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The acoustoelectric interaction of surface phonons with conduction electrons in piezoelectric

semiconductors is investigated in the frequency region where the piezoelectric coupling is the

predominant mode of interaction. We derive the interaction explicitly taking the elastic aniso-

tropy of the semiconductors into account. The electronic state near the semiconductor surface,

due to the presence of the surface space-charge layer, is also properly considered to specify the

interaction. Applying the interaction to the study of the amplification characteristics of surface

acoustic waves of GHz frequencies (propagated on the basal plane of a cubic crystal), we find

that the elastic anisotropy reduces the interaction significantly compared with that of the isotro-

pic approximation. Furthermore, when the wavelengths of the surface phonons become com-

parable to the width of the surface-depletion layer, the frequency dependence of the amplifica-

tion rates suffers modifications also qualitatively.

I. INTRODUCTION

Recent experimental detections' of high-frequency
()10GHz) sound waves which are excited thermally
at the surfaces of solids seem to renew the interests
in the interactions of surface phonons with various
surface excitations. The interaction of surface pho-
nons with conduction electrons near the surface of a

piezoelectric semiconductor has been of theoretic~1
interest from the viewpoint of the possible amplifica-
tions of surface acoustic waves (SAW's) in the GHz
frequency region. It might also attract our attention
because the interaction is thought to be sensitive to
the electrons in the vicinity of the surface and we

may understand some properties of the electronic
states in the surface space-charge layer of the semi-
conductor by investigating properly the interaction of
the surface phonons with the electrons, In either
case, we should initially obtain accurate solutions for
the surface phonons of the semiconductor in the ab-
sence of interactions.

Recently, we have studied the acoustoelectric in-

teraction of the surface phonons in the piezoelectric
semiconductor. ' In that work' (which we shall refer
to as Paper I hereafter), the electronic states near the
n-type semiconductor surface have been determined,
though approximately, taking the bendings of the en-
ergy bands into account. Concerning the elastic prop-
erties of the semiconductor, ho~ever, we have as-
sumed isotropy, that is, in Paper I the surface pho-
nons are approximated as the quanta of the Rayleigh
waves. The derived interaction of the surface pho-
nons and the electrons based on the piezoelectric
coupling is then applied to the study of the amplifica-
tion characteristics of SA%'s of 6Hz frequencies.
Subsequently, it has been found that the frequency

dependence of the surface-phonon-amplification rate
is sensitive especially to the spatial decay profile of
the electric potential induced piezoelectrically by the
acoustic fields of the surface phonons.

In real crystalline semiconductors, elastic anisotro-

py is present to some extent. One of the important
characteristics of the SA% introduced by elastic an-

isotropy, as against elastic isotropy, is that the decay
constants of the waves which describe the exponen-
tial decreasing of the SA%' amplitudes with the depth
may be complex instead of real numbers, and there-
fore the particle displacement may decay oscillating
away from a crystal surface. Hence, the electric po-
tential accompanying the SA%'s in anisotropic cry-
stals will also manifest itself as an oscillatory decay,
whereas a rather monotonous decay takes place for
the potential in isotropic crystals. ' Consequently, as
was ommented in Paper I, anisotropy will have some
effects on the interaction when discussed quantita-
tively.

The purpose of the present paper is to investigate
the acoustoelectric interaction of the surface phonons
in piezoelectric semiconductors taking elastic aniso-

tropy into account. Like the case of Paper I, we shall
derive the interaction assuming piezoelectric coupling
between the surface phonons and conduction elec-
trons, and then we shall predict the amplification
characteristics of the SAW more quantitatively in the
6Hz frequency region. Here, it may be worthwhile
to note that piezoelectric coupling is the dominant
mode of the acoustoelectric interaction for phonons
of frequencies lower than 10 0Hz.

The effects.produced by the presence of the aniso-

tropy on the theory of the acoustic waves are consid-
erably complicated even when piezoelectricity is ig-

nored, with the SA%'s exhibiting diverse propagation
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characteristics depending upon the crystal structure,
the propagation direction, and the crystal plane on
which they travel, and even on the values of the an-

isotropy ratio being greater or less than unity. 4 If
piezoelectricity is taken into account, the modified
SA% sometimes referred to as the piezoelectric sur-
face waves oi the electroacoustic surface waves could
be propagated. ' They are substantially characteristic
in piezoelectric materials and are accompanied by
electric fields. Some of these waves are reduced to
bulk waves when the piezoelectric effect turns off. A

typical example of such waves are the Bleustein
waves in hexagonal crystals, which become SH waves
(horizontally polarized shear waves) when piezoelec-
tricity vanishes. ' Similar waves have been reported
to exist also in cubic crystals. s Moreover, it is known
that there exist ~aves called pseudo surface waves
(PSW's) which are not exact SAW's except at some
isolated angles. All these waves are important from
the viewpoint of applications. In this paper, ho~ever,
we again postulate weak piezoelectricity and treat the
piezoelectric coupling as a perturbation on the acous-
tic fields. Therefore, the interaction of the piezoelec-
tric surface ~aves which have no counterparts in
nonpiezoelectric materials should be discussed
separately The SA%'s other than such piezoelec-
tric surface waves and their quanta are the objects of
our stUdy.

