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Helical textures in 3He-A and magnetic resonance
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The existence of helical textures in He-A in the presence of both superflow and magnetic

field is established theoretically. The magnetic resonance frequencies of the helical textures are

determined.

I. INTRODUCTION

Superflow in 'He-A is one of the most fascinating
subjects of superfluid 'He. Making use of an elegant
topological argument, Volovik and Mineyev' have
shown that a He-A state with superflow in a torus is

globally unstable. It has been conjectured that such
an instability may be catalysed by coreless vortices2 4

for example. Recently, on the other hand, Bhatta-
charyya et al. ' have shown that a uniform texture
with I II d Ilv, is locally stable in the dipole-locked
limit and in the vicinity of the transition temperature
T„butbecomes unstable at T;, where

K[=—Kgpo( —,
'

p, '+co) ') =1

Here I and d are the orbital vector and spin vector
describing the condensate of He-A and ECb, po, etc. ,
are coefficients of the texture free energy. 2 6 It has
been later shown" that below T; there is a class of
helical textures, where both I and cwind around v„
which are locally stable. It is of some interest to
point out that the nuclear dipole energy plays a cru-
cial role in the stability of the helical texture as well

as that of the parallel texture5 (I II d llv, ). For exam-
ple, in the dipole free case none of these textures are
locally stable in the presence of superflow. More re-
cently we have shown9 that the helical texture can be
stabilized even in the vicinity of the transition tem-
perature (i.e., the Ginzburg-Landau regime) by ap-

plying a magnetic field. In fact a similar idea has
been conceived by several authors'o independently,
although all of them considered the dipole-locked
case only. As we shall see later, this assumption is
only valid in the limit of small superflow and magnet-
ic field.

The object of the present paper is to study the heli-
cal texture both in superflow and a magnetic field.
In this case d is no longer necessarily parallel to I.

For simplicity we limit ourselves to the cases v, IIH

and v, j H and the Ginzburg-Landau regime, where
H is the magnetic field vector. The effects of a small
tilt op the magnetic field are considered in Appendix
A. It is shown that in the presence of a magnetic
field the helical texture is stable in an extended re-
gion in the v, -H phase diagram even in the
Ginzburg-Landau regime.

A large portion of this paper is devoted to the cal-
culation of the nuclear-magnetic-resonance (NMR)
frequencies. In the case of the parallel geometry
(v, ll H), the helical texture possesses two distinct
longitudinal resonance frequencies and four distinct
transverse resonance frequencies. Furthermore, both
of the transverse frequencies do not satisfy the
Pythagorean rule"; the magnetic field induces a more
complicated field dependence. In the perpendicular
geometry ( v, x H ), on the other hand, the longitudi-

nal and the transverse resonance frequencies are
given by

t =O+2 2 2

o+2 2 2

where ~o is the Larmor frequency, O~ is the Leggett
frequency in He-A, and A. t and A., are constants
depending on H and are much larger than unity. The
explicit values 'of A. t and A., are calculated numerically.
We believe that the NMR will provide an unambigu-
ous test for the existence of the helical texture.

In the course of the present work we have learned
of experimental work by Kleinberg'2 at La Jolla, who
measured zero sound attenuation perpendicular to
the heat current in the presence of a magnetic field
parallel to the heat current. His low heat current data

(Jq —1 n watt/cm') appear to be consistent with the
existence of the helical texture predicted here,
although certainly more work has to be done before
we draw a definite conclusion.
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II. HELICAL TEXTURES

%e will consider two configurations, where the
magnetic field is eithe'r parallel or perpendicular to
the superflow. Furthermore, we limit ourselves to
the case where the textures depend only on z, the
direction of the superflow. Indeed, in the limit of
small deviations of / and d from the z direction the

transverse fluctuation with k j v, is not important
(see Appendix B).

