the experimental optical gap. The effect of the atomic
virtual level 4s of sulfur on the conduction bands is also taken into account. The calculated

valence-band structure agrees well with the ultraviolet-photoelectron-spectroscopy (UPS) data.
The complete band structure is consistent with the absorption measurements which indicate an

indirect absorption edge immediately followed by the direct one (at the zone center). This pic-

ture can also explain the dependence of the absorption coefficient on the polarization of the ex-
citing light in terms of the symmetry of the levels and the selection rules.

I. INTRODUCTION

The electronic band structure of cinnabar (n-HgS)
is not yet known, even though the optical, '~ lumines-
cence, ' photoelectronic and photoemission'
properties of this material have been investigated to
an appreciable extent on both natural and grown
samples. Some experirnenta1 results " have been re-
lated in the past to the band structure which is avail-
able for meta-cinnabar (P-HgS), " the cubic modifica-
tion of mercury sulfide which is unstable at room
temperature. Due to the identity of the atomic con-
stituents, it is reasonable to expect that some features
of the -electronic levels are indeed similar for the two
phases. However, major differences in their electron-
ic structures do occur, essentially because of their dif-
ferent crystal symmetries. Meta-cinnabar turns out
to be a zero-gap semimetal, awhile cinnabar is an an-
isotropic semiconductor with strongly-temperature-
dependent energy gap and highly dichroic character of
the absorption coefficient. These properties make
cinnabar a very interesting material, from both the
fundamental and the techno1ogical point of view. In
this work we report a semiempirical tight-binding
(STB) calculation of the band structure of cinnabar.

II. SAND STRUCTURE OF CINNABAR

Cinnabar crystallizes in a trigonal lattice (space
group D3 ), '3 with a crystal structure similar to that
of selenium and te/lurium; mercury and sulfur atoms
alternatively occur along a helical chain, with strong
bonds linking each atom to the two adjacent ones of
opposite species. Weaker forces act between dif-
ferent chains, as is indicated by the fact that the
c}eavage planes always contain the chain axis. The
lattice is described by the fundamental vectors

tl =a [2, (2) i/2, 0], t2- a [-2i, (32) i/2, 0], and

t3 = c(0,0, 1). The elementary cell contains three
HgS molecules, the Hg atoms being in the positions

1di=u( ti —t2), d2=uti+
3 t3,

and

d3=—Mt'+ 3

and the sulfur atoms being in the positions

1 . t
d4 Vti + t3 i d5 1J( ti t2 ) + t3

and

5d6= —et2+ 6 t

The values of the parameters used in the calculation
are'3 a =4.149A, c =9.495 A, u =0.28, and

0
v =D.485. The minimum Hg'-S distance is 2.36 A,
which is appreciably less than the sum of the covalent
radii of sulfur and mercury. " This is an indication of
the partially ionic nature of the main bond in the
chain.

To obtain the crystal eigenvalues, we use a basis of
Bloch functions derived from the atomic orbitals, 3s, .

3p, and 4s of sulfur, and 6s and 6p of mercury.
Therefore, we solve a secular determinant of order
27 at a generic point of the Brillouin zone (BZ). The
atomic 5d levels of mercury are not included, even
though their eigenvalue is close to that of the 3s
atomic level of sulfur. The reason is that the d levels
of mercury are highly concentrated around the nuclei
and do not appreciably hybridize with other levels.
On the other hand, the presence of the 3s orbitals of
sulfur in the basis is necessary, in order to properly
describe the directional bonds which form in the cry-
stal because of the hybridizations with the 3p sulfur
orbitals. For the same reason, the 6p virtual orbitals
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of mercury must be included in the basis, even
though they are not occupied in the ground state of
the free atom. Furthermore, we include in an ap-
proximate way the virtual 4s level of sulfur, since it
contributes to some important features of the lowest
conduction bands. Similarly, in former tight-binding
calculations for selenium, " the virtual Ss Se level
could not have been omitted, and, as it has been re-
cently pointed out, the anion virtual states are impor-
tant for the lower conduction bands and for the cry-
stal bondings of the ionic semiconductors. '6