In Sec, II, we briefly review the SA%'s in the an-
isotropic, nonpiezoelectric, and homogeneous elastic
continuum occupying the half space. Especially, the
SA%''s traveling on the basal plane of a cubic crystal
(GaAs) are exemplified numerically in order to em-
phasize the distinction from the Rayleigh ~aves in
isotropic media. The PS%'s will also be considered
only in an isolated direction on the plane where they
become genuine surface ~aves. Hence, throughout
this paper, the PS%'s are to be understood as the
true surface waves in the pseudo branch and we shall
call the SA%'s other than the PS%'s the SA%'s in
the normal branch. In Sec. III, the phonos. operators
corresponding to the SA%'s in the anisotropic rnedi-
um are introduced. Although the complete orthonor-
mal set of acoustic ~aves in the half space has not
yet been constructed in the presence of elastic aniso-
tropy, the relevant SAW solutions which form an
orthonormal set are assumed to be members of the
complete set. The electronic wave functions in n-

type semiconductors are specified (approximately) in
Sec. IV by taking the existence of the surface deple-
tion layer into account. Section V is devoted to
deriving the electron —surface-phonon interaction
based on piezoelectric coupling, where piezoelectricity
is assumed to act on the acoustic waves as a weak
perturbation. The formula for the attenuation (or
the amplification) rate of the surface phonons is
presented in Sec. VI in the Born approximation. The
effect of the finite relaxation time of the electrons

will be neglected again in this paper. In Sec. VII, we
develop numerical examples of the surface-phonon
amplification for n-type GaAs at T =77 K and for
1 —10-6Hz phonon frequencies. The conclusions of
this paper will be given in Sec. VIII.

II. SURFACE ACOUSTIC %AVES IN
ANISOTROPIC MEDIA

Unlike the case of noncrystalline solids such as
amorphous materials whose elastic properties may be
approximated to be isotropic, real crystalline semicon-
ductors have elastic anisotropy to some extent. For
instance, the anisotropy ratios q defined as
ri =2c4q/(c~~ —ctq) are 1.83 and 1.99 for GaAs and
InSb of zinc-blende crystal structure, respectively, "
while the ratio is unity for isotropic materials. As has
been stated in the Introduction, the effects produced
by the presence of anisotropy on SA% theory are
considerably more complicated than those for isotro-
pic media, and extensive computer calculations are
generally required for their quantitative discussion.

The important characteristics of the SA% intro-
duced by the anisotropy and relevant to this paper are
summarized as follows: (i) The particle motion may
include three independent orthogonal components,
against just two for the Rayleigh-wave solution in iso-
tropic media; (ii) the SAW velocity depends upon the
direction of propagation; and (iii) the decay constants
may be complex instead of real and then the particle
displacement decays oscillating away from the sur-
face, whereas it decays rather monotonously in iso-
tropic media. Furthermore, it is known that the pro-
pagation vector of the SAW is not always collinear
with the power flow.

In order to make this paper self-contained, we shall
briefly review the properties of the SAW mentioned
above more quantitatively. First, let us set the Carte-
sian coordinate system so that the semiconductor ex-
tends over the half space x3 & 0 and has the flat sur-
face x3 =0 parallel to the xi-x2 plane. The wave
equation for the particle displacement can be written,
if no body forces and no piezoelectric effects are
present,

p~i ~ljkl~j~k~l ~j ~ij

where tl; —= 8/rlx;, and u; (i =1, 2, and 3) is the com-
ponent of the displacement vector along the x; axis.
p, {c&klj, and {'iijj are the mass density, the elastic-
moduli tensor, and the stress tensor, respectively.
Summation over repeated subscripts is assumed in
Eq. (1).

We consider the solution of the wave equatiori (1)
of the form

u=aexp(ikx3x3) exp[ik(Ktx~+K2x2 —vt)], (2)

where a is a constant vector, both ~i and K2 are real
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numbers satisfying K] +K2 =1 and k is the magnitude
of the propagation vector parallel to the surface. The
parameter K3 which takes a complex value determines
the variation of the particle displacement with depth.
Here, a displacement vector u of complex value has
been assumed for calculational convenience. Either
the real or the imaginary part of Eq. (2) should be
understood as the real displacement. Since we are
looking for the SAW solutions whose amplitudes are
bounded in the neighborhood of a solid surface, K3

must have a positive imaginary part so that the dis-
placement may vanish for x3 ~. Hence, Eq. (2)
describes a wave damping in the x3 direction and
traveling with a phase velocity v in the x~-x2 plane
along a direction fixed by the direction cosine
(Kt, K3).

Substituting Eq. (2) into Eq. (I), we have

(P& glt CJklKt Kk) ttl
2

. or we have a secular equation,

det(pv Sl cttktK&Kk) =0

(3)

(4)

K3 =CX+Pl, K3 = &+Pl(1) (2)

and

(3)
K3 = pl (5)

Equation (4) can be regarded as a sextic equation in

K3 for the specified values of K~ and K2 with v as a
parameter. However, only three roots out of six with

positive imaginary parts are the desirable ones for our
problem. For propagation of ~aves in a crystal plane
of mirror symmetry or in certain high-symmetry
directions on other planes of anisotropic media, one
of the relevant roots lies on the imaginary axis and
the other two form a pair symmetrically located with

respect to the imaginary axis, i.e.,4.

where P and y are positive numbers. In what fol-
lows, we concentrate on such simple cases that the
roots for K3 take the form of Eq. (5). It should be
noted that for an isotropic medium, K3" and K3" are
degenerate and become purely imaginary.

Corresponding to the three roots K3' given by Eq.
(5), there exist three sets of eigenvectors a "' (j = I,
2, and 3) orthogonal to each other. Therefore, the
correct SAW solutions of Eq. (I) consist of the linear
combination of three terms like Eq. (2) with K3 given
by Eq. (5), that is,

3

u= Xa~ exp(ikK3 x3)exp[i(k x —cot)], (6) ~

J~]

where k = (kl, kt) = (k Kt, k K3), x = (xt,xt), and
Ol =k3t. The relative magnitudes among a;"' (i = I,
2, and 3) for a given j or K3U' are determined by Eq.
(3). On the other hand, those among the a,"' (j = I,
2, and 3) for a fixed i, as well as the SAW velocity v,
are determined only after the boundary conditions to
be imposed on Eq. (I) are specified. The boundary
conditions satisfied by a stress-free flat surface can be
written

Tl3 c'3 kBtMkt 0 at x3=0 ii=1, 2, and 3) . (7)

Substituting Eq. (6) into Eq. (7) and expressing alU

and a30' in terms of the ap' with the aid of Eq. (3)
as stated above, we obtain another set of homogene-
ous equations in the a," for j =1, 2, and 3. There-
fore, we also obtain a secular equation to be satisfied
by the SAW velocity v. Finally, if an appropriate
normalization condition is imposed on the displace-
ment vector of the SAW, then a ", K3 ', and v are
completely determined.