A. H llv,

In reduced units the free-energy in the presence of
superflow and an external magnetic field is given by'

G = —(1+s) 'p + —(3 —2s)X, +(1+s)8, + pjl?, +s1 2 2(1 —s)' 2 1
2 (1+s) * 1+s 2

+ sin? 8(l +s) jIIj? + [1 —[cosXcosH+ sinX sin 8 cos(jI? —jtj)]?] + h? cos? 8

where

(1+s)v, Hs=sin X, p= h=
0

-Xjv Q~ (T)
2m p,„(T)

=0.1 cm/sec,
2 '"mg,

&/2

XNep—= 0, (T)
Ax

—20 Oe

and p is the normalized mass current, H is the exter-
nal magnetic field (~ ~ v,), ft is the dipolar coherence
length (—10??), and b, X is the anisotropic part of the

s
A

magnetic susceptibility. Here we have parametrized l
and das

I =(sinXcosj]j, sinXsinjjij, cosX)

d = (sinHcosjt, sinHsing, cosH)

To study the stability of the uniform texture
(I II d II v, ) and helical textures with small inclinations
X and 8, it is more convenient to introduce new
parameters u, v, u', and v',

u =sinXcosj]j, v=sinXsinj]?

u' = sinH cos@, v' = sinH sing

Then the free-energy G is rewritten

G =Gp+Gi+G2

Gp =—p? +2pjl?,

Gi = —, (uz'+ vx) 3P (u vg —vug)—+ (ug'+ vg') +p'(u'+ v') —h'(u'+ v') + (u —u')'+ (v —v')'

G?=(u'+v')[2(u, '+v,')+
4 p(uv, —vu, )+(u, '+v, ') p'( +uv—')]+(u'u, '+v'v, ')'

——,(», —»,)'+ [u(u —u') + v(v —v')] [u'(u —u') + v'(v —v')]

(4)

w'here we have kept up to quartic terms in u, v, etc.
%e have here a Ginzburg-Landau-type functional

with the four component field (u, v, u', v'). The tlua-
dratic term is minimized by choosing

s

The inclination of d is different from that of l except
when h2 —k2=0

Substituting uo' thus determined into G and taking
the space average, we'have

u = up cos(kz), v = uii sin(kz) (G) = (Gp) +A (k) up +? 8(k) up

~here

(7).

u' = up'cos(kz), v' = uii' sin(kz)

where k is measured in units of (2)'ized? '. By minim-
izing (Gi), the space average of Gi in terms of up',

we obtain

up' = (1 —h + k?) '
up

g(k) =p?+ —k? —3pk+1 —(1 —h yk )

8(k) =2(h —k ) (1 —h +k ) ' (8)

+2k?(1 —h? + k?) ? —2pz 4k'+ —pk-
From the free-energy (7), we conclude that (i) when
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FIG. 2. Coefficients, a, b, and the pitch k of the helical
texture at the phase boundary are shown as functions of p.

I

FIG. 1. Phase diagram for v, IIH. In region I the uni-

form texture (I II d II v, ) is stable; it is surrounded by region
Il where the helical texture is stable. Above p =1.2, the
helical texture becomes locally unstable.

longer stable. How'ever, whether this means the total
collapse. 4 of a state with uniform flow is not clear.

In the vicinity of the phase boundary, where X and
8 are still small, we have

sin~x=1uo1 =a(h —hg)/hg, for h & hq

A (k) & 0 for all k, the uniform texture with
i II d II v, is locally stable. (ii) When
A (k) ~ A (k ) =0 and the equality is satisfied by a
single k =k, and furthermore, 8(k ) & 0, the uni-

form texture becomes unstable against the appear-
ance of the helical texture with pitch k = k . There-
fore this condition gives the phase boundary between
the uniform texture and the helical texture. (iii)
When A (k ) & 0, and 8(k ) & 0, the helical texture
with pitch k = k and uo =121/8 is locally stable.
(iv) When A (k ) & 0, and 8 (k ) & 0, the uniform
texture as well as the helical texture are unstable.