The Coulombic part of the crystal potential is writ-
ten as a sum of atomic potentials. We compute these
from the set of all the occupied orbitals of the free
atoms which are given by Clernenti et al. " The ex-
change part of the crystal potential is written in the
p' approximation. It is then screened with the
dielectric function as suggested by Robinson et al. , "
which better includes correlation effects. To build
our basis set, we use that atomic eigenfunctions 3s
and 3p of sulfur and 6s of mercury as.given by
Clementi et al. in the Slater form, " No calculations
of the virtual orbitals 6p of mercury and 4s of sulfur
are available in the literature. As far as the Hg 6p
levels are concerned, a satisfactory expression of the
atomic radial eigenfunction can be obtained by as-
suming the Slater form with screening exponential
factor identical to that of the 6s occupied orbital.
This procedure is dictated by the standard Slater
rules, since these s and p levels bear the same princi-
pal quantum number. The effect of the 4s virtual
level of sulfur on the valence bands is going to be
negligible, but we want to test the effect of a virtual

'

state of the correct symmetry on the lowest conduc-
tion band. We can evaluate this continuously by as-
suming the 4s sulfur virtual orbital to be identical to
the 3s sulfur orbital, -and by treating the interactions
parametrically: i.e., we scale all the integrals involving
such a 4s orbital of sulfur by a common multiplica-
tive factor p~, which has then to be fitted to the ex-
perimental data.

We now have to determine the starting atomic
eigenvalues. Due to the partially ionic nature of the
main crystal bonds, intermediate values must be
chosen between the eigenvalues of the free atoms
and those of the free ions. Such a choice has to be
consistent with the expression for the crystal field,
which may vary continuously between a purely non-
ionic term and a purely ionic Madelung-type. An
a priori evaluation of the ionicity can hardly give
dependable results. According to photoemission ex-
periments io, ii however, mercury Sd levels occur in
cinnabar at 7.74 eV (weighted mean value of the
spin-orbit split doublet) below the top of the valence
band. Since we find, as a result of our calculation,
that the top of valence bands in cinnabar always coin-
cides with the eigenvalue of the sulfur 3p atomic or-
bital, we can evaluate the positions of sulfur atomic

eigenvalues relative to those of mercury in the crystal
environment.

The absolute origin of the energy scale can be fixed
by placing the top of the valence bands at -6 eV,
which represents the experimental value of the work
function (energy gap plus electronic affinity) in cinna-
bar. " In other words, the energy zero is set to coin-
cide with the experimental vacuum level. The start-
ing eigenvalues of the 6p and 4s virtual states of the
free mercury and sulfur atoms, respectively, can be
set to coincide with this energy zero. Virtual states
of free atoms, as well as conduction bands in crystals,
indeed relate to an extra electron added, to the sys-
tem. The electronic affinities of mercury and sulfur
atoms for the 6p and 4s virtual levels are negligible if
not zero. Note that excited states of the free atoms,
which may have large negative energies because of
the electron-hole interaction, may correspond to exci-
tons in the crystal. The relationship can be very close
if the crystal screening is small, ' but this is not the
case for cinnabar.

In the present calculation, we have taken into ac-
count all the interactions between couples of centers

0
separated by less than 4.89 A. All the relevant inter-
and intrachain interactions are therefore considered.
In addition to the factor p~ which adjusts the 4s sul-
fur interactions, we introduce a second common rnul-

tiplicative factor p2 to scale all the computed overlap
integrals, The factors p~ and p2 are the only free
parameters of our model, and we vary them so as to
produce a direct fundamental optical gap of about 2.2
eV. Furthermore, the values of the parameters are
chosen to preserve the highest possible S-4s interac-
tion (p~ =0.42), and to retain the smallest possible
overlaps (pq =0.25). The reason is the following. In
its standard formulation, 2 the STB method consists
in computing all the relevant interaction and overlap
integrals, and then slightly reducing them all in order
to match some experimental features. It has been re-
cently shown ' that the multiplicative factor has actu-
ally to act only on the overlap integrals, with values
close to zero (overlap reduced STB, ORSTB). The
connection with the chemical pseudopotential ap-
proach ' has been clearly shown. In such an ap-
proach, the secular equation does not contain the
overlap integrals at all. Since the chemical pseudopo-
tential only slightly differs from the atomic potential
which is used in the standard TB theory, the differ-
ence accounts for retaining a small part of the over-
laps in the ORSTB procedure. The reduction of the
overlap integrals physically represents the contraction
of the free-atom wave functions which takes place in
the crystal.