Here, we rewrite Eq. (6) using Eq. (5) so that we

can see more explicitly the oscillatory damping of the
particle motion in the x3 direction away from the sur-
face, . i.e.,

u-„(r, t) = [(a + cosnkx3+a sinukx3) exp( —pkx3) +a exp( —ykx3)] exp[i(k x —cut)] =—u-„(r)e '"', (8)

where r = (x,x,), a +' =a ' +a, and
a = i(a ' —a ' ). If we normalize the displace-
ment vector u-„(r) by

d r )
u-„f' =

J d x „t dx3 f
u-„/' = I (9)

the a coefficients result. to be proportional to
(k/S)' ', where S is the surface area, and hence it is

convenient for further calculations to introduce the b

vectors by

a" =(k/S)' 3b"', j =+ and 3

It should be noted that the factor (k/S)'t' in the dis-

placement vector is the one to be compared with the
factor V ' which appears for the normalization of
the bulk waves, where V is the volume of the medi-
um. The difference is due to the fact that in the half
space the translation invariance in the x3 direction is

lost and it follows to introduce the factor k' ' for the
SAW instead of L '~2 for the bulk waves, where L is

the normalization length. The meaning of the nor-
malization (9) adopted here will become clear in Sec.
III.

Now, as for a simple example of the SAW travel-

ing on an anisotropic medium, those on a cubic cry-
stal with the basal plane as the free surface have been
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computed numerically. %e choose GaAs as a typical
material and consider the propagation of the SA% on
its surface. The piezoelectric effects are ignored in
the calculations. The following set of parameters for
the GaAs are used:

p = 5.32 g/cm',

crt =1.188 x 10tz dyne/cmz

ctz =0.538 x 10' dyne/cm

e~4
——0.594 x 10tz dyne/cm2

The anisotropy ratio is q =1.83,"
Figure 1 shows the depth dependence of the parti-

cle displacement of the SA% traveling in the direc-
tion rotated by 5' away from the [100) axis on the
(001) plane. For the SAW propagating along a cry-
stal axis, the component ur of the displacement vec-
tor normal to the sagittal plane (a plane containing
the wave vector and perpendicular to the surface)
vanishes and the remaining two components uL and
u~ have finite values just as in the case of Rayleigh
waves, where uL is measured along the propagation
vector k and u~ is normal to the free surface. How-
ever, uT begins to grow as the vector k is rotated
away from the crystal axis. In Fig. 1, we can actually
see the small but finite value of ur other than the
characteristic oscillatory damping of the particle dis-
placement. "

In order to see these points more in detail, the
various components of the relative surface displace-
ment of the SAW for propagation in the (001) plane
are drawn in Fig. 2. The solid curves give the sum of
the contributions from the terms including the pair of
roots K3 and K3, that is, the coefficients of the

cosine terms of Eq. (8), while the broken curves
show the surface displacements due to the term with
the pure imaginary root K3 . %e immediately find
the elliptical particle motions in the sagittal plane for
k parallel to the [100j direction. We can also see
how the component uT grows according to the direc-
tion of the wave vector. For propagation in the [1101
direction the waves of the normal branch are reduced
to be purely transverse in the plane parallel to the
surface, i.e., uL = u~ =0. However, the waves travel-
ing in this direction on the (001) plane do not local-
ize their amplitudes in the neighborhood of the sur-
face but rather are bulk ~aves. This can be under-
stood by investigating the angle dependence of the
decay parameters, which are shown in Fig. 3.

Figure 3 illustrates the variations of the real and
the imaginary parts of the solutions K3 as functions of
angle in the (001) plane. Both n and P have finite
values throughout this plane, whereas y decreases
gradually as the angle of the wave vector away from
the crystal axis increases, and it vanishes at 45 .

. Consequently, the SA%'s of the normal branch de-
generate into bulk transverse waves (SH waves) for

(3)
IUT

/I
l

I

I
I

0
[100j 5' [110)

FIG. 1. Depth dependence of longitudinal, transverse,
and vertical displacement of SAW's for 3-GHz frequency.
The propagation direction is rotated 5' away from the [100]
axis on {001)plane of GaAs.

. FIG. 2. Relative magnitude of various components of the
surface displacement. Thc solid curves are sums of contri-
butions of terms with pair roots conjugate to each other and
the broken curves are for the term with pure imaginary
root. For PS%'s, components other than u]+Lt (crosses at
45 ) are zero. It should be noted that the surface displace-
rnent of this figure is calculated based on the normalization

g& t ) a ttt
~

=1 instead of the normalization of Eq. (9).
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propagation right along the [110] direction.
In the direction where the SAW's of the normal

branch become bulk waves, the other SAW solutions,
or the PSW's appear. In Fig. 2, we have also shown

by the crosses the components of the surface dis-

placement for the PSW. As car. be seen, the PSW's
are the Rayleigh-type ones, that is, the particle dis-

placement is elliptic in the sagittal plane. From Fig.
3, we note that the root K3 of the PSW is purely real
but the corresponding eigenvector a"' is identically
zero and it does not contribute to the waves. 4

Finally, Fig. 4 displays the magnitude of the phase
velocity of the SAW on the (001) plane. The local
maximum of the velocity is attained at an angle close
to 22.5'. The directions in which the velocity takes
on its extreme values are known as the pure-mode
axes, that is, both the phase and the group velocities
become collinear. Incidentally, note that-the PSW's
travel much faster than the slowest SH waves in the
same direction and any other SAW's on the same
crystal surface.

0
[loo] 6' 15' 25'

ANGLE

2.8-

FIG. 3, Variation of roots K3~, a =ReK3' =—ReK3

p =ImK ' =ImK3, and y = ImK3 . For PS's (crosses at
45'), a&~ is pureiy real and K3 (0.