From the above criteria, we have constructed the
phase diagram shown in Fig. 1. In region I the uni-
form texture (i lid llv, ) is locally stable. Region I is

completely surrounded by region II (the shaded
area), where the helical textures are stable. Near the
origin (p = h =0), the phase boundary is given by

p = (10)' ' h. This slope agrees with other calcula-
tions, ' where d and I are assumed to be dipole
locked. In fact, near the origin d and I are parallel to
each other as seen from Eq. (6). The stability region
of the uniform texture terminates even in the ab-
sence of magnetic field at p =0.826 contrary to the
result of the dipole-locked calculation. ' In fact for

p & 0.826; d and I are no longer parallel to each oth-
er. Furthermore, we find in the limit h 0, 8(k )
becomes negative when p & 1.20. This implies that
in the region p & 1.20 the helical textures are no

where

~
QA

t) A h (II(

and hq = hq(p) is the reduced magnetic field at the
,phase boundary. The pitch k as well as coefficients a
and h (=—pq1(I)A/8p) 1~ ~,8 ') are calculated numeri-

cally along the phase boundary and are shown in Fig.
2 as functions of p. In particular in the vicinity of the
origin Eq. (9) reduces to

10 h —h
sn X=

B. Hj v,

In this case both magnetic field and superflow sta-
bilize the parallel configuration (i II d II v,), although
this uniform configuration decays into an elliptically
polarized helical texture for p ~ 0.826.

The free-energy is still given by Eq. (I), except the
last term h'cos'e has to be replaced by h sin'Hsin2$
(here we assumed that the magnetic field is along the

y direction). Similarly in Eq. (3), the h-dependent
term in Gt has to be replaced by h'(w')'. In the
present case the magnetic field breaks the axial sym-
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metry. The free-energy is minimized by choosing

and

and

u = upcos(kz), v = vp sin(kz)

u' = uo' cos(kz), v = vp' sin(kz)

uo' = (I + kz) 'uo vo = (I + kz + h2) r vo, (10) and

Kr =(pz+ —k2+1 —5r)'~z

K2=(p + —k +I —5)' z

5, =(1 +k')-'

5 =(1+k +h ) '

(uo/vo)' = (Kp/K, )', Introducing a new variable by up = (uovo)'~, we have

(G).= (Gp} +~ (k) ( up) +
z
8(k)

I
uol' ',

A (k) =KrKz —3pk
r r

8(k) = — [35r(1 —5r) +—k (I +25r +25r) —3p ]+ [35z(1 —5g) + —k (I +25z +252) —3p ]K, K2
2 2

r

—17k —2p +[3(5/+5z) —25&5z]k'+(1 —5&)(1 —52)(5&+5z) +
4 pk +
4 K) K2

(13)

For the free-energy (12), we can apply the same cri-
teria as formulated below Eq. (8). From this we
have constructed the phase diagram, which is shown
in Fig. 3. As expected, in the transverse geometry
(Hj. v,), the stability region I of the parallel texture
(I II d llv, ) is much more extended than in the case
H Il v, . In the figure we have inserted by a broken
line the corresponding stability region in the case
H It v„for comparison. Furthermore, the stability re-
gion II of the helical texture appears to be bounded
both in superflow and magnetic field. %e have indi-
cated this intrinsic instability region by a broken line

I.O-

0.8 -X2

s

connecting two points where 8(k ) =0. Just above
the region I, the inclination of the I vector is given by

sinz X =
( uo Iz = a (h —hr') /hr'

= b (p —pr')/pr' ~
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FIG. 3. Phase diagram for v, j H. In region I the uni-

form texture (I II d llv~) is stable, while in region II the heli-

cal texture becomes stable. The stability region of the heli-
cal texture is again limited by p =1.2.
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FIG. 4. Coefficients a, b, and the pitch k at the phase
boundary are shown as functions of h. .
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where

and

h, QA

Qh I-a, '

by L = T —V, where
r

T = —Xw &~ d r[ai +p, +yi +2aiy, cosp

—2pip(ac+ y, cosp)]

, QA=pI
8p u-p('

V= —X,yAgG
1 (17)

and ht'(p) and pt'(it) are the field and the mass
current at the phase boundary. The pitch k at the
phase boundary as well as a and b are numerically
evaluated and are shown in Fig. 4 as functions of h.