We have tested the ORSTB procedure in the well-
known case of selenium. We obtain the band struc-
ture for this material in almost perfect agreement
with the results of Sandrock in the pseudopotential
scheme. "This gives full confidence in the capability
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FIG. 1. Band structure of cinnabar.

of ORSTB to accurately provide the band structure of
cinnabar. Selenium and cinnabar are indeed very
similar crystals, which exhibit very close spectra and
band structures, as we will discuss in Sec. III.

In Fig. 1, we exhibit the band structure of cinnabar
as obtained with the ORSTB calculation. Crystal
eigenvalues have been computed over more than 100
points along the lines of the BZ, which is shown in

Fig. 2. At high-symmetry points, the eigenstates are
labeled using the notations of Bradley and Cracknell'4
for the irreducible representations. The band-
structure calculation has been double checked by us-

ing, in every symmetry point or line, symmetrized
functions, which are obtained from the simple Bloch
functioris by means of an independent program.

III. DISCUSSION OF THE RESULTS
AND COMPARISON KITH

THE EXPERIMENTAL DATA

On the basis of the band structure of Fig. 1 and
symmetry arguments, wc can interpret thc following
experimental features of the optical and photoemis-
sion spectra of cinnabar.

(i) The top of the valence band occurs at the point
A of the BZ, and has symmetry A ~. The bottom of
the conduction bands is instead at I, with symmetry
I ~. Thus, cinnabar has an indirect absorption edge.
In Fig. 3, we reproduce schematically the bands
around the optical gap along the line A-I, and also
indicate the selection rules. As we see from Fig. 3,
the transition between A

~
and the lowest conduction

state at A, i,e., A3, is allowed only for light perpen-
dicular to the axis of the chains (c axis) (at least as
far as the single-group symmetry is concerned). This
result agrees with the edge of the absorption spec-
trum of cinnabar obtained by Zallen, ' who finds evi-
dence for an indirect energy gap, with much larger
transition probability for EL c than for E IIc. For con-
venience, we show Zannen's' absorption spectrum in

Fig. 4.
(ii) As we see in Figs. I and 3, the direct energy

gap occurs at I, between the valence states I 3 and
the conduction state I ~. The transition I 3 I ~ is
also allowed only for. light polarized perpendicular to
the c axis. Spin-orbit interaction, however, relaxes
this selection rule, and the transition becomes (weak-
ly) allowed even for E lie. In this respect, we there-
fore agree with' Zallen's hypothesis' of a rnatrix-

i
)i

I
I
I
I
I
I
I

I
I
I
I
I
I

FIG. 2. Brillouin zone for cinnabar. Energy bands have
been computed along the directions denoted by heavy lines.

FIG. 3. Schematic representation of the three top valence
bands and of the bottom conduction band of cinnabar along
the 3-I line. Transitions allowed for light parallel or per-
pendicular to the t3 axis are indicated. Note that conduction
and valence bands are not reproduced on the same scale.
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FIG. 4. Low-level edge absorption of HgS at 10 K, from
Ref. 1.