III. SURFACE PHONON

In Sec. II, the SAW solutions in the anisotropic
medium have been recapitulated by considering a cu-

bic crystal as the simplest example of such a medium.
In the following, we shall concentrate on the interac-
tion of surface phonons with the conduction electrons
in semiconductors. Hence, h.ere we introduce the
phonon operators corresponding to the SAW in the
homogeneous anisotropic medium.

For the sake of convenience, let us define the
operator L(B) by writing the equation of motion (1)

pii; = L (B),~ u~

and consider the following quantity:

(u, L u) =—J)u;L(B),,u~dr (12)

y 2.6-

Recalling the fact that the integration is carried out
over the half space, we have

(uLu)=cjjkrJ'BJujBkurdr+Jtu;TI3dx

(13)

2.5-

[1oo] 5 15' 25'
ANGLE

35' [11o]

It should be noted that the second term of the right-
hand side of Eq. (13) vanishes due to the boundary
condition (7).

Now, the equation of motion (1) is derivable from
the Lagrangian

FIG. 4. SA% velocities for propagation on the (001)
plane of GaAs. L = Jl ( ,

'
pu;u; , c,&klB&—u;Bkur)—d—r (14)
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and then we have the Hamiltonian of the system,

1H= JI m;7r;+ c»kttljujjkut dr
P

(15)

where m; = pu; Owin. g to Eq. (13), it can be seen
that the Hamiltonian takes the form

H =1/2p(Pr, rt) ——,
' (u, L u) (16)

u=ug(r) exp( it gt—) (17)

For the time being, we again allow u to be complex
valued and put its time evolution by the exponential
factor exp( —icogt) as follows:

This result will be used later to derive Eq. (29).
Provided that the orthonormal set of eigenwaves

{ug(r) } in the half space is complete, the displace-
ment vector u (r, t) of the medium can be expanded
as follows by taking its being real into account

t 1/2

u(r, t) =X [agug(r) exp( ice-gt)
Q 2PQJQ

+agtug (r) exp(io&gt)] . (25)

Similarly, for the momentum m canonically conjugate
to u, we have

where Q stands for a set of possible quantum
numbers specifying the eigenmodes of the acoustic
waves in the half space, -that is, both surface and bulk
in character. Accordingly, Eq. (11) is reduced to the
eigenvalue equation formally written

Apt»g

Q 2

1/2

[agug(r) exp( i cogt)—

—ag ug (r) exp(i rugt)]

L(8) ug(—r) =p~gug(r) (18) (26)

In the linear space of the acoustic waves satisfying
the boundary condition, the operator L (8) is Hermi-
tian and we have for the eigenwaves uQ the ortho-
gonality relation of the form

~here aQ and aQ are the annihilation and creation
operators of the Q-mode phonons satisfying the com-
mutation relations

[ag, ag ] =ggg, [ag, ag] =[ag, aj { =0 . (27)

(ug, ug) =—J [ug(r)] '
ug (r) d r =0 (19) Equation (27) is derived from the canonical commu-

tation relations satisfied by u and m and the assumed
completeness relation

QJQ A 0)Q'

Here, we shall normalize uQ according to
$ ug(r) [u$(r ')]" = gi5(r -r ')
Q

(28)

+ [ug(r)]'exp(i cogt) (21)

vg also satisfies Eq. (18) with ug replaced by vg.
Therefore, it is concluded again that

(vg, vg ) =0,. 1f t»g A Q)g (22)

Decomposing Eq. (22) with the aid of Eq. (19), we
obtain the following relation for ~Q ~

cuQ
.'

(ug, ug) exp[ —i(cu gc+ug)t]

+(ug, ug")exp[i(cog+(»g)t] =0 . (23)

(ug, Ug) =1

where the sum should not be taken for the subscript
Q. Furthermore, if we make the displacement vector
rial valued by adding the complex conjugate of Eq.
(17) to itself,

vg(rt) =ug(r, ) exp( it»gt)—

Now, substituting Eqs. (25) and (26) into Eq. (16)
and noting Eq. (24), the Hamiltonian is calculated to
be

H = X ttt»g(agtag+ —,')
Q

(29)

At this stage, aQ and aQ~ can be understood as the
correct phonon operators specified by the quantum
numbers Q.

In order to quantize the relevant SAW's in this pa-
per, we must expand the particle displacement associ-
ated with the SAW in terms of the complete ortho-
normal set. {ug}of the eigenwaves in the homogene-
ous but anisotropic half space. Unfortunately, such a
complete orthonormal set has not yet been construct-
ed for the anisotropic medium. However, if we con-
sider the SAW's traveling on a given crystal surface,
as have been seen in Sec. II, we find that they form
an orthonormal set of waves with respect to the wave
vector k parallel to the surface, that is,

Since the two exponential functions in the above ex-
pression are linearly independent, Eq. (23) yields

(u-„, u-„) =0, if k & k' (30)

(Ug, Ug')=(Ug, Ug) =0, if cug&r»g (24) (uk uk&=1 (31)
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r ]/p

u(r, i) =X
k

2 pOJk
[a-„u-„(r)exp( i cukt)—

+a tu-„'exp(iru„r)] (32)

where a-„and a-kare the creation and annihilation
operators of the surface phonons (quanta of the
SAW) which satisfy the commutation relations (27),