Then the oscillation of d around a helical texture is
parametrized as

d = (sin( H+ g) c os (@+f),
sin(H+g)sin(@+ f), cos(H+g)), (18)

III. MAGNETIC RESONANCES

Although a sound propagation experiment senses
the average orientation of the l vector, '~ a nuclear-
magnetic-resonance experiment appears to provide a

far more sensitive probe to the helical texture. This
is because the NMR frequencies reflect details of the
d and I orientations and can be considered the unique

signature of the underlying texture. %e shall consid-
er the NMR frequencies for two geometrical set ups

separately.

where now H and @(=—kz) are those angles describing
the hplical texture and f and g describe small fluctua-
tions. From the Lagrangian (17) we obtain the fol-
lowing linearized equations:

c

fii+ ycc cosH = —Q~
SG

2 gf

5G
0&r sln8 = ——Q A

~
p

g

yii +fii cosH + ~ogc»nH =o,

A. Httv, where

In this case the magnetic resonance in the parallel
texture I ll d II v, is somewhat unusual, since the long-
itudinal rf field does not couple to the d vector.
Therefore, there is no longitudinal resonance
although the transverse resonance takes place at'4

ciii = [ 4 cop + 0j] +
2 cop

where O~ is the Leggett frequency in 'He-A and coo

is the Larmor frequency.
The magnetic resonance in the helical texture may

be most conveniently formulated in terms of Euler
angles (u, p, y). First of all the magnetization M is
related to the time derivative of Euler angles by"

cot =cosa sinp y, —sina p,

coz = sinu sinp y, +cosa p,

cci3 = ui +cosp 'yi

(M = —yoXN ~)

Furthermore d is given by

= —sin H(1+s)f„+sinHsinXcos(H —X)fI 5G
2 hf

—2 sinH cosH(1. + s) kg,

= —(I + s) g
1 5G
2 Sg

+[k'cos(2H)(1+s) +cos(2(H —X))]g

+ 2 sinH cosH(1 + s) kf, (20)

(cp2 —Lct Qg2) sinH f
i (co ccip L

& 2 I)j) cos H g =0

and we have identified a=cti+ f and p=H+g. In
the helical texture three variables (f,g, y) are coupled
to each other. However, the variable j can be easily
eliminated. Then a spin-wave solution of the form

fg u exp[i(qz —cut)] is determined by

d = (sinP cosa, sinP sinu, cosP)

The Lagrangian describing the spin dynamics is given

(~' —~p sin'H —L„nA2)g

+i (copip —L~20~) sinH cosH f =0

(21)
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where

sinXcos(X —8) +(I+ ) z

sin&

L» —— . —h'cos28+ (1+s) q'
sin28

j

L» =2kq(1+s)

(22)

q = + k, which is easily seen from the expression of
the magnetization (15) for a helical texture

&ol =sin8cos(kz) y, —sin(kz)g, ,

cu2 = sin8 sin(kz) y, +cos(kz) g, ,

A@3 =fi +cos8yt

Therefore at the phase boundary there appear two
longitudinal resonances with

The spin-wave dispersion is given. by the roots of

(co —Lii II])(co —cop stn 8 —Lq20q)

((oculo L i2 IIj) cos 8 = 0 . (23)

In the vicinity of the phase boundary where both X

and 8 are small, the spin-wave dispersion is given by

~, z(q) = ~(&, +q'+2kq) II] + —,
' ~p]' '+ —,

'
pop, (24)

