
PHYSICAL REVIE% B VOLUME 20, NUMBER 4 15 AUGUST 1979

Tight-binding bonding orbital model for third-order nonlinear
optical susceptibilities in group-IV crystals

Karamjeet Arya*
International Center for Theoretical Physics, Trieste, Italy

Sudhanshu S. Jha
Tata Institute of Fundamental Research, Bombay 400005, India

(Received 25 October 1978)

The nonresonant part of the third-order nonlinear optical susceptibility y'" has been calculated for
diamond, silicon, and germanium by using the tight-binding Bloch states constructed from sp

' hybridized
orbitals. Only the nearest-neighbor bond interactions have been retained in the calculations; The three
independent energy parameters, which enter in the model, are fitted by comparing the calculated and known
experimental values of the valence-band width at k = 0, the direct energy gap, and the linear dielectric
constant. An explicit exponential form of the s- and p-type atomic orbitals is used in order to obtain the
required dipole matrix elements in each case. Although the sign of the calculated y'" agrees with the
experimental values in each case, the agreement in magnitude of y'" is best attained for diamond where the
tight-binding model is expected to be very good.

I. INTRODUCTION

The induced electronic polarization Geld P in a
solid, in general, contains both linear and nonlin-
ear terms in the incident electromagnetic field E.
It can be symbolically written as

i i

+ Q X,'l~i&~&a~r + ' ' '

where y'", y"', and y"' are the linear, bilinear,
and' trilinear susceptibilities, respectively. The
linear-electronic-response theory has been well
known for a long time and has been studied exten-
sively both experimentally and theoretically. How-
ever, in the optical region it became possible to
measure y"' and y"' only after the availability of
intense laser sources. The formal quantum-me-
chanical expressions for these susceptibilities for
a crystal can be written in terms of the unperturbed
electronic states of band theory. However, because
of the difficulty in obtaining accurate unperturbed
states, it became difficult to calculate these sus-
ceptibilities to yield any quantitative result for the
nondispersive part. The dispersive part, however,
may be cain. lated fairly accurately since this re-
quires a detailed knowledge of the band structure
only in a limited region of energy.

In order to obtain the nondispersive part of y"'
and y"', having contributions arising from almost
the whole Brillouin zone, several empirical cal-
culations' ' have been made which approximately
take into account the average band structure over

t'he whole Brillouin zone (BZ). Although most of
these models give reasonably good results for y"'
when appropriate parameters of the model are
chosen properly, in many cases the results for y"'
differ considerably from their experimental val-
ues." For group-IV crystals, a calculated value
of y"' is sometimes found to differ even in sign.
Note that within the electric dipole approximation,
y"' is zero for group-IV crystals because of the
center-of-inversion symmetry, while y"' is non-
zero.

In the completely-localized-bond approximation, '
the electronic band structure in group-IV crystals
is characterized by two fourfold-degenerate flat
bands, referring to the valence and conduction
bands. Corresponding electronic states are the
bonding and antibonding wave functions for the four
tetrahedral bonds, respectively. In this approxi-
mation, ' the expression for y"' consists of two
terms, one negative term containing the dipole
matrix elements only between bonding and anti-
bonding states, and the other term which, in addi-
tion, contains matrix elements between bonding-
bonding or antibonding-antibonding states. For
group-IV crystals the second term, however, van-
ishes identically because of the center-of-inversion
symmetry, thereby leading to a negative y"'. For
crystals which do not have center-of-inversion
symmetry, the second term is nonzero; but even
then theoretical results' in this case for y"' do not
agree with the experimental values.

Using an involved molecular-orbital approach,
Flytzanis4 was able to obtain fairly good numbers,
but Van Vechten and Aspnes' used a completely
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different approach based on the intraband Franz-
Keldysh effect to calculate y"'. They found that
for crystals with small energy gaps intraband con-
tributions become quite important. Using a simp-
lified two-band model and the Kramers-Kronig re-
lation, they calculated X"' in some of the group-IV
and III-V crystals and obtained a reasonable agree-
ment with the experimental values. Within the
framework of the band picture of the solid, which
in principle includes the above contribution, we
plan as an alternative approach to use a tight-
binding bonding orbital model" in which all the

' interactions up to nearest-neighbor bonds are re-
tained for calculating y"' in group-IV crystals. In
this model, the valence band consists of a twofold-
degenerate flat band and two other nondegenerate
bands whose energy depends on k. Conduction
bands also have a similar structure. This is dis-
cussed in Sec. IL Analytical expressions for the
dipole matrix elements between different band
states are also given in Sec. II.