The orthogonality with respect to the two-
dimensional wave vector parallel to the surface holds
also for the bulk waves in the half space as far as
waves of the form e'"'"w-„(x3) (k real) satisfying
translation invariance in the x~-xq plane are con-
cerned. Therefore, one of the quantum numbers
which specifies the eigenwaves in the half space must
be the wave vector k parallel to the surface and we
may write Q = (), k, ), where X denotes the polari-
zation of the waves and the dots indicate other possi-
ble quantum. numbers. Here, we note that the wave
vector k is the only quantum number for the SAW,
because once it is specified the SAW solutions are
uniquely determined. Furthermore, if we remember
the dispersion relation of the acoustic waves, which
can be written as co(k) = v(k/k)k, we may choose
quantum numbers such as Q = (X, ru, v, ), in-
stead of Q =(h. , k, ). The velocity v of the
SAW's is known to be slower than for the slowest
bulk waves propagating in the same direction as the
SAW s except for certain isolated directions, for in-
stance, the [110] direction on the (001) plane. There
the SAW's of the normal branch reduce to the bulk
SH waves and the PSW's with velocity faster than
that of the SH waves appear. Hence, the SAW solu-
tions [u-„(r))'of Eq. (g) on the (001) plane are

orthogonal to other eigenwaves of the bulk modes in
the half space except at 45 ', because there exists no
overlapping in their velocities. Moreover, bulk waves
in a half space which have a velocity distribution
overlapping the PSW velocity would be only SH
waves, since the slowest SV waves (shear waves with
vertical polarization) travel faster than the PSW's. 4

However, the PSW's are polarized in the sagittal
plane whereas the SH waves are polarized normal to
it. Therefore, the PSW's will be orthogonal to the
bulk waves as well.

Accordingly, we may convince ourselves that for
propagation on the (001) plane, the SAW solutions
[u-„(r)j form an orthonormal set of acoustic waves

together with the translation-invariant bulk waves in
the half space. ' Furthermore, since the solutions of
the wave equation discussed so far belong to the
linear space in which the operator L (8) satisfies Her-
miticity, the assumed orthonormal set must be com-
plete. Then, we expand the displacement vector
u (r, t) accompanying the SAW as follows:

with Q =k. The normalization condition (9) for uk
is idential to Eq. (20) and it upholds the Hamiltonian
becoming of the form of Eq. (29).

IV. ELECTRONIC STATES

V= (i, -x,) O(i, -x,),27Te n

6p
(33)

with
r

1 for x «0',
0 forx(0, (34)

where ~p and n are the static dielectric constant and
the bulk electron concentration, respectively. The
coordinate system is chosen to be the same as that in
Sec. II, that is, the semiconductor extends over the
half space x3 ) 0. In Eq. (33), the parameter io

measures the width of the depletion layer and is
determined by the bulk electron concentration and
the band bending at the free surface, eQ„as

&p sIp=
2n en

1/2

(35)

The potential (33) is derived assuming that there are
no electrons in the depletion layer x & lp.

The motion of the electrons in the vicinity of the
n-type semiconductor surface can be characterized by
wave functions of the form

4-, ,(r) = e'"'"y, (x3) (36)

In order to specify the interaction of the surface
phonons with the electrons, we must know the elec-
tronic states near the semiconductor surface in the
absence of acoustic disturbance. The electronic states
in the vicinity of the semiconductor surface are dif-
ferent from those of the bulk region due to the pres-
ence of a space-charge region and the potential bar-
rier associated with it." In the n-type semiconductor
in which we shall be interested, some of the electrons
in the conduction band are trapped by the acceptor-
like surface states and a positive-space-charge layer
(called a surface depletion layer) is generally formed
adjacent to the surface. Therefore, in the neighbor-
hood of the surface, energy bands bend upward with
respect to the Fermi level.

The surface-charge density and the shape of the
potential barrier are obtained by solving the Poisson
equation under appropriate boundary conditions. The
electronic states are then determined by solving the
Schrodinger equation with the potential obtained in
this manner, In the simplest approximation, the po-
tential is solved to be a semiquadratic function of the
depth and makes a barrier of Schottky-type, that is, 3
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where p = (p~,p2) is the wave vector of the electrons
parallel to the surface and the wave function Pq(x3)
is governed by the Schrodinger equation

and

qt (x) = ' [Inr+(r' I—)'/', (, I) /l
0

d + V(x3) f q( x3) = eqlP q( x3)
2m dX2

(37)

F =it p /2m+eq (38)

In this paper, the Schrodinger equation (37) will be
solved with the approximate potential of Eq. (33).
While the self-consistent equations for the potential
and the electron wave function near the semiconduc-
tor surface are easily found by adding an equation
which combines both quantities, it is very hard to
solve them even numerically, unlike the case of elec-
trons in a surface inversion layer. '

Equation (37) with the potential (33) cannot still
be solved exactly but has a fairly good approximate
solution which may be expressed analytically. Such a
solution is3

with

and

1/2

P' [Jt/3(kq) +J i/3(t, )] ~

Pq

for x3~a,
yq(x3) ='

&q [I
& j3 (qtq) —I &/3 (qtq) ], -

q

for X3& a,

Bq =—(qrq/3L)' ', qq = t'q'/2m,

P, (x3) = [2m { eq
—V(x3) {]''/t,

z3
gq(x3) = J P, (z) dz for x3~a

pa
qtq(x3) = Jl Pq(z) dz for x3 & a

DZ3

(39)

(40)

(41)

where a denotes the classical turning point defined by

e, = V(a), L is the thickness of the semiconductor,
and J„and I„are the Bessel functions of real and im-
aginary arguments, respectively. For a semi-infinite
semiconductor (L » Ip), the wave number q takes
continuous positive values. ( and qi can be explicitly
integrated to be

fq(x3) =,

' [sin 'r+r(1 —r')'"+-'qr]
%O0 2

for a & x3 & lp, (43)

(2/ + —, qr) for x, & /p

where m is the electron effective mass (assuming a
spherical constant-energy surface) and the energies of
the electrons are given by

4'(r) = ~ Xc-, ,yq(x3)e""
lg p, q

(4S)

where c-, and its Hermitian conjugate c-, are an-

nihilation and creation operators of the electrons
which satisfy commutation relations of the Fermi-
type.