where

=(XIII~ + ~o) 1 +, ppo
I

and four transvere resonances

(d~t = ( jl. i IIj +
4 fdp) +

2
Qlp

~~~ = (II~ +
4 ppo) —

z ~o

co& t
= (0~ + —coo) +—~o2 1 2 1/2 1

QJ g z
= (X

&
II] + —Ql p )

2
td p

(25)

(26)

sinX
11IY1

I, +0+ Sin&

where A, , = Xl +3k' and the superscripts + and —in-
dicate that the mode couples to M+ and M respec-
tively. Here we have made use of an approximate re-
lation

= (I —hg + kz) gI
——1+k2 (27)

In deriving Eq. (24), we have neglected a term pro-
portional to h in L22, which is always small at the
phase boundary. The quantity Xi is calculated nu-
merically along the phase boundary and shown as a
function of p in Fig. 5. A. I increases monotonically
from A.i =1 to A.i =1.37, as p increases from 0 to
p, =0.826.

Within the above spin wave, the longitudinal rf
field couples to the homogeneous mode (i.e., q =0),
while the transverse rf field couples to the mode with

2.S

2,0-

].5-

at the phase boundary. A. , at the phase boundary is
also shown in Fig. 5 as a function of p. The appear-
ance of four resonance modes in the transverse reso-
nance may be surprising at first glance. However,
this is because the helical texture breaks the chiral
symmetry along the z direction; Af+ and M have dif-
ferent resonance frequencies. The intensities of the
longitudinal mode depend linearly on the resonance
frequencies and are proportional to sin28, while the
intensities of the transverse mode are proportional to
the square of the resonance frequencies as in the case
of the parallel texture. If the longitudinal resonance
experiment is done in the present configuration,
~here the external magnetic field is slowly increased,
the entrance into the helical regime is signaled by the
appearance of the resonance frequencies cuI and ~1,
whose intensities increase linearly with h —h1 for
h & h1. Alternatively the transverse resonance moni-

+tors a sudden appearance of four resonances at ao, 1+
and cv, 2 upon entrance into the helical texture.
Therefore in spite of obvious difficulties in carrying
out NMR experiments in such a small magnetic field
(H —2.30 Oe), the NMR will provide unique means
to detect the existence of the helical texture.

I.O
0 0.2 0.4 0.6 0.8

B. HjV,

FIG. 5. A., and A, I for v, llH (which appear in the NMR
frequencies) at the phase boundary are shown as functions
of p.

In this case the uniform texture I II d II v, gives rise
to the usual bulk resonance with col= A~ and
cu, = (pop + Qq) 'i . In order to handle the magnetic
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resonance in the helical texture, it is more con-
venient to introduce new coordinates where the static
magnetic field is in the z direction. The new coordi-
nates are obtained by rotating the old ones around

A

the x axis by —
2

m. Thus the static d configuration in

the new coordinates is given by

d = (sin8cos@, —cos8, sin8sin@) .

g»»+ [a —2q cos(2ky)]g =0 (32)

with

Since $ depends on y as tang = (v'/u') tan(ky), Eq.
(31) may be approximated by a Mathieu equation

A

d = —( sin a cosy +cosn cosp siny) x

+ (cosu cosy —sinu cosp siny)y

+ sinp sinyi (28)

To identify the Euler angles with 8 and lt, we consid-
er the d vector to be obtained from d lly by the rota-
tion R (n, p, y),

and

(X)' ~ ~o k
[1+(X)' '] 0„' 2(X)' '—1+ 1+X

k „,(1-X), (33)
A

X = (u'/u')'

Comparing Eq. (28) with d above, we obtain

a=a, P=$, and y=8

The spin fluctuation around the helical texture is

then handled by assuming