In Sec. III we make explicit calculations for the
nondispersive part of y"' using the bonding orbital
model. The three parameters entering into the
energy-dispersion relations are fixed by compar-
ing theoretical expressions with the experimentally
known results for the valence-band width and direct
energy gap at the I" point and the linear dielectric
constant. For calculating dipole matrix elements,
we have used an exponential form of the s and p
atomic orbitals recently used by Chadi' in his
tight-binding calculations of the electronic band
structure. The calculated values of y"' for dia-
mond and silicon are in good agreement with the
experimental results, but, for germanium, the
agreement is not so good. We discuss our results
in Sec. IV.

PIG. 1. Unit cells for the diamond crystal lattice
showing the tetrahedral bonding. The balls represent
the atoms.

a being a lattice constant. The normalization con-
stants N, and N, are given as

N~ = 2+2S

N, m
= 2 2Smm,

S =(C„(r)~C„(-r+t„)).

(5)

(&)

For this set of bonding orbitals, it can be shown
that S11 S22 833 S44 S

In the tight-binding approximation, for any given
k vector in the first BZ, the'basic set of eight
functions of the Bloch form can be taken as

The four bonding orbitals 4 are constructed from
sp3 hybridized atomic orbitals in such a way that
these point towards the four tetrahedral bonding
directions

(8)

(9)

(10)

(11)

II. TIGHT-BINDING BONDING ORBITAL MODEL

In the bonding orbital model, the eight valence
electrons per unit cell in a group-IV crystal are
accommodated in four equivalent tetrahedral bonds
between adjacent atoms in crystallographic (111)
directions (Fig. 1). For each bond we construct
bonding and antibonding states g'„(r) and g'„(r),
where m = I, 2, 3, 4, respectively, by taking a lin-
ear coxnbination of the atomic orbitals correspond-
ing to two atoms forming the bond as

where &N is the number of unit cells in the crys-
tal and R; is the position of the jth cell. In the
above basis set, the secular equation in terms of
the matrix elements of the periodic crystal Hamil-
tonian II has the form

q'„(r) =[1/(X,„)'~'][C (r)+C„( r+t„)],
('„(r) =[1/(N.„)"'][-4„(r)+C (-r+t„)],

H "(k) -Z(k) a"
det

H'„„(7)

Hvc (k

H (k) -E(k) b,c

(14)

A A At, =-, a(-i+j -n),
A A At, =-, a(i —j -k),

A A A 1 A A At, = a(i+j+k)—, t, =-, a(-i —j+fp),
(4)

where

&"""(k)= (+'&'&(k, r) ~e' ' (k, r)), (15)
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(k) =If (k) =0,

(21)

(22)

+(m -n)], (23)

p„=-
(

„,[&y„( )IIIII.( )-4.(- +t.))
am an

+(m-n)] .

a'"'"'(k) =&+'"'(k r) ~Z~+""'(k, r)&, (16)

If»„'.(k) = &+».(k, r) III I +.'(k, r) ) . (17)

In general, Eq. (14) involves the calculation of
matrix elements of 8 and overlap integrals 6 be-
tween orbitals belonging to different unit cells in
the crystal. This makes the calculations very dif-
ficult. However, if we make the simplifying as-
sumption that interaction between any two bonds
which do not have at least one atom common to
them is neglected (i.e., retaining only nearest-
neighbor bond interactions), the matrix elements
can be written as

H»„» (k) =exp [ik (t —t„)/2]

x[P»5„„+(1—5 „)P,» cosk. (t „-t„)/2],
(18)

Ifcc (k) =exp[zk (t —t„)/2]

&&[pc6 „+(1 —6„„)P,c cosk ~ (t „-t „)/2],

At k=0, the valence-band width 8"~, direct energy
gap E„, and the conduction-band width Wc can be
written as

~» ~1» I

Wc =8P,c,
E„=-(Pc +P») —2P,c +2P,» .