V. INTERACTION

In the piezoelectric semiconductor, the conduction
electrons interact with the surface phonons through
piezoelectricity. They also. interact with the surface
phonons through the deformation potential which is
proportional to the dilatation caused by the acoustic
vibrations associated with the phonons. Although at
very high acoustic-wave frequencies the deformation
potential becomes the dominant mode of the acous-
toelectric interaction even for the piezoelectric semi-
conductor, it can be neglected compared to piezoelec-
tric coupling for frequencies from 1 to 10 6Hz to be
considered later in this paper. Hence, in what follows
we exclusively concentrate on the piezoelectric in-

teraction between the electrons and the surface pho-
nons.

The relevant component of the piezoelectric fields
induced in the semiconductor is derived from the
piezoelectric equations of state for the acoustic and
the electromagnetic fields together with the Maxwell
equations in the electrostatic approximation, which
are supplemented by the continuity equation of the
charge. Here, we note that the variation of the
sound velocities due to piezoelectric stiffening will be
discarded because it amounts to only a small correc-
tion for the semiconductor considered in this work
(hu/v —10 q for GaAs), and the effects of the
mobile charges in the semiconductor will be incor-
porated as electronic screening.

The piezoelectric potential $ produced by the pro-
pagation of the surface phonons satisfies the equation

e/k 8; (8/t/k + Bk kl/)
2m

iE0
(46)

for {e/k) is the piezoelectric tensor and dielectric iso-

(44)

where cup2 =4qre'n/m ep is the square of the plasma
frequency and r = (mcup/2eq)' (x3 Ip).

The electron density calculated from the wave
function (39) has finite values for x3 & Ip, contrary to
the assumption on which basis Eq. (33) has been
derived.

Finally, we introduce the wave function V(r) of
the electrons in second-quantized version by
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tropy has been assumed. Then, if we put

ll =aexp(/kK2x2 + t k ' x)

and

(47)

ture (el4 = e2q = e26 = eJ and the other components
vanish)

8mepd=
2 2

[klk2a2+ K2k(k la 2+k 2a l)] . (49)
eo 1+K22 k2

P = d exp(/kK2x2 +/ k x) (48)

it follows for crystals with zinc-blende crystal struc-
Therefore, the SAW's of Eq. (8) are accompanied by

the electric potential'

qb-„(r, t) =—87Tep k' [(dl+lcosakx2+dt 2sinakx2) exp( —pkx2) +dt2lexp( —ykx2)]exp[/(k x —rut)l =—d-„(r)e '"'
6p

(50)

with

d'" =D [(p' —a' —1)F, +2a/3F2]

d' '=D[(p2-a2-1)F2-2apF, ],
[KlK2b3 + &y(Kl b2 + K2bl )](3) 1 (3) . (3)

~2

where

(51)

;(b(+2P b(—) )

F2 = l (b2+ a+ b2 p) (53)

cally inactive. At 45', we also see that the SH waves
are piezoelectrically inactive, whereas the PSW's are
strongly active. These results may be elucidated with
the help of Eqs. (51) and (52). At O', Kl =1 and

K2 =0, and then we have

[(p2 2 1)2 +4 2p2] —1

Fl = KlK2b2 +/Kl(bl+ p —
b2 a)

+/ K2(bl+ p —bl a)

F2 = Kl K2b2 +/ Kl (b2+ a+ b2
' p)

+/K, (b,'"a+b,' 'p) .
-

(52)

~ l.0.
C3

X

r
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FIG. 5. Relative magnitude of the coefficients which ap-

pear in the induced potential [see Eqs. (50} and (51).] For
PSW s d(»=0.

Figure 5 exhibits for GaAs the variation with angle
of the d coefficients which appear in the induced po-
tential. We observe that at 0', all coefficients vanish
so that the SAW's traveling along the crystal axis on
the (001) plane of the cubic crystal are piezoelectri-

d(3) b (3)

Similarly, at 45 ', Kl = K2 = 1/ J2 and we have

Fl =
2

b2+ +/ (bL+ p —bL a)

F2=
2 b2 +/(bL+ a+bt p)

d(3) b( ) + I b( )

where bL =(1/v2)(bl+b2) is measured along the
wave vector. Therefore, the only components of the
waves polarized perpendicular to and parallel to the
sagittal plane are piezoelectrically active at 0' and
45', respectively. Ho~ever, such components are
not present at 0', or in the [1001 direction. On the
other hand, in the [110]direction, the PSW's which
are polarized in the sagittal plane have strong
piezoelectric effects, whereas no such effects exist for
the SH ~aves. It may be worthwhile to remember
that, in the isotropic approximation, the SAW s trav-
eling in the [100] direction of the cubic crystal have
no piezoelectric effect either, but those propagating
along the [110]direction couple to the piezoelectric
field most strongly.

Next, examples of the spatial variation of the in-
duced electric potential with depth are shown in Fig.
6. %'e immediately recognize the oscillatory damping
of the potential, like that of the particle displacement.
Comparing these spatial behaviors with the much
simpler decay profile of the potential in isotropic ma-
terials, we find that the observed oscillation is again
characteristic in media with anisotropy and will pro-
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1.0 r

3 6Hz

--22.5'
-- --- --45'

duce results on the surface-phonon amplification rate
qualitatively distinguishable from those of the isotro-
pic approximation.

Now, in the phonon picture, the displacement vec-
tor of the SAW has been expanded as Eq. (32).
Then, it is seen that the induced electric potential is
quantized as follows:

UJ

0
LLI
lK

1.0 1.5 2.0

DEPTH (p m)

' 1/2

$(r, t) = X [a-k$-k(r, t)+a-„Q-k (r, t)]

(55)

FIG. 6. Variation of the electric potentials with depth for
3-GHz phonon frequency. The solid and broken curves
represent the variation for propagation rotated 22.5 and 45'
(PSW), respectively; away from the [100j axis in the (001)
plane.