P=@+f and y=8+g

where f and g are small fluctuations. The IIinearized

equations for n, f, and g are given by

Here we have expanded sin2@ and lt»2 in a Fourier
series retaining only the first two terms. The above
approximation should be excellent when X 1. As
the field A increases, Xrapidly decreases from unity
and at h =1, we have X =0.41. Therefore we be-
lieve that the above approximation is valid only for
A &1.

From the expression of the magnetization (15), we

note also that the longitudinal rf field couples dom-
inantly to the Mathieu function'6 ce~ (there is a weak

o«+cos@ g« =0

f„—rup sining, = —
2 Qg

256 (29)

g«+ cos$ n«+ rupsin$ f, = ——Q~
25G

Sg

where
IO

= —sin 8(1+s)f +cos(8 —X) sinXsin8f1SG
2 Sf Ã'

—(1+s) sin(28)$»g»

=(1+s)(—g + [cos(28)$'+cos[2(8 —X)]]g
2 Sg PP

+ sin (28) @»f») (30)

Here we are in the new coordinates, where the axis
of the helical texture is in the y direction. First of all

we can eliminate u from Eq. (29). Furthermore in

the vicinity of the phase boundary where both 8 and
X are small, SG/Sf is completely negligible. Then we

can eliminate f from Eq. (29) as well. The resonance
frequencies eo are determined by the eigenvalue equa-
tion;

sin'lt (o)' —cop2)g = 0~2[—g»»+(1+ &»2)g] . (31)

0 0.2 0.4 0.6
I

0.8

FIG. 6. A., and A, l for v, L. H at the phase boundary are
shown.

I t

1.0
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coupling to ce3, etc.), while the transverse rf field
couples to se~. The resonance frequencies are then
given by

o + ~i~~2 2 2

o+2 2 2

for the longitudinal and the transverse resonance,
where A. ~ and A. , are determined numerically along the
phase boundary. These results are shown as func-
tions of h in Fig. 6. We limit our analysis to the re-
gion 0 & h & 1, since as already mentioned, for larger
h, the Mathieu equation (32) no longer is a good ap-
proximation. Again the appearance of the helical tex-
ture is signaled by sudden jumps of NMR frequencies
for both the longitudinal and transverse resonance.

In the present geometry we recover the Pythagore-
an relation, although co~ contains thc ~o term in con-
trast to the usual bulk case.

IV. CONCLUDING REMARKS

Limiting ourselves to two particular geometries in
thc Ginzburg-Landau regime, we have shown that
the uniform texture with (l II d II v, ) in 'He-A
transforms into a helical texture in the presence of
magnetic fields via a second-order transition. Making
use of the Ginzburg-Landau approach, we have
determined the phase diagrams and the l and d confi-
gurations of the helical textures in the vicinity of thc
phase boundary. We have shown that the helical tex-
ture possesses anomalous magnetic resonances,
which shall provide an unambiguous signature of the
helical texture. Thc sound attenuation with wave
vector q w.ith a finite angle to v, may exhibit a jump
when q, =2k with k the wave number of helical tex-
ture just like in a cholesteric liquid. "' This possibil-
.ity is currently examined.

When the superflow is induced by heat current, it
is very likely that the ~hole texture moves uniformly
with v„,the normal flow. In such a situation the
heat flow produces a periodic variation in the l field
with a period r(—= 1/v„k). When the heat flow is

kept constant, r varies like (1 —'1/'1, ) ' since k —v, .
This may-account for the periodic orbital motion ob-
served by Faulson, Krusius, and Wheatley. '

I

APPENDIX A: HELICAL. TEXTURES
IN A TILTED MAGNETIC FIELD