(27)

(28)

(28)

The energy-band structure is schematically shown
in Fig. 2(b). At the I' point, the top valence band
is threefold degenerate and has I",, symmetry.
Similarly, the bottom of the conduction band is
also threefold degenerate with I"» symmetry.
Figure 2(c) corresponds to the case when P,c
changes sign, in which case the top nondegenerate
conduction band (with 1", symmetry at k =0) goes
lower. The former situation occurs in the case of
diamond and silicon, while the latter is observed
in germanium. In Fig. 2(a), we have drawn the
corresponding band structure in the localized bond
approximation.

The valence-band structure thus obtained is quite
close to that obtained from the more accurate pseu-
dopotential method. " However, the conduction-
band structure is not very satisfactory. However,
since in our calculations it is perhaps necessary
to know sufficiently well only some sort of average
band structure over the whole BZ, we have used
the above definite structure in calculating the non-
resonant part of y'" without making further ap-
proximations.

The eigenstates
~
VMK& and

~ CMK&, M =1, 2, 3, 4,
corresponding to four valence bands and four con-
duction bands, can now be written as linear com-
binations of the functions 4„(k, r) and 4'„(k, r),
respectively, as

The overlap integrals 4 „, m 4z, are assumed to
be zero.

The secular equation (14) can now be solved an-
alytically for a general k point. " It gives the en-
ergies of the four valence-band states and the four
conduction-band states in the form

C

E

Its

E»(k) =P»+2P,»[l+S(k)],
E»(k) = P» + 2P,»[1 —S(k)],
E»(k) =E,"(k) =P» —2P,»,
Ecz(k) =E2c(k) = -Pc —2P,c,
E3c(k) = -pc + 2p,c[1—S(k)],

E4c(k) = -Pc+2P,c[l+S(k)],

where

S(k) = (1+cos—,'k„a cos2i'z, a+ cos2k, a cos—,)'z, a

+ cos—,i'z, a cos—,k„a)'~'. (26)

[1~&j 0 k 1~00] I&~ij 0 k L)007

C&) (b) (c)

FIG. 2. Energy-band structure calculated in the tight-
binding approximation in 1100] and [1111directions for
crystals with a diamond structure. (a) Completely local-
ized band approximation, (b} and (c) when interactions
between bonds having at least one atom common to them
is taken into account.
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I vMk) = g b„~(k) exp(ik. t „)4'v(k, r), (3o)

(31)ICMk) =p b„"(k)exp(ik. t „)4'c(k, r).
m

These coefficients bv"(k) and bc"(k) can be cal-

culated analytically by solving the secular equation
(14) at any k point in the BZ." However, we have
determined them numerically in this work.

The dipole matrix elements between these states,
which we shall need in our calculations, can also
be written within this model as

1

(VMkIrICNk) = —g f) ~(k) f&c"(k),&, [(r „—nt„6„„)——,(r'„„—r'„„)]cos[ (t„-t„)/2]
~. n

" "
Nb Nnn

"' (32)

(VMkIrI VNk) =-i g b„~(k) t&„"(k) „, [r„„+—,'(r' „+r'„„)]sin[ (t —t„)/ ],
myn bnk bn

(CMkIrICNk) = i g b "—(k) f)„"(k),&n [r„„-g(r'„„+r'„„)]sin[k(t -t„)/2],
mbn am an

(34)

where
I

case of energy-band calculations.

(36)

Note that these expressions for the dipole matrix
elements have been written with respect to the
midpoint 6 (Fig. 1) of any one of the bonds as the
origin of coordinate systems. This is because the
crystal has a center-of-inversion symmetry about
this point. Such a choice leads to a zero dipole
moment in the ground state of the system. How-

ever, the choice of origin does not matter in the
I

III, NONLINEAR SUSCEPTIBILITY X(3~

A general expression for y"' can be derived by
calculating the average value of induced polariza-
tion P in the ground state of the system, in the
presence of electromagnetic fields, and then com-
paring it with Eq. (1). When the frequencies of the
fields are small compared with typical band gaps,
but large compared with resonant-phonon frequen-
cies, the nondispersive part of the electronic y"'
is given by'

y!g'», =4e'sym(i, g, k, E)

xp g. &gI 'Im&&~I~/-~JIbb&&" I~»-~»If&&fI~lIg&

mn l mg ng lg

&gI~;I~&&ml~;Ig&&gl~ I~&&el~,.lg&)
E E„

(37)

where

E =E -E,
(38)

(39)

and the prime over the summation sign denotes that
the ground state Ig) is not included in the summa-
tion. The symbol sym(i, j, k, l) denotes symmetri-
zation of the expression on the right with respect to
i, j, k, and l. States and energies here refer to

I

the complete many-particle electronic Hamiltonian
of the solid.