element mechanism as responsible for the dichroism
of HgS at the absorption edge. Furthermore, accord-
ing to our calculation, the top valence band is quite
flat along the line A-I, and it bends smoothly down-
ward to merge at I in the two-dimensional represen-
tation I 3. The calculated difference between the lev-

els A~ and I 3 is about O.OS eV. The order of these
levels, and the order of magnitude of their differ-
ence, are preserved through any reasonable variation
of the two parameters of our model. Therefore, this
calculated difference compares well with the experi-
rnental value for the difference between direct and
indirect gaps, as obtained by Zallen' from the absorp-
tion data. It should be noted, however, that the ex-
istence of the indirect gap is somewhat controversial
in view of other experimental results. ' It is not
possible to definitely settle this question from a
theoretical point of view, the energy difference
between the indirect and the direct gap being too
small. If we include for instance, the spin-orbit in-

teraction in the ORSTB calculation, the I 3 level is

split whereas the 3 a level is not. %'e expect I 3 to be
split by nearly the atomic value for sulfur (0.09 eV),
while A~ can only be slightly shifted upward. There-
fore, it is beyond the accuracy of the method to
determine precisely ~here along the A-I line the
minimum and the maximum of the conduction and
valence bands, respectively, occur. The physical fact
is, however, that the indirect and the direct gap are
very close to one another, due to the flatness of the
valence band and the shortness of the A-I" line (in
Fig. 1 the distances between consecutive points in the
Brillouin zone are proportional to their true values).
This results from the crystal structure which is very
much elongated along the e axis.

(iii) We have found that the lowest conduction lev-
el I ~ is by far the most sensitive to the variation of
the two adjustable parameters. In particular, at as

very sensitive to the introduction of the 4s virtual or-

bital of sulfur in our basis set (p~ value). Without
the S 4s level (p~ =0), we obtain the bottom of the
conduction bands at the point M, which produces an
indirect absorption edge well below the direct gap;
this does not seem to agree with the experimental
evidence. The origin of this high sensitivity of the
conduction level I ~ can be understood rather clearly
if we consider the syrnmetrized combinations of
Bloch sums at the I point, which are given in Table
I. The highest I"a level in the valence bands at I,
and the lowest one in the conduction bands,
correspond respectively mostly to the bonding and to
the antibonding combinations of the 6s level of mer-
cury with the 3p„,3p~ levels of sulfur. Due to the
geometrical arrangement of mercury and sulfur atoms
in the crystal, the antibonding combination tends to
deprive the interior of the chain of charge, which is
in turn spread outside the chain itself (along the
external lobes of the p„,p~ functions). Therefore,
these crystal orbitals are the most sensitive to the in-
terchain interactions, and to their variation with tem-
perature. This accounts for the observed strong tem-
perature dependence of the optical gap.
[a =—9 && 10~ eV/K (Ref. 3), while for a typical sem-
iconductor n =—10 eV/K].

(iv) As far as the higher-energy region of the re-
flectivity spectrum is concerned, we note the close
similarity between the cinnabar' and selenium
spectra up to about 4.S eV. This is due, according
to our view, to the fact that the main contribution to
the valence bands and to the three lowest conduction
bands of cinnabar derives from the 3p orbitals of sul-
fur, just as it derives from the 4p orbitals in seleni-
um. The reflectivity curves of selenium, however,
decrease after 5 eV, and exhibit only minor struc-
tures in the higher-energy region. On the other
hand, both u and P modifications of mercury sulfide
show structures in the reflectivity spectra in the ener-

gy region between S and 7 eV. As a matter of fact,
the imaginary part of the dielectric constant, which
has been obtained up to now only for cubic HgS,
shows in that very region the most relevant feature
of the spectrum. 29 %e associate these transitions
with the 6p levels of mercury, which have no coun-
terpart in the case of selenium. In Fig. 1, the set of
bands in the range from —1.5 to 0.5 eV are mainly
due to the presence of the Hg 6p orbitals. The large
number of bands and their flatness over the BZ are
responsible for the strong absorption which is re-
vealed by the a2 curve of P-HgS between 5 and 7 eV.