We study here the effect of a small misalignment
between the magnetic field and the superflow on the
p-h diagram. Without loss of generality we can as-
sume that v, is along the z direction, and

h=h(0, sing, cosy) (Al)

The free-energy G is given by Eq. (1) except that the
magnetic field energy has to be replaced by

h~(sing sin 8 sing + cosy cos8) ~

In terms of u, v, u', and v', G can be written

G =Gp+G( +62 + (A2)

where G~' is again given by Eq. (3) except the term
—h~(u' + v'~) is replaced by

h'(sin2qv' —cos'qu' —cos2gv')

and G2' by

Gq'= Gq ——,h'sin2qv'(u'+ v') (A3)

Now G contains the linear and the third-order
terms in u' and v' due to nonzero q. Therefore the
uniform state with I II dllz is no longer stationary. In
order to find the stationary uniform state for given p
and h, we first minimize G with respect to small
shifts in u, v, u', and v'. To the leading order in q,
the stationary uniform state is given by

u =u'=0

Furthermore we can study the helical instability of
the uniform texture by writing

u = upcoskz v= v+ vosinkz

(As)

v = v [—= ——, h~ sin2q[p~ —h~cos2g(1+ p')] '}, (A4)

v' = v'[=—(1+p') v}
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Substituting these in Eq. (A2) and taking the space
average, and then eliminating u' and v' by minimiz-
ing the quadratic terms in up' and vp', we obtain
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where

uo = (upssp) &j2

A (k) = K i K2 —(3 —
2

6 )pk

K, = [1+p'+ —,k —u [2k2+(3+p )p ] —a}'I

Kg= [1+p'+ —,k' —62[1+—,k —(7+2p')p'] —b}' '

a =(1 —
2 p ss')'[1+k —h'cos~rI+v'(k'+p2) ——sin(2si) u(1+p')h']-'

b = [1+(1 +p' ——p') 6']' {1+k' —h'cos2rl + ss'[2k'(1+ p'+ —p') +1+3p'] ——sin(2') 6 (1+p') h'} '

9A =0 and A =0
Bk

(As)

The actual construction of the phase diagram is quite
straightforward though tedious. %e shall now give
the results in the limiting cases. Near the origin the
phase boundary is given by

p = (10)'I h (1 — '
sl2) for small rl (A9)

while in the limit h 0

Then the phase boundary between the uniform tex-
ture and the helical texture is determined by the con-
ditions

r

where p,0=0.826 is the limiting p value for q =0.

APPENDIX B: STABILITY OF
THE PARALLEL TEXTURE

Here we analyze the stability of the parallel texture
(I lid IIV,) against general fluctuations of d and I. We
find that the initial instability is triggered by a purely
longitudinal fluctuation as assumed in the text. Fol-
lowing the BHM analysis, ' but assuming that I and d
are no longer necessarily parallel to each other, the
total free-energy F of 3He-A is given by

F = F]f1n + Fo + Fe

p, =p,p[1 —2.10h (cos2rl +cos2rl)] (A10) where

Fq;, = J d r[2 psss, —
z pp(l 'Vs) +c(V ' 0 X I) —cp(V ' l)(l ' V && I) + —,K,('7 I)'+ , K, (l 0 X I )'—

+ —,K&(l x (V X I))'+ —,p,'"'}'7 d}' , pop"(I '—7—)d}'],

Fo= —
2

XNAN J d r(l d)

FH=
2 (EX)yp ' d r(H d)

where K„K„etc,here denote the contributions from
the orbital component only, FD is the dipole energy
and FH is the magnetic anisotropy energy. In particu-
lar in the Ginzburg-Landau regime we have

Po=~o=
2 Ps= 2 Ps =PS

3K, =3K, =Lb = —Ps
=3

The small fluctuations of I and d can be written

5/ =1' ——I' z

Sd =d' ——d' z
2 s

where l
' = (u, ss, 0) and d ' = (u', ss', 0) . Similarly

v, .=pz +'7 @+—(u Vss —ssOu)

(B4)

(as)

Furthermore in reduced units, we can set

XNQ j (LLX)~o ps (B3)

Substituting Eqs. (B4) and (BS) into Eq. (Bl), we
can expand the free-energy in powers of small fluc-
tuations. Assuming that fluctuations are character-