Now at T =0 'K, all the valence-band states are
completely filled and conduction-band states are
empty. The excited states m, n, l, etc. in Eq. (37)
correspond to the situation in which one electron is
put in any of the conduction bands. Neglecting pos-
sible interactions between the electron-hole pair
(exciton effects), the above equation can be written
in terms of singLe-particle Bloch states as"

4e' g g (VMkIxICNk&(CNkIxICLk&(CLkIxICPk&(CPkIxI VMk)

&VMkIxI v»&&v»lxI vI,k&&VLklxICPk&&cPklxI vMk&

E"„(k)E"„(k)E,",(k)

&VMklxl VNk&(VNkIxlCLk& &Crk lx ICPk&(CPk Ix I VMk&

Eg v~(k) E~cv„(k)Egv„(k)

( VMk I
x I VN k) ( VN k

I
x I CLk) (CLk I

x I CPk) (CPk I
x

I VMk)

Egv„(k) E~"~(k)E,"„(k)
& vjgk

I
~

I
en«& &cnk I~ I vLk) & vI k

I
«

I ctk) &cPk I
~

I vM«)
) (4o)
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E~»„(k) =E„(k) -E»(k) . (41)

Note that in the completely localized bond ap-
proximation, P,» =P,c =0, so that the valence and
conduction bands are fourfold degenerate with con-
stant energy difference E . The corresponding
wave functions are given by Eqs. (11) and (12), and
Eq. (40) in that case reduces to

X"..'..= E. Q (l&0'.(r) I~I('.(r)&l'[&0'„(r)I~It'.(r)&
g m

—&0'„(r) l~ I q'„(r)&1' —l&t'.(r) l~ I 0'.(r)& I'7 .
(42)

For crystals with center-of-inversion symmetry,
the first term is identically zero, while the second
term is nonzero and negative. To obtain positive
values for y"', one must go beyond the completely
localized bond approximation discussed earlier.

We make explicit calculations of y'" given by
Eq. (40), with the dipole matrix elements given by
Eqs. (32)—(34) and the energy values given by Eq.
(25). For this, we first need to fix the energy pa-
rameters P», Pc, P,», and P,c. These four param-
eters actually reduce to three by taking the top of
the valence band as the zero of the energy scale.
Two parameters are fixed by using Eqs. (2V) and
(29) with the known experimental values of W» and
E„. To fix the third parameter, we calculate the
linear dielectric constant &„„ in this model. This
can be written as

'~

4ne' ~ ~ )&mzk)x[CXk&['
Z'"(k)

When this is compared with the corresponding ex-
perimental value, the third parameter gets fixed

completely.
For calculating the dipole matrix elements, we

have taken the explicit form of the s- and p-type
atomic orbitals as

g, (r) =»e (44)

y„(») =x»e-+", (45)
and so on, where o., and e, are known constants.
This form of the atomic orbitals has been recently
used successfully by Chadi' in his more elaborate
tight-binding calculations of energy-band structure
of group-IV crystals. In the explicit form.of the
s- and p-type atomic orbitals for Si and Ge, our
values of n, and n, (1.6 and 1.8, respectively) are
only slightly different from those used by Chadi'
(n, =e, =1.V). In our case, in these crystals,
S -0.85, while S „-0.1 for mtn. This justifies
the neglect of the overlaps 6 „, m e n in Eq. (14).
Similarly, in the case of diamond, for which there '

are no calculations by Chadi, we have taken a, and
a, to be 1.5 and 1.8, respectively.