(v) The ultraviolet photoemission spectrum (UPS),
which we show in Fig. 5 for convenience from Ref.
11, exhibits two main regions of high density of
valence states, in the range of 6 eV moving down
from the top of the valence bands. The first region,
with the main peak at 1.1 eV and a shoulder at 2.0
eV, is clearly produced by the six highest valence
bands. Peaks in the density of states are expected in
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TABLE I. Symmetrized combinations of Bloch sums at the point I'. For instance, (Hg 6p„, 1) denotes the Bloch sum made

up with the 6p„atomic orbital of mercury centered on the site d&. Similar notations hold for the other Bloch sums. Couples of
partner functions are given for the two-dimensional representation I"3.

r, : (Hg 6s, 1)+(Hg 6s, 2)+(Hg 6s, 3)

(Hg 6p„, 1) ——(Hg 6p„, 2) +—(Hg 6py, ) ——( g 6p„, 3) ——(Hg 6p, 3)1 J3 I

(S 3s, 4) + (S 3s, 5) + (S 3s, 6)

(S 3p„, 5) —
2

{S3p„, 6) +—(S 3py, 6) ——(S 3p„,4) ——{S3p, 4)
vS

(S 4s, 4) + (S 4s, 5) + (S 4s, 6)

12'. (Hg 6py, 1) —
2

{Hg 6p„, 2) —
2 (Hg 6py, 2) +

2
(Hg 6p„, 3) —

2
(Hg 6py, 3)8 1

(Hg 6p„1)+(Hg 6p„2) +(Hg 6p, 3)

py 2 p» 2
( py, ) +

2 ( p„, ) ——(S 3p, 4)
1

(S 3p„4) + (S 3p, , 5) + (S 3p, , 6)

I 3.' 1 1

~(Hg 6s, 1) —
2 (Hg 6s, 2) —

2 (Hg 6s, 3)

iX
2

(Hg 6s, 2) —
2

(Hg 6s, 3)
J3

(Hg 6p„, 1) + —(Hg 6p„, 2) ——(Hg 6p, 2) +
4 (Hg 6p„, 3) +—(Hg 6p, 3)

—
4 (Hg 6p„, 2)+ 4(Hg 6py, 2)+—(Hg 6p„-, 3)+ 4(Hg 6py, 3)-

(Hg 6px 1}+2(Hg 6p„, 2)+
2 (Hg 6py, 2)+ 2(Hg 6p„, 3) —

2 (Hg 6py, 3)

3(Hg 6py, 1) +—(Hg 6p„, 2) + —(Hg 6py, 2) —
2 (Hg 6p„, 3) +

2 (Hg 6py, 3)

r

2 (Hg 6p„2) —
~ (Hg 6p„3)

—(Hg 6pz 1 +
2 (Hg 6pz, 2) +

2 (Hg 6'

(S 3s, 5) ——(S 3s, 6}——(S 3s, 4}
1 1

2
(S 3s, 6) —

&
(S 3x, 4)

JY 8

(S 3p„, 5) +—(S 3p„, 6) —
4 (S 3p, 6) +

4 (S 3p„,4) +
4 (S 3p, 4}

4 (S 3p» 6) +
4

(S 3py 6) +
4

(S 3p» 4) +
4

(S 3py p 4}

T

(S 3p»~ 5) +
2

(S 3px~ 6) +
2

(S 3py~ 6) +
2

(S 3p»~ 4) —
2

(S 3py~ 4)

3(S 3p, 5) +—(S 3p„, 6) +—(S 3p, 6) ——(S 3p„, 4) + —(S 3p, 4)

JY
2

(S 3p„6) —
2

(S 3p„4)
vS

I

—(S 3p, , 5) +
2

(S 3p„6) +
2

(S 3pz 4}
I

(S 4s, 5) ——(S 4s, 6) ——{S4$, 4)

2
(S 4s 6) (S 4s 4)

v5 Js



1668 E. DONI, L. RESCA, S. RODRIGUEZ, AND %. M. BECKER 20

connection with saddle points in the E(k) curve.
These singularities occur mainly at the points H, L,
K, and M of the boundary of the BZ (see Fig. 1).
The UPS spectrum shows the second peak at the
binding energy of 4.7 eV, with a slower decrease to-
ward the low-binding energy side. The calculated
bands fit these features well. Two nearly flat and iso-
lated bands occur over a large paA of the BZ in an
energy range matching the experimental second peak
(see Fig. 1). Furthermore, lower density-of-states
structures are present at lower binding energies, be-
fore the second peak.
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