ized by a wave vector k = (q„,qr, k), we can eliminate
qh(k), u'(k), and ss'(k) by minimizing the quadratic
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term in $ u', and u' and we obtain
1

F =Fo+ X 2
KiIq' I'I'+ —,

' «I q &«'I +
z Ktk I

I'I + [—,
' pop'+ &D[1 —)tD()ia —)tv& +

z p,' '"q'+ —,
' pii~'"k') ']If I' f'

k

+(—,p, ii+ co)pk Im(l'"x l') — [cok'~ q xi'~'+ po(q I')'p'+p», c,pq'k Im(l'"x l')] +O(l')

(B6)

d'(k) =)i.D(XD —XwH +
z p,' '"q + —po '"k ) 'I'(k)

(B7)

and

Ki2z [3 q2(k2+2q~) ']pk (Blo)
where

Ps 1 1 ps PO~ ~D ~N 2
2

and

)u=(AX)yo' .

Herc we have assumed that H II v, .
We can further simplify the free energy (B6), by

assuming that

u = u, e"icos(kz), v = uoe"'sin(kz)

()A„=0and A =0
Qk

(B11)

where we have written K~, K2, and K~2 in reduced
units.

Now the phase boundary, ~here the uniform tex-
ture becomes unstable, is given by

as

F =Fp+
2

)ADA (k)uo +O(uii)

A(k) =KiK2 —Ki2

-2
uii = uouo, (uo/uo) = K, /K2

(B8)

For smail q (i.e., qz (( k'), it is shown analytically
that

A(q, k) &A(o, k) .

In the Ginzburg-Landau regime K~, K2, and Kt 2 are
given by

K2 I + [I q2(k2 + 2q2) l]p2

+ —,
' (3k'+q') —(1+k'. +2q' —h') '

K2 =1+p2+ —[3 4qz(k +2q )—']k'
—(1+k2+2q —h )

More generally a numerical analysis shows that the
longitudinal fluctuation is responsible for the instabil-
ity of uniform texture.

In the perpendicular geometry (Hx v, ), a similar
analysis was carried out, although it is much more in-
volved and we will not reproduce it here. %e find
again that the longitudinal instability precedes other
instabilities.

'G. E. Volovik and V. P. Mineyev (unpublished); see also
N. D. Mermin, in Quantum Liquid, edited by J. Ruvalds
and T. Regge (North-Holland, Amsterdam, 1978).

N. D. Mermin and T. L. Ho, Phys. Rev. Lett. 36, 594 (1976).
P. W. Anderson and G. Toulouse, Phys. Rev. Lett. 38, 508

(1977).
4T. L. Ho, Phys. Rev. B 18, 1144 (1978).
5P. Bhattacharyya, T. L. Ho, and N. D. Mermin, Phys. Rev.

Lett. 39, 1290 (1977); M. C. Cross and M, Liu, J. Phys.
C 11, 1795 (1978).

6M. C, Cross, J. Low Temp. Phys. 21, 525 (1975).
~A. L. Fetter, Phys. Rev. Lett, 40, 1656 (1978).
H. Kleinert, Y. R. Lin-Liu, and K. Maki, J. Phys. (Paris)

39, C6-59 (1978); and Phys. Lett. A 70, 27 (1979).
9Y. R. Lin, -Liu, K. Maki, and D. Vollhardt, J. Phys Lett.

(Paris) 39, L-381 (1978).
S. Takagi, Prog. Theor. Phys. 60, 934 (1978); W. N.
Saslow and C. R. Hu, J. Phys, Lett. (Paris) 39, L-379
(1978); J. Hook and H, E. Hall (unpublished).

' A. J. Leggett, Ann. Phys. (N.Y.) 85, 11 (1974).
R. Kleinberg, Phys. Rev. Lett. 42, 182 (1978); J. Low

Temp. Phys. (to be published).
' We have slightly modified notations as well as units from

those given in Ref. 9.
' This disagrees with an earlier result by Fetter [A. L.

Fetter, Phys. Lett. A 54, 63 (1975)j, except in the limit
coo » 0&, where his result is valid.
K. Maki, Phys. Rev. B 11, 4264 (1975). Although the spin
Lagrangian in this reference is derived for He-8, the
corresponding Lagrangian for He-A is easily obtained
from Eq. (12) by identifying X& =X&5;",

(~r') J~ = [p~T'"(si~ —Iii ) +ps[ii" lilm] (ss - di&g)

~ M. Abramowitz and I. A. Stegun, Handbook of Mathemati-
cal Functions (Dover, New York, 1970).

'7J. D. Parsons and Charles F. Hayes, Solid State Commun.
15, 429 (1974).

' 1. Muscutariu, S. Bhattacharya, and J. B. Ketterson, Phys.
Rev. Lett. 35, 1584 (1975).

' D. N. Paulson, M. Krusius, and J. C. Wheatley-, Phys.
Rev. Lett. 37, 599 (1976).