Taking these results into account, the interaction
Hamiltonian of the surface phonons with the elec-
trons in the semiconductor can be written

Hi= —e J Vt(r)@(r, 0)'P(r) dr= X Xc -„,c-, ,ak=~~(k) +H c.
p, k C.C

where
r ~]/p

~~(k) = Jl P~ (x3) [(d+'cosakx3+d sinakx3) exp( —Pkx3) +d ' exp( —ykx3)]g~(x3) dx3
2pv

(56)

(57)

VI. ATTENUATION RATE OF SURFACE PHONON

During propagation on the semiconductor surface,
the surface phonons are attenuated or amplified ow-

ing to their absorption or emission by the conduction
electrons. This can be described basically by the
Hamiltonian (56). However, correct understanding
of the attenuations (or the amplifications) of the sur-
face phonons except in the regime kl )) I (I is the
mean free path of the electrons) requires still addi-
tional knowledge on the finite lifetime of the elec-
trons which may be produced by (56) as well as by
other mechanisms.

In this paper, we shall employ the lowest-order ap-

X I (f I &t I t) I'&(Ef (58)

which becomes, upon limiting it to phonons with
two-dimensional wave vector k and energy kco,

proximation of perturbation theory to evaluate the at-
tenuation rate of the surface phonons. This is be-
cause, as has been remarked in Paper I, for phonon
frequencies larger than 1 GHz, kl & 1 holds and the
effect of the relaxation time of the electrons plays an
important role only at frequencies around 1 GHz.

Then, according to the golden rule, the width I of
the surface phonons will be

k.
tt k k, q P +k, q' (59)

where Nk is the occupation number of the surface phonons and f&, =f(ES,) is the distribution function of
the electrons. In this expression, we have introduced the static dielectric function e(k) = I + (k, /k)' which

expresses the screening of the piezoelectric fields by the electrons, ~here k, is the reciprocal of the screening
length.

If the attentuation rate 0, of the surface phonons is defined as I-„divided by the phonon flux Nqv, then it fol-

lows, after carrying out the sums over p and the electron spin,

1

2m co 8met e, -,
&

& df (E + e~) 2tt ~k' ll'k'j=, ,(l ) I' dE E = 6q' 6 +
ik) dE m ' ' 2m

t a
(60)
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where the integration over E should be performed in
the whole region where the argument of the square
root is non-negative. Because df/dE is negative de-
finite, the u defined by Eq. (60) is positive and the
surface phonons are attenuated by the interaction
with the electrons. In the presence of the dc electric
field, however, a displaced distribution must be used
for the electrons. If the electrons have a drift veloci-
ty vq in the direction parallel to the wave vector k of
the surface phonons, the frequency ao is to be re-
placed by —&ox in Eq. (60), where x is the so-called
drift parameter defined by x = uq/u —1. Therefore,
the attenuation rate e changes its sign from positive
to negative as the electron drift velocity vz exceeds
the phonon velocity v and amplification of the sur-
face phonons is attained.

VII. NUMERICAL RESULTS

E
-0.04

0.125 ~ )',

O

e 0.02

U

Q
X

3 GHz

x =10

[100] 5' 15' 25'
ANGLE

35' [110]

FIG, 7. Angle dependence of the calculated amplification
rate of surface phonons for 3-GHz frequency and for drift
parameter x =1D. The cross at 45' indicates the amplifica-
tion rate of the surface phonons of the pseudo branch.

As a numerical example, n-type GaAs with a bulk-
electron mobility p, = 1.70 x 10 cm /V sec is con-
sidered at T =77 K. This value of the mobility
corresponds to the value of the bulk-electron concen-
tration n =1.07 X 10' cm '. The piezoelectric and
the dielectric constants are e~ =4.71 & 104 esu/cm'
and ~p =12.9, respectively, and the electron effective
mass is m =0.07mp, where mp is the mass of the free
electron. Combining these values with the band
bending e$, =0.59 eV at the surface, the thickness
of the depletion layer is computed to be lp =0.283
p, m.

The electronic screening will be considered in the
Debye approximation in which the difference
between the electronic motions parallel and perpen-
dicular to the surface, as well as in the electron con-
centration in x3 C lp, is neglected. This is the same
approximation made in the Paper I. In this case, we
have the screening wave number k, =4.75 x 10
cm

Figure 7 shows for 3-6Hz frequency, the variation
of the amplification rate of the surface phonons with

propagation direction on the (001) plane. The am-
plification rate of the phonons corresponding to the
PSW is shown by the cross. It can be seen that the
surface phonons of the normal branch couple to the
electrons through piezoelectricity most strongly at an
angle around 22.5', which is almost identical to the
pure-mode axis. We also see that the surface pho-
nons of the pseudo branch interact with the electrons
more strongly than the phonons of the normal
branch.

This calculated angle dependence is quite dissimilar
to that of the isotropic approximation. We note that
the latter grows as (~~K2)' ~sin'28, where 8 is the an-

gle rotated from the crystal axis. ' Furthermore, for
3-0Hz frequency the amplificatio~ rate of the isotro-
pic approximation reaches up to 0.579 cm ' at
8 =45 ', whereas Fig. 7 tells us that the maximum
amplification rate is 0.125 cm ' for the same frequen-
cy if the anisotropy effects are taken into account.
This significant reduction of the amplification rate
can be explained by the oscillation in the depth
dependence of the induced potential for the anisotro-
pic medium, that is, the oscillation implies that the
orientation of the electric fields accompanying the
acoustic fields rotates with the depth and hence it
yields a partial cancellation of the effective magnitude
of the electric fields to which the electrons are cou-
pled. It should be noted that as far as the (001)
plane of the cubic crystal is concerned, this calculated
curve for the amplification rate is common to all
piezoelectric semiconductors with q ) 1. On the oth-
er hand, for semiconductors with the same symmetry
but with q ( 1, the angle dependence of the amplifi-
cation rate on the same plane is expected to manifest
a rather similar behavior to that of the isotropic sem-
iconductors (q = I) mentioned above, apart from
overall magnitude. '