Using the above procedure, we have calculated
y"' in diamond, silicon, and germanium. The
summation over k in the BZ in Eqs. (40) and (4)3)
is done by dividing it into small cubic meshes and
making use of the 48-fold symmetry of the cubic
group for the BZ. The different parameters used
in our calculations for all these crystals are given
in Table I. The values of the dipole matrix ele-
ments [Eqs. (35) and (36)j between any two bonding
orbitals are also given there. We have listed four
suchdipole matrix elements r ~ t, r „'t
r „~t„, r'„~t, and r'„~ t„, (r'„-0) ineitherof the
bonding directions, where each one is the same for all
values of m and n because of the cubic symmetry

TABLE I. Calculated and experimental values of macroscopic y„„„,for diamond, silicon, and germanium. Other pa-
rameters used in these calculations are also given. In column 10, values of the linear dielectric constant &„„calculated
in this model are given with the experimental values in parentheses.

Diamond

A A n
~Y Eg ~C mm t m rmn m rmn tn mn tn rmn tn

(ev) (eV) (eV) (&) (A) (~) (&)
g~3„„, (10 ~2 esuj

Theory Kxper iment

(n( = 1.5)
2o.o 5.o 4.7

So2=~ ~ s i
0.45 0.151 0.25 -0.20 0.87 5.8 (5.9) 0.043 0.046 + 0.006

Silicon

)I 12.7 3.2 4.3e, -1.8 0.71 0.237 0.02 -0.21 0.85 12.2 (12.0) 2.62 6.0 + 3.0

Germanium

t ug = 1.61
u.7 1.o 3.5

A+2 = 1.8 0.74 0.248 0.02 -0.22 0.85 16.2 (16.0) 6.7 100.0 + 50.0

M. D. Levenson and N. Bloembergen, Phys. Bev. B 10, 4447 (1974).
J. J. Wynne and G. D. Boyd, Appl. Phys. Lett. 12, 191 (1968).
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of the crystal. The dipole matrix element in any
other direction can easily be calculated in terms
of these four values using symmetry properties.
We have also given the calculated values of the
linear dielectric constant in the table, with ex-
perimental values in brackets. Except for the case
of Ge, the values of y"' thus obtained are in rea-
sonably good agreement with the experimental re-
sults. As expected, the best agreement is for the
case of diamond, which is most tightly bound.

IV. DISCUSSION AND CONCLUDING REMARKS

Using the tight-binding bonding orbital approach
for the electronic band structure, we have shown
that it is necessary to include bond-bond interac-
tion for calculating X"' in group-IV crystals. By
including interactions up to nearest-neighbor bonds
only, we have obtained reasonable results for the
nonresonant part of y"' in diamond and silicon.
For Ge, the agreement is poor. We shall discuss
this trend a little later. Note also that we have not
included direct local-field corrections to y"' in
any of these cases.

In our procedure, the various energy parameters
have been fixed self-consistently from other ex-
perimentally known quantities, e.g., valence-band
width at k=0, the direct energy gap, and the lin-
ear dielectric constant. Bonding orbitals which
are used to construct tight-binding wave functions
are constructed from the hybridized sp" orbitals.
To have a further check on the values of various
parameters used in our calculations, we also veri-
fied the oscillator f-sum rule for the valence bands.
The sum rule states that"

Q Q l(imklrl&»)l'&~"„(k) =»/&

(46)

for each of the valence bands. This relation is

found to be satisfied within 10% for the top three
bands for silicon, germanium, and diamond. For
the lowest valence band the error is slightly high-
er, but its contribution to both y'" and y"' is al-
most negligible because of large energy denomin-
ators.

Table I shows that the calculated and experi-
mental values of y' ' for diamond are in excellent
agreement. For Si, y"' is slightly lower than the
experimental value. For Ge, the calculated value
is considerably lower than the experimental value.
This gradual deviation of our tight-binding y"'
from the experimental values as we go from dia-
mond to germanium shows the inadequacy of the
simple tight-binding model for heavier elements.
This is because of the fact that we have completely
neglected the effects of the d-electron states in
constructing our bonding orbitals, which become
quite important in Ge, and also our neglect of in-
teractions beyond the nearest-neighbor bonds. It
has been pointed out by Chadi' that when d elec-
trons are not included in the construction of tight-
binding states, it is necessary to take s and p or-
bitals to be more delocalized for representing
Bloch functions in the crystal. This implies that
the interactions beyond nearest-neighbor bonds
become important. In any case, it is gratifying
to note that the tight-bonding method works best
for the case of diamond, where it should. For
small-gap semiconductors, the calculation of y"'
via the intraband Franz-Keldysh contribution as
discussed by Van Vechten and Aspnes' may be-
come more relevant.
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