Figures 8(a) and (b) display the frequency depen-
dences of the amplification rate at 22.5 and 45'
(pseudo branch), respectively. For the sake of com-
parison, the amplification rates obtained by assuming
the absence of the depletion layer (lq ——0) (dot-dash
line), and nonexistence of the electrons for x3 ( Ip

(broken curve) are drawn simultaneously. The form-
er is proportional to ao' for frequencies corresponding
to wave number k satisfying k (( k, . We also find
that the electrons which extend over the region
x3 4 lp act to shift higher the frequencies at which
the local extrema of the amplification rate are
reached as well as to make the overall magnitudes of
the amplification larger. These characteristics have
been equally found for Rayleigh waves. However,
when the existence of the electron depletion layer is
introduced, the frequency dependence of the amplifi-
cation rate is modified even qualitatively. Here, we
remember that the amplification rate of the surface
phonons obtained in the isotropic approximation has
two bumps and a dip for certain frequencies between'
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(a) 1 and 10 GHz. The existence of both the bumps and
the dip has been understood approximately by the k
dependence of the following quantity3:

(61)

0,1

hl

~ 0.05

where $k (x3) is defined by

g-„(r) =—@-„(x3)e'"'" (62)
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FIG. 8, Frequency dependence of amplification rate for
propagation at 22.5' {a),and 45' (pseudo branch) (b), ro-
tated away from the [100] axis in the (001) plane, and for
drift parameter g =10. The broken curves give the amplifi-
cation rate calculated by assuming no electrons for x3 K Io.
The dot-dash lines represent an amplification rate propor-
tional to co3 and are obtained when the depletion layer is ig-

nored, i.e., ID=0,

In this approximation, the appearance of the dip
corresponds to the vanishing of Y-„ for an appropriate
k.

At 22.5, two bumps and a dip appear in the fre-
quency region 1 —15 GHz and for higher frequencies
the amplification rate decreases exponentially. These
characteristics seem to be qualitatively very similar to
those of the isotropic approximation apart from the
values of the frequencies at which the local extrema
are reached. This close resemblance is, nevertheless,
just an apparent one, as will be explained right below.
At 45', only one local maximum can be seen in the
GHz-frequency region. The spatial behavior of the
potential perpendicular to the surface (Fig. 6) and Eq.
(61) help us to establish that this maximum
corresponds to the lower frequency one for 22.5' and
to the higher frequency one in the isotropic approxi-
mation. More precisely, up to about 15-GHz pho-
non frequencies, there could be three and two bumps
for 22.5 and for 45', respectively, provided the in-

terpretation of the amplification on the basis of Eq.
(61) is valid for all frequencies. After a careful con-
sideration of the induced potential (Fig. 6), we can
conclude that the oscillation of the potential charac-
teristic to elastic anisotropy is responsible for the oc-
currence of the local maxima or minima of the am-
plification rate at frequencies higher than 10 GHz.
The oscillation of the potential with depth is really
striking for 22.5' and it generates the bump above 1Q

GHz observed in Fig. 8(a). On the other hand, the
oscillation is inconspicuous for the PS%'s (rather
similar to the Rayleigh waves) and then the other
bumps at high frequencies (&10 GHz), if present,
will not be detected being practically screened by the
rapid exponential decrease of the amplification.

Equation (61) tells us that the other bump in the
amplification rate, corresponding to the lower-
frequency one in the isotropic approximation, may
exist at frequencies lower than 1 GHz. Unfortunate-
ly, our approximation fails even. qualitatively at such
low phonon frequencies. In both Figs. 8(a) and (b),
we only see a gentle growth of the amplification rate
at frequencies near 1 GHz. In conclusion, owing to
the presence of the elastic anisotropy of the semicon-
ductor, the amplification rate of the surface phonons
generally has additional bumps and dips in its fre-
quency dependence, which do not have counterparts
in isotropic semiconductors.
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VIII. CONCLUSIONS

In this paper, we have investigated the acoustoelec-
tric interaction of the surface phonons in piezoelectric
semiconductors taking the effect of elastic anisotropy
into account. Since the anisotropy introduces some
quantitative changes on the underlying SAW theory
in the isotropic approximation, the interaction has
been expected to suffer the considerable effects of
these. The oscillation in the decay of the particle dis-
placement away from a solid surface is one of the
most remarkable alterations caused by anisotropy.
We have seen that this oscillation brings about signi-
ficant reduction of the coupling strength between the
electrons and the surface phonons as compared with
the isotropic approximation. However, the magni-
tude of the interaction is still large enough to be
detected experimentally.

The oscillatory behavior of the particle displace-
ment with depth causes qualitative changes as well in
the frequency dependence of the attenuation or the
amplification rate of the surface phonons when the
thickness of the depletion layer at the semiconductor
surface becomes of the same order of magnitude as
the wavelength of the surface phonons. It may be
noteworthy that no notable changes are present apart
from the overall magnitude of the amplification if the
existence of the depletion layer at the semiconductor
surface is neglected.

Another relevant characteristic introduced for the
surface phonons by the anisotropy is that there exist
generally three independent components of the parti-
cle displacement and their relative magnitude (and
then the polarization of the phonons) varies with the
direction of propagation. The variation of the at-

tenuation or the amplification rate of the surface
phonons with their propagation direction is closely
connected with this property of the phonons in the
anisotropic media because the electrons interact with
the surface phonons through the induced longitudinal
electric field whose strength is sensitively dependent
upon the polarization of the phonons. The calculated
angle dependence of the amplification is different
even qualitatively from that of the isotropic approxi-
mation, where only two independent components of
the particle displacement are present for the Rayleigh
waves.

In this paper we have made some simplifications as
in Paper I, that is, we have approximated the relaxa-
tion time of the electrons to be infinite and we have
ignored the contributions of the electrons in the re-
gion x3 & Io to the electronic screening. Somewhat
detailed discussions of these points have already been
given in Paper I. Here, we only remark that our ap-
proximations do not prevent us from understanding
the crucial effects of elastic anisotropy on the acous-
toelectric interactions of the surface phonons in sem-
iconductors.